BCPST 24

[Correction du devoir surveillé de (4 heures) du samedi 10 janvier

Questions préliminaires.

Matrices a coefficients positifs ou strictement positifs.

1) Soir A et B deux matrices carrées telles que A>0et B>0,

pour tout (4,5) € [1;n]?, (AB); Z a;xbr; et comme les a; et by; sont positifs, il vient AB > 0

| {M € #,(R) | M >0} est stable par produit |

2) Ici on a besoin den > 2 oup > 2.
En prenant la matrice M avec que des zéros sauf (M )y = 1 on a une matrice qui vérifie M > 0 et M # 0, ),
mais qui ne vérfie pas : M > 0

| {M € MnpR) [ M>0}#{MEMpR) [ M>0ct M#0,, }|

Norme 1 d’un vecteur.

P
1) a) Pour tout i € [1,p], |u;| € Ry  donc Z lui| € Ry et ainsi [Vu € CP, [Jul], > 0]
i=1
b) La somme de réels positifs est nul si, et seulement si, tous les réels sont positifs.

or pour tout ¢ € [1,p], |u;| =0 donc Z\uz| =0 < Vie[l,p], lui/ =0 donc
=1

[VueC?, [[u]], =0 < u=_0c» |

c) Pour A e Cet ueCP,
P

p D
Xully = D [huil = > ALl = ALY Juil
i=1 i=1

i=1

[(VAeCYuel”, [ull, = Null, |

d) Soient u € CP et v € CP,
on sait que pour tout i € [1,p], |u; + vi| < Ju;| + |v4 (inégalité triangulaire dans C)
on sommant membre pour ¢ allant de 1 a p, il vient :

’ Vu € CP Vo € CP, |lu+ ||, < ||ully + [|v]]. ‘

2) a) Raisonnons par double-implication :
On suppose (\|Xn||1) tend vers 0,

Comme les modules sont positifs, pour tout ¢ € [1,p], |zn| < Z |z, ;| ce qui donne
Jj=1

0< ‘In,i| < ||Xn||1
r (||Xn|\1) tend vers 0 donc (th. des gendarmes) lim |z, ;| =0
n——+0o ’

donc pour tout i € [1,p], liIJrrl Tn; =0
n—-+oo

On suppose que pour tout i € [1, p], lirf ZTni =0,
n—-+oo

P

on a alors pour tout i € [1,p], lim |z,| =0 et par limite d’une somme on en déduit E |n, ]
n—-+oo —
]:

converge vers 0 ou encore <||Xn||1) tend vers 0.



En conclusion :

(HXnHl) tend vers 0 si, et seulement si, pour tout ¢ € [1,p], lim z,;=0
n—-+o0o

b) On suppose que pour un « € [0,1[ on a : pour tout n € N, || X,41]], < || Xpll, (%)
Montrons par récurrence que pour tout n € N, || X, ||, < a"|| X0l

Pour n = 0 on a clairement || Xo||, < a’||Xo||, et si pour un entier n ||X,||, < a™||Xol||, alors avec (*)
on en déduit que || X, 1], < " | Xo||, On a établi :

vneN, 0<|[Xalli < (| Xoll,

Sachant que a € [0,1[, lim «™ =0 et ainsi (par encadrement) (HXnHl) tend vers 0

n—-+oo

[S'il existe o € [0, 1] tel que pour tout n € N, [[Xni1]li < o[ X, ][], alors (X,,) converge vers O |

3) C’est juste un calcul de somme :

def norme_1(u):
S=0
for x in u:
S += abs(x)
return S

Matrice a diagonale strictement dominante.

4) def diago_dominante(A):
n, p = np.shape(A) # on ne vérifie pas que n = p
for i in range(n):
S=0
for j in range(n):
S += abs(A[i, j1)
if abs(M[i, i]) <= S - abs(M[i, il): # Cette condition est équivalente a $(*)$
return False
return True

p
(%) est [ay] < Z |aij|
=1

J#i

P P
5) a) AX =0 donc en particulier Zaijj =0, donc agrx), = — Z ak;T;

j=1 j=1
J#k
P
En passant au module et en utilisant I'inégalité triangulaire il vient : | |agg| |xk| < Z lak;| |z,
j=1
ik
P
et comme |x;| < |zk| et que |ak;| > 0 on en déduit : | |akk||zk] < Z |ak;| |zk
2k
P P
b) |akk| |xk| < Z lak;| |xk| donc si |zk| # 0 alors |ags| < Z lak;| ce qui est impossible car A est a
7 i

diagonale strictement dominante, donc on peut affirmer que xj = 0 ce qui entraine que X = 0.

On a montré que AX =0=— X =0 donc

’ A est inversible ‘

6) a) Non, car on vient de démontrer que toute matrice a diagonale dominante sont inversibles.

. 1 . . . . .
b) Oui, par exemple M = ((1) O) est inversible et pas & diagonale strictement dominante.



Partie A : Etude des valeurs propres d’une matrice.

7)
-\ 2 1
L A0
rg(L—A3) = rg| 5
0o 3 Z_,
5 5
I -2 0
= rg|—A 2 1 2Ly & L
0 3 2-5) L3 < 5L3
1 —2) 0
= 1g |0 2—2)\2 1
0 3 2_5)\ LQ(*L2+)\L1
1 —2x 0
= 1g|(0 2-2)\ 1 L3 < L3 — (2= 5)\)Ly
0 F\) 0
(oo F(A) =3 —(2—=5X)(2—2)\%) = —10\3 +4\% + 10\ — 1
1 0 -2\
= rg|0 1 2—-2)° Cs + Cy
0 0 F(\

triangulaire

donc  rg(Ms — Al3) < 3 si, et seulement si, F(\) =0

’ rg(L — M3) # 3 si, et seulement si, 10A> —4X% — 10\ +1=0 ‘

8) Le polynome P est dérivable sur R et Vo € R, P'(x) = 302% — 8z — 10
e P'(—1) =16 > 0, P'(0) = —10 < 0 et P’ est continue sur I'intervalle donc Ja €] — 1,0[: P’(a) = 0.
e P'(0)=-10<0, P'(1) =16 >0 et P’ est continue sur l'intervalle donc 3b €]0,1[: P’'(b) = 0.

’ P’ admet deux racines réelles a et b vérifiant —1 <a <0< b < 1‘

9) P’ est un trindme de coefficient dominant positif donc on connait son signe et ainsi les variations de P.
De plus P(z) ~ 302* = —cc et P(z) ~ 302 = +oo
—00 +o00

On a ainsi le tableau de variations de P :

T —00 -1 a 0 5 b 1 2 400
P'x) + 0 - 0 +
P(a) >0 +00

10) On remarque que P(0) =1 > 0 donc les variations de P permettent d’affirmer que P(a) > 0.
2
De plus P (5) =-3, P(1)=-3 et P(2)=45

(On applique o P le théoréme des valeurs intermédiaires)
e P est continue et change de signe entre —1 et a donc il existe une racine de P dans | — 1;a

2 2
e P est continue et change de signe entre 0 et 3 donc il existe une racine de P dans ]a; 5 {

e P est continue et change de signe entre 1 et 2 donc il existe une racine de P dans ]1;2]

2
P admet trois racines réelles A\, Ay et A3 vérifiant : —1 < A, <0< Ay < E <l<A3<?2




11) def £(x):
return 10*x**3 - 4*xx**2 - 10*x + 1

a, b, eps =1, 2, 10%*-4
while b-a > eps:
c =(a+b)/2
if £(c) < 0: # ici f est croissante, f(a) < O
a=c
else:
b=c
print(c)

12) Je trace la courbe et je localise la racine puis je calcule P(1,17) <0 et P(1,18) >0

Partie B : Un premier modéle de Leslie.

) 0 2 1 )
In+1 1 J
nt+l | = | 2 (79}
Un+41 0 § 2 Un
5 5
13) On interpréte les coefficients de la matrice L comme des taux de transition et de fécondité entre deux
générations.
e A la premiére ligne : le jeunes adultes donnent en moyenne naissances a deux jeunes et les adultes agés a
un jeune.

e A la deuxiéme ligne : La moitié des jeunes deviennent jeunes adultes (La moitié des jeunes sortent du
modéle) aucun jeune adulte ne reste dans cette classe.
e A la troisiéme ligne : 60% des jeunes adultes survivent et deviennent agés, 40% des adultes agés survivent.
14) On pose dans cette question Xy = (100,60, 40) et on note pour chaque n dans N, ¢, = j, + an + vp,.
a) to = jo + ap +vo = 100 + 60 + 40 =200 et t; = j1 + a; +v; = 160 + 50 + 52 = 262 > 200

donc [ (t,) n'est pas constante |

b) ¢, représente Veffectif total de la population a la génaration n.
(tn) n’est pas constante signifie que cet effectif varie entre les générations.

15) a) Soit U = (u1, ug, u3) un vecteur non nul et A un réel tel que LU = \U

1 —2X 0 Uy 0
Nécessairement \ est une valeur propre de L et U vérifie le systéme : [0 2 —2)\? 1 us | = |0
0 0 0 U3 0
(Grice au calcul sur le rang de la question 5))
2\
Si on impose ug = 1, il vient :| U = 1
2(\2 - 1))

Remarque : d’autres expression sont possibles en particulier pour us.

b) Pour avoir un vecteur propre U avec us = 1 et u3 > 0 et ug > 0 on a nécessairement
et alors la question précédente montre qu’il y a un unique vecteur propre associé vérifiant uy = 1.

’il existe un unique V € .#31(R) et un unique réel \ tels que: vy >0,va=1etvy>0et LV = AV ‘

)

(Lv): = (V)
1 Aoy
= T = )\Ug
U1 + Avg + Avg ;\U3
A U1
= ——— (%)
)\’Ul + /\U2 + )\1}3 V3
1 U1
= —_— ’U2

V1 + v2 + v Vs



V) =Vv*

Interprétation : Les composantes de V* représentent les proportions des différentes classes.

(LV)* = V* signifie que si la population initiale est V' alors a chaque génération 'effectif de chaque
classe est multiplié par A3 et mais les proportions entre classes restent inchangées.

’V* est une répartition stable du modéle ‘

16) a) Montrons, par récurrence sur n, que pour tout n € N, X, = L"X,.
e Pour n =0,

L° = I3 donc on a bien X, = L°X,.

e Soit n € N tel que X,, = L" X,

onaX,=L"X,et X, 1 =LX, donc X4, = L" X,
En conclusion :

pour tout n € N, X, = L" X,

X, = L"X,
L™ (an U7 + aUs + asUs)
= o1 L"Uy 4+ as LUy + a3 L™ Us

et comme ce sont des vecteurs propre de L il vient :

Xn = ar\[UL + a2 A3 Us + a3A\5Us |

¢) as # 0 donc égalité précédente donne :

1 A\ A\

X, — U = — | U —= 1 U
azAg °lly al()%) Lz (As) “lly
1 ]™ A2 "
< o I [|U]]; + |ea " |U2]l,
A A
or /\—;<1 et‘)\z <1 donc
la suite (an> converge vers Us
Q3A3
1 23
d) A long terme on a la répartition U3 = V* = 1

) & P 3 21208 1) \ g2 )

En prenant la valeur approchée de A3, on obtient & long terme la répartition :

’ 57% de jeunes, 24% d’adultes jeunes et 19% d’adultes agés ‘

Partie C : Autour des matrices stochastiques.

n
17) a) A est stochastique par lignes si, et seulement si, V(i,5) € [1,n], a;; >0 et Z a;; =1
j=1
et

n n
Doag=1 = Y a(ly); =1
j=1 j=1

’ A est stochastique par lignes si, et seulement si, A >0 et Al, =1,




b) Soient A et B deux matrices stochastiques par lignes,

e D’une part sachant que A > 0 et B > 0 on a bien AB >0  (montré la question 1),
e d’autre part : AB1, = Al, =1,

donc AB est stochastique.

’ le produit de deux matrices stochastiques par lignes de ., (R) l'est, elle aussi ‘

¢) Soient A une matrice stochastique par lignes,

Ak-l—l

A% = T,, qui est stochastique et si pour un entier k, A* Dest alors d’apres 15)a) Iest aussi,

on a bien (Récurrence) :

’ Les puissances d’une matrice stochastique par lignes de ., (R) le sont, elles aussi ‘

d) si A est stochastique par lignes alors A1, =1,
donc comme 1,, # 0,, on a bien 1 € Sp(A).

’si A est stochastique par lignes alors 1 est une valeur propre de A‘

18) a) i AX =AX donc (AX)r = AX} donc Za;w-xj = Az

j=1
En passant au module on a :
n
Azel = D arjz;
=1
n
< Y larzl
j=1
n
< Z ak; |2;] car les ap sont des réels positifs
j=1
n
< Zak’j |z | car en plus |xi| est le plus grand des |z;|
j=1

ALzl < ang - |l

j=1

n
ii. On a X # 0,x1 donc |zk| > 0 et ainsi 'inégalité précédente donne |\| < Zakj
j=1

n
or A est stochastique par lignes donc Z ap; =1
j=1
ce qui donne :



(B—1In-1)ii = |bi—1]
lai; — 1]

s

= 1l-a;;

)

n

= E Aij — Qi

j=1
n
j=1
J#i
n—1
> Zaii (car A >0)
j=1
J#i
n—1
> Dby
j=1
J#i
n—1
> > (B = L)l
j=1
i

donc

’ B — I,,_1 est a diagonale strictement dominante ‘

on peut en déduire (question 5)) que B — I,,_; est inversible et ainsi que son rang vaut n — 1.
or sachant que le rang d’une matrice est la dimension de ’espace engendré par les lignes ou par les
colonnes on en déduit que :

rg(A—1I,) € {n—1,n}

et comme 1 est une valeur propre de A il vient :

rg(A—1,) =n—1]

ii. Le théoréme du rang appliqué directement & A — I,, donne directement :

’le sous-espace propre de A associé & 1 est de dimension 1‘

n n
iii. AX = AX donc (AX)r = AX}, donc Zakijj = A\1p puis A\zg — appTr = Zaijj
j=1 j=1
ik
n n

en passant au module il vient : |\ — agg| |xx| < Z lak;| |z | puis |\ — ark| |zx] < Z lak;| |2k

j=1 j=1

J#k J#k
or X # 0 donc z # 0 et alors :

n

A= are] < lany]
j=1
Jj#k

iv. On suppose que [A| =1
L’inégalité précédente donne : |A — agr| < 1 — agg donc [A — apr| < |A| — |agk]
or l'inégalité triangulaire donne |\ — agx| < |A| — |agk|-
On a donc |\ — agk| = || — |agk| qui entraine (cas d’égalité dans linégalité triangulaire) qu’il existe
a e RY tel que : A = aagg, et comme ayi € Rt onai=1

On a montré que : |A\| =1 = A =1, or on sait de |A] < 1 donc

[ si A#1alors [A\| <1 |

19) a) On remarque A est stochastique par colonnes si, et seulement si, AT est stochastique par lignes

or 1,TLA = 15 équivaut a AT1, =1,



A est stochastique par colonnes si, et seulement si, A >0 et 174 =17

b) e Soit A € C,

rg(A— A1) rg((A - )\IH)T)
= (A" —\1)
= 1g(AT - \1I,)

ainsi : A € Sp(A) <= 1g(A - A1) <n <= rg(AT —\I,) <n < X\ Sp(AT)

donc | Sp(A) =Sp(AT) |

e Soit A € Sp(4) (= Sp(4T)),

dim (E)(4)) = n-—rg(A—A,) (théoréeme du rang)
= n—1g(A" =\,
= dim (Ex(4A"))

’ Pour tout A € Sp(A4), dim (E)\(AT)) = dim (Ex(A4)) ‘

¢) (non corrigé)

20) (rapidement)
Soit A une matrice stochastique et vérifiant 3m € N, A™ > 0,

e d’aprés 17) d) on a
e d’aprés 18)b)ii. on a : dim(E1(A™)) =1 ce qui entraine (E1(A)) C E1(A™)) que [dim(E;(A)) = 1]
e d’apres 18)b)iv. on a : VA € Sp(A™) \ {1}, [A\| <1
ce qui entraine (A € Sp(4) = \™ € Sp(A™)) que ’V)\ € Sp(A)\ {1}, |\l < 1‘

Partie D : Un modéle de Leslie conservatif & quatre états.

12 1/3 1/4 1
Xpo = LX, L= /2 0 0 0
0 2/3 0 0
0 0 3/4 0

21) a) On interpréte les coefficients de L entre comme des transferts d’effectifs entre deux générations :
e La premiére colonne : La moitié des follicules au repos reste au repos et ’autre passe a I’état 2.
e La deuxiéme colonne : 1/3 des follicules de ’état 2 revient au repos et 2/3 passent a l'état 3.
e La troisiéme colonne : 1/4 des follicules de 1’état 3 revient au repos et 3/4 passent a 'état 4.
e La quatriéme colonne : tous les follicules de I’état 4 reviennent au repos a la génération suivante.

b) On remarque que T,, = 14X, et on a 14,L =1, donc T, =1, LX, = 14X, =T,.

| (T,,) est constante

Interprétation : ’L’effectif total n’évolue pas‘.

¢) (Non rédigé : récurrence sur n) ’si X € S, alors X,, € S pour tout n € N‘.
ko ko ok ok ok %k ok % % ok %k ok %k koK
d) 12 _ *+ 0 0 0 * 00 0 _|*x * *x = 14— * % k% * ok ox x| |k
{0 « 0 0f|0 x O O] |x 0 0 0 S x 00 0ffx 0 0 Of [x x
0 0 = 0 0 0 = 0 0 « 0 0 0 = 0 O 0 = 0 O kK

22) a) oui et non : oui car L remplie toutes les conditions, et non car il ne permet pas de savoir que X € S.

* X X KX
* X ¥ X



b) C’est la résolution d’un systéme on trouve X* = | %

25
¢) X donne l'unique répartition stationnaire de follicules entre les trois états.

Si a une génération donnée la population de follicules est répartie selon ces proportions (48%, 24%,
16%, 12%) alors on obtiendra la méme proportion la génération suivante.

23) a) i. (non rédigé) La valeur propre est 1
il. (mon rédigé) Appliquer & L le lemme de la partie C. La dimension de F1(L) est 1 et les autres
valeurs propres sont de modules < 1

’ |)\2|<1, |)\3‘ <let ‘)\4|<1 ‘

ili. LUy = A\yUs donc 14TLU2 = )\21;{(]2 et comme L est stochastique en colonnes lIUQ = AngUg

on en déduit que (1 — )\2)14TU2 =0 et comme Mg # 1 il vient 14TU2 =0 et donc
On montre de méme que ’Ug ceHetU, € 7-[‘

b) Soit (X,,)nen une suite vérifiant X, 11 = LX,,, avec Xo # 0 et X >0 .
aq
(63
6%}
Oy

i. Ty est la somme de 4 réels > 0 et non tous nuls donc

Interprétation Tj est le nombre total de follicules pileux.

On note Ty = 9,1 + To,2 + Zo,3 + o4 €t la matrice des coordonnées de X,y dans base %.

(On a montré qu’il était constant au cours des différentes générations)

il. (non rédigé) 1l suffit de multiplier Xo = ayU; + aUs + a3Us + auUy & gauche par 14 et d’utiliser

le résultat de 20) a) iii.

iii. Méme raisonnement qu’a la question 14) c) :
1 Xn = eaUnlly < ezl [A2]" [|Uzl]y + las| [As]™ [[Us]ly + |eval [Aa]™ [|Ually

et comme |Ag] < 1, |[Ag] <1 et |A\g] <1il vient :

| (X,,) converge vers To X" |

iv. Interprétation : Quel que soit la répartition initiale, aprés "plusieurs" générations, la population
des follicules se répartit selon les proportions de stables X ™.
Si vous avez des idées, vous pouvez préciser ici les limites de ce modéle.



