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DEVOIR SURVEILLÉ

MATHÉMATIQUES

samedi 10 janvier 2026

(4 heures)

Si au cours de l’épreuve, un candidat repère ce qui lui semble être une erreur d’énoncé, il en fait mention dans
sa copie et poursuit sa composition. Dans ce cas, il indique clairement la raison des initiatives qu’il est amené à
prendre.
La qualité de la rédaction, la clarté et la précision des raisonnements entrent pour une part importante dans
l’appréciation des copies.
Les candidats sont invités à encadrer dans la mesure du possible les conclusions.
La calculatrice est autorisée.
Ce sujet comporte 6 pages.
Un formulaire Python est donné à la fin du sujet.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Les modèles de Gompertz et de Verhulst, issus de la démographie humaine au XIXième siècle, ont ouvert la voie
aux modèles biologiques structurés en âge développés au XXième siècle, tels que le modèle de Leslie.
Ce sujet est consacré à l’étude de modèles de Leslie à trois ou quatre classes d’âge, formulés sous forme d’une
relation matricielle, et à l’analyse de leur comportement à long terme.

Ce problème comporte des questions préliminaires suivies de quatre parties, la partie B utilise les résultats de la
partie A et la partie D ceux de la partie C.

Les notations et les résultats des questions préliminaires servent dans les parties B, C et D.

Les différentes parties peuvent être traitées dans l’ordre de votre choix. Toutefois, pour chacune d’elles, les réponses
doivent être présentées dans l’ordre des questions.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Dans ce sujet n et p désignent des entiers naturels non nuls.

Notation et convention :

Dans ce sujet, on pourra identifier Rn à Mn,1(R) et Cn à Mn,1(C).

Pour A ∈ Mn(R), on note Sp(A) le spectre de A.

Pour tout λ ∈ Sp(A), on note Eλ(A) le sous-espace propre de A associé à λ.

Rappel.
• Pour tout (z1, z2) ∈ C2, |z1 + z2| ⩽ |z1|+ |z2|,

• Pour tout (z1, z2) ∈ C2, |z1 + z2| = |z1|+ |z2| ⇐⇒ ∃(α, β) ∈ (R+)
2 \ {(0, 0)} : αz1 = βz2

On note 1n ∈ Mn,1(R) le vecteur colonne de taille n ne comportant que des 1.
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Questions préliminaires.

Matrices à coefficients positifs ou strictement positifs.

Pour M = (mij) une matrice de Mn,p(R),
on écrira M ⩾ 0 l’assertion : ∀(i, j) ∈ [[1, n]]× [[1, p]], mij ⩾ 0

on écrira M > 0 l’assertion : ∀(i, j) ∈ [[1, n]]× [[1, p]], mij > 0

1) Justifier que {M ∈ Mn(R) | M ⩾ 0 } est stable par produit.
(Autrement dit : M1 ⩾ 0 et M2 ⩾ 0 implique que M1M2 ⩾ 0)

2) Montrer que :
{
M ∈ Mn,p(R) | M > 0

}
̸=

{
M ∈ Mn,p(R) | M ⩾ 0 et M ̸= 0n,p

}
Norme 1 d’un vecteur.

Soient p ∈ N∗, u = (u1, ..., up) un vecteur de Cp on appelle norme 1 de u le réel défini par : ||u||1 =
p∑

i=1

|ui|

1) Montrer successivement les propositions suivantes :
a) Pour tout u ∈ Cp, ||u||1 ⩾ 0.
b) Pour tout u ∈ Cp, ||u||1 = 0 ⇐⇒ u = 0Cp .
c) Pour tout λ ∈ C et tout u ∈ Cp, ||λu||1 = |λ| ||u||1.
d) Pour tout u ∈ Cp et v ∈ Cp, ||u+ v||1 ⩽ ||u||1 + ||v||1.

2) Soit (Xn)n∈N une suite de vecteurs de Rp, on note pour tout n : Xn = (xn,1, ..., xn,p)

a) Montrer que :
(
||Xn||1

)
tend vers 0 si, et seulement si, pour tout i ∈ [[1, p]], lim

n→+∞
xn,i = 0

On dira que la suite (Xn)n∈N converge vers un vecteur X∗ = (x∗
1, . . . , x

∗
p) ∈ Rp si la suite réelle

(
∥Xn−X∗∥1

)
tend vers 0. D’après la question 2) a), cela revient à dire que, pour tout i ∈ [[1, p]], la suite réelle (xn,i)n∈N

converge vers x∗
i .

b) Montrer que s’il existe α ∈ [0, 1[ tel que pour tout n ∈ N, ||Xn+1||1 ⩽ α||Xn||1 alors (Xn) converge vers
0Rp

3) Ecrire une fonction Python norme_1(u) qui prend en entrée une liste de nombres u représentant un vecteur
et qui renvoie sa norme 1.

Matrice à diagonale strictement dominante.

Soit A une matrice carrée de Mp(R),

On dit que A est à diagonale strictement dominante lorsque : ∀i ∈ [[1; p]], |aii| >
p∑

j=1
j ̸=i

|aij |

4) Écrire une fonction Python diag_dominante(A) qui renvoie True si une matrice A est à diagonale strictement
dominante, et False sinon.

(On ne vérifiera pas que la matrice passée en argument est bien carrée.)

5) Soit A de Mp(R) une matrice à diagonale strictement dominante.
Le but de cette question est de montrer que A est inversible.
Pour cela on prend un vecteur X = (x1, ..., xp) ∈ Rp tel que AX = 0Rp et on note k ∈ [[1, p]] tel que
|xk| = max

1⩽i⩽p
|xi|

a) Montrer successivement que |akk| |xk| ⩽
p∑

j=1
j ̸=k

|akj | |xj | , puis que |akk| |xk| ⩽
p∑

j=1
j ̸=k

|akj | |xk|.

b) En déduire que A est inversible.

6) a) Existe t-il des matrices à diagonale strictement dominante et non inversible ?
si oui, donner un exemple dans M3(R) ; si non donner une explication.

b) Existe t-il des matrices inversibles et pas à diagonale strictement dominante ?
si oui, donner un exemple dans M3(R) ; si non donner une explication.
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Partie A : Etude des valeurs propres d’une matrice.

Soit L la matrice


0 2 1
1

2
0 0

0
3

5

2

5


7) Montrer que rg(L− λI3) ̸= 3 si, et seulement si, 10λ3 − 4λ2 − 10λ+ 1 = 0

Dans la suite on note P : x 7−→ 10x3 − 4x2 − 10x+ 1

8) Montrer que P ′ admet deux racines réelles a et b vérifiant −1 < a < 0 < b < 1.
9) En déduire le tableau de variations de P . On ne calculera pas les valeurs de P (a) et P (b).

10) Montrer que P admet trois racines réelles λ1, λ2 et λ3 vérifiant : −1 < λ1 < 0 < λ2 <
2

5
< 1 < λ3 < 2

11) Ecrire un programme Python utilisant l’algorithme de dichotomie et qui permet de calculer une valeur
approchée de λ3 à 10−4 près.

12) Utilisez votre calculatrice pour déterminer une valeur approchée de λ3 à 10−2 près.
Vous expliquerez la démarche utilisée.

Partie B : Un premier modèle de Leslie.

On considère une population répartie en trois classes d’âge : les jeunes, les adultes jeunes et les adultes âgés.

Pour tout entier n, on note : Xn =

jn
an
vn

,

où jn, an et vn désignent respectivement les effectifs des trois classes à la génération n.

L’évolution de la population est modélisée par la relation Xn+1 = LXn, où L est la matrice de la partie A.

13) Interpréter les coefficients de L.
14) On pose dans cette question X0 = (100, 60, 40) et on note pour chaque n dans N, tn = jn + an + vn.

a) Montrer que (tn) n’est pas constante.
b) Interpréter ce résultat.

15) a) Soit U = (u1, u2, u3) un vecteur non nul et λ un réel tel que LU = λU

(U vecteur propre de L associé à λ)
Déterminer U en fonction de λ en supposant u2 = 1.

b) En déduire qu’il existe un unique V ∈ M3,1(R) et un unique réel λ̂ tels que :

v1 > 0, v2 = 1 et v3 > 0 et LV = λ̂V

Pour X =

x1

x2

x3

 ∈ M3,1(R) on définit lorsque c’est possible : X∗ =
1

x1 + x2 + x3

X

c) Montrer que (LV )∗ = V ∗ et interpréter ce résultat vis à vis du modèle étudié.

16) On a vu dans la partie A que L possède trois valeurs propres réelles et distinctes donc on peut affirmer qu’il
existe une base (U1, U2, U3) de M3,1(R) telle que :

LU1 = λ1U1 , LU2 = λ2U2 et LU3 = λ3U3

(où λ1, λ2 et λ3 sont les réels définis dans la partie A )
Soit X0 ∈ R3 une condition initiale telle que X0 = α1U1 + α2U2 + α3U3 avec α3 ̸= 0

a) Démontrer, par récurrence sur n, que pour tout n ∈ N, Xn = LnX0.
b) Exprimer pour chaque entier n, Xn sur la base (U1, U2, U3).

c) En déduire que la suite
(

1

α3λn
3

Xn

)
converge vers U3.

d) En utilisant la valeur approchée obtenue à la question 12).
A long terme, quelle est la proportion de chaque classe dans la population ?
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Partie C : Autour des matrices stochastiques.

Les matrices stochastiques apparaissent d’abord comme matrices de transition des chaînes de Markov, où elles
décrivent l’évolution d’une loi de probabilité. Elles sont aussi utilisées dans des modèles déterministes, par exemple
pour décrire la répartition d’une population entre classes dans un modèle de Leslie conservatif.
On les retrouve enfin dans divers contextes (réseaux, algorithmes de classement, files d’attente), où elles traduisent
l’idée d’une masse totale conservée et redistribuée entre plusieurs états.

On appelle matrice stochastique par lignes une matrice carrée à coefficients réels positifs ou nuls et dont la somme
des coefficients de chaque ligne vaut 1.
On appelle matrice stochastique par colonnes une matrice carrée à coefficients réels positifs ou nuls et dont la
somme des coefficients de chaque colonne vaut 1.
On dit qu’une matrice est stochastique si elle l’est par lignes ou par colonnes.

Dans cette partie les matrices sont carrées et de taille n× n.

17) a) Justifier que : A est stochastique par lignes si, et seulement si, A ⩾ 0 et A1n = 1n

b) En déduire que le produit de deux matrices stochastiques par lignes de Mn(R) l’est, elle aussi.
c) En déduire que les puissances d’une matrice stochastique par lignes de Mn(R) le sont, elles aussi.
d) Justifier que si A est stochastique par lignes alors 1 est une valeur propre de A.

18) Soit A = (aij) ∈ Mn(R).

On note λ ∈ C une valeur propre de A associée au vecteur propre X =

x1

...
xn

 ∈ Mn(C).

(On rappelle que X ̸= 0n×1 et AX = λX)

On note aussi k ∈ [[1, n]] tel que |xk| = max
1⩽i⩽n

|xi|

a) On suppose que A est stochastique par lignes .

i. Montrer que : |λ|.|xk| ⩽
n∑

j=1

akj . |xk|

ii. En déduire que |λ| ⩽ 1.
b) On suppose que A est stochastique par lignes et à coefficients strictement positifs.

On note B la matrice obtenu à partir de A en supprimant la dernière ligne et la dernière colonne.
i. Montrer que B − In−1 est à diagonale strictement dominante.

Que peut-on en déduire sur le rang de A− In ?
ii. En déduire que le sous-espace propre de A associé à 1 est de dimension 1.

iii. Montrer que |λ− akk| ⩽
n∑

j=1
j ̸=k

akj

iv. En déduire que si λ ̸= 1 alors |λ| < 1.

19) Soit A ∈ Mn(R)
a) Justifier que : A est stochastique par colonnes si, et seulement si, A ⩾ 0 et 1T

nA = 1T
n

b) Montrer que A et AT ont même spectre et que pour λ ∈ Sp(A), Eλ(A) et Eλ(A
T ) ont même dimension.

c) Reprendre soigneusement les questions 17) et 18) ; et énoncer et justifier des résultats semblables sur
les matrices stochastiques par colonnes.

20) Montrer enfin le lemme suivant :

Soit A ∈ Mn(R)

Si A est stochastique et vérifie ∃m ∈ N, Am > 0 alors


1 ∈ Sp(A)

dim(E1(A)) = 1

∀λ ∈ Sp(A) \ {1}, |λ| < 1
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Partie D : Un modèle de Leslie conservatif à quatre états.

On modélise l’évolution d’une population de follicules pileux répartie en quatre états.
E1 : follicules en repos (phase de telogen),
E2 : début de phase de croissance (anagen précoce),
E3 : croissance avancée (anagen tardif, follicule actif ),
E4 : phase de regression (catagen involution).

Pour tout entier n ⩾ 0, on note Xn =


xn,1

xn,2

xn,3

xn,4

 le vecteur des effectifs dans chaque état à la génération n.

L’évolution des effectifs est modélisée par la relation de récurrence matricielle :

Xn+1 = LXn, L =


1/2 1/3 1/4 1

1/2 0 0 0

0 2/3 0 0

0 0 3/4 0

 .

21) Mise en place du modèle

a) Interpréter biologiquement les différents coefficients de la matrice L.
b) On note : Tn = xn,1 + xn,2 + xn,3 + xn,4

En remarquant que L est stochastique par colonnes, montrer que (Tn) est constante.
Interpréter ce résultat.

c) On définit : S =
{
x ∈ R4

∣∣ xi ⩾ 0 pour i = 1, 2, 3, 4 et x1 + x2 + x3 + x4 = 1
}
.

On interprète S comme l’ensemble des répartitions possibles en proportions entre les quatre états.

Montrer que si X0 ∈ S, alors Xn ∈ S pour tout n ∈ N.

d) Justifier que L4 > 0. Indication : on pourra remarquer que L est de la forme

∗ ∗ ∗ ∗
∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0


où les symboles ∗ désignent des coefficients strictement positifs.

22) Répartition d’équilibre

On s’intéresse ici aux répartitions d’équilibre, c’est-à-dire aux vecteurs X ∈ S tels que LX = X.

a) Le lemme démontré à la partie C permet-il de démontrer qu’il existe une et une seule répartition
d’équilibre.

b) Justifier par le calcul qu’il existe un unique vecteur d’équilibre X∗ ∈ S tel que LX∗ = X∗. On donnera
les composantes de X∗.

c) Interpréter biologiquement la répartition d’équilibre X∗.

23) Convergence vers l’équilibre
Dans cette question, on se propose de montrer que le modèle converge vers la répartition d’équilibre.
On admet qu’il existe une base de M4,1(C) formée de vecteurs propres de L :
Il existe une base B = (U1, U2, U3, U4), trois complexes λ2, λ3 et λ4 tels que :

U1 = X∗ LU2 = λ2U2 LU3 = λ3U3 LU4 = λ4U4

a) i. Quelle est la valeur propre associée à U1 ?
ii. Justifier que |λ2| < 1, |λ3| < 1 et |λ4| < 1

iii. En déduire U2, U3 et U4 appartiennent à H =
{
x ∈ C4

∣∣ x1 + x2 + x3 + x4 = 0
}
.

b) Soit (Xn)n∈N une suite vérifiant Xn+1 = LXn, avec X0 ̸= 0 et X0 ⩾ 0 .

On note T0 = x0,1 + x0,2 + x0,3 + x0,4 et


α1

α2

α3

α4

 la matrice des coordonnées de X0 dans base B.
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i. Montrer que T0 ̸= 0 et expliquer ce que représente T0 ?
ii. Montrer que α1 = T0

iii. Montrer que la suite (Xn) converge vers T0 X
∗. (au sens défini à la question 2) )

iv. Interpréter ce résultat d’un point de vue biologique.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Annexe : Commandes Python

On suppose que le module math est importé via import math as m .
On suppose que le module numpy est importé via import numpy as np .

Interprétation Python

Transforme une liste L en tableau numpy np.array(L)

Matrice nulle de taille n× p np.zeros([n,p])

Coefficient d’indice (i, j) de la matrice A A[i, j]

Ligne d’indice i de la matrice A A[i, :]

Colonne d’indice j de la matrice A A[:, j]

Taille de la matrice A d = np.shape(A)

- nombre de lignes d[0]

- nombre de colonnes d[1]

Pour A et B matrices de tailles compatibles :

- addition et soustraction A + B , A - B

- multiplication matricielle np.dot(A, B)

Valeur absolue d’un réel x abs(x)

Valeur absolue d’un complexe z abs(z)
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