
BCPST 2A

Correction du devoir surveillé de (4 heures) du samedi 10 janvier

Questions préliminaires.
Matrices à coefficients positifs ou strictement positifs.

1) Soir A et B deux matrices carrées telles que A ⩾ 0 et B ⩾ 0,

pour tout (i, j) ∈ [[1;n]]2, (AB)i,j =

n∑
k=1

aikbkj et comme les aik et bkj sont positifs, il vient AB ⩾ 0

{M ∈Mn(R) | M ⩾ 0 } est stable par produit

2) Ici on a besoin de n ⩾ 2 ou p ⩾ 2.
En prenant la matrice M avec que des zéros sauf (M)0,0 = 1 on a une matrice qui vérifie M ⩾ 0 et M ̸= 0n,p
mais qui ne vérfie pas : M > 0{

M ∈Mn,p(R) | M > 0
}
̸=

{
M ∈Mn,p(R) | M ⩾ 0 et M ̸= 0n,p

}
Norme 1 d’un vecteur.

1) a) Pour tout i ∈ [[1, p]], |ui| ∈ R+ donc
p∑

i=1

|ui| ∈ R+ et ainsi ∀u ∈ Cp, ||u||1 ⩾ 0

b) La somme de réels positifs est nul si, et seulement si, tous les réels sont positifs.

or pour tout i ∈ [[1, p]], |ui| ⩾ 0 donc
p∑

i=1

|ui| = 0 ⇐⇒ ∀i ∈ [[1, p]], |ui| = 0 donc

∀u ∈ Cp, ||u||1 = 0 ⇐⇒ u = 0Cp

c) Pour λ ∈ C et u ∈ Cp,

||λu||1 =
p∑

i=1

|λui| =
p∑

i=1

|λ|.|ui| = |λ|
p∑

i=1

|ui|

∀λ ∈ C,∀u ∈ Cp, ||λu||1 = |λ| ||u||1

d) Soient u ∈ Cp et v ∈ Cp,
on sait que pour tout i ∈ [[1, p]], |ui + vi| ⩽ |ui|+ |vi| (inégalité triangulaire dans C)
on sommant membre pour i allant de 1 à p, il vient :

∀u ∈ Cp,∀v ∈ Cp, ||u+ v||1 ⩽ ||u||1 + ||v||1

2) a) Raisonnons par double-implication :

⇒ On suppose
(
||Xn||1

)
tend vers 0,

Comme les modules sont positifs, pour tout i ∈ [[1, p]], |xn,i| ⩽
p∑

j=1

|xn,j | ce qui donne

0 ⩽ |xn,i| ⩽ ||Xn||1

or
(
||Xn||1

)
tend vers 0 donc (th. des gendarmes) lim

n→+∞
|xn,i| = 0

donc pour tout i ∈ [[1, p]], lim
n→+∞

xn,i = 0

⇐ On suppose que pour tout i ∈ [[1, p]], lim
n→+∞

xn,i = 0,

on a alors pour tout i ∈ [[1, p]], lim
n→+∞

|xn,i| = 0 et par limite d’une somme on en déduit

 p∑
j=1

|xn,j |


converge vers 0 ou encore

(
||Xn||1

)
tend vers 0.

1



En conclusion :(
||Xn||1

)
tend vers 0 si, et seulement si, pour tout i ∈ [[1, p]], lim

n→+∞
xn,i = 0

b) On suppose que pour un α ∈ [0, 1[ on a : pour tout n ∈ N, ||Xn+1||1 ⩽ α||Xn||1 (∗)
Montrons par récurrence que pour tout n ∈ N, ||Xn||1 ⩽ αn||X0||1
Pour n = 0 on a clairement ||X0||1 ⩽ α0||X0||1 et si pour un entier n ||Xn||1 ⩽ αn||X0||1 alors avec (∗)
on en déduit que ||Xn+1||1 ⩽ αn+1||X0||1 On a établi :

∀n ∈ N, 0 ⩽ ||Xn||1 ⩽ αn||X0||1

Sachant que α ∈ [0, 1[, lim
n→+∞

αn = 0 et ainsi (par encadrement)
(
||Xn||1

)
tend vers 0

S’il existe α ∈ [0, 1[ tel que pour tout n ∈ N, ||Xn+1||1 ⩽ α||Xn||1 alors (Xn) converge vers 0Rp

3) C’est juste un calcul de somme :

def norme_1(u):
S = 0
for x in u:

S += abs(x)
return S

Matrice à diagonale strictement dominante.

4) def diago_dominante(A):
n, p = np.shape(A) # on ne vérifie pas que n = p
for i in range(n):

S = 0
for j in range(n):

S += abs(A[i, j])
if abs(M[i, i]) <= S - abs(M[i, i]): # Cette condition est équivalente à $(*)$

return False
return True

(*) est |aii| ⩽
p∑

j=1
j ̸=i

|aij |

5) a) AX = 0 donc en particulier
p∑

j=1

akjxj = 0 , donc akkxk = −
p∑

j=1
j ̸=k

akjxj

En passant au module et en utilisant l’inégalité triangulaire il vient : |akk| |xk| ⩽
p∑

j=1
j ̸=k

|akj | |xj |

et comme |xj | ⩽ |xk| et que |akj | ⩾ 0 on en déduit : |akk| |xk| ⩽
p∑

j=1
j ̸=k

|akj | |xk|

b) |akk| |xk| ⩽
p∑

j=1
j ̸=k

|akj | |xk| donc si |xk| ̸= 0 alors |akk| ⩽
p∑

j=1
j ̸=k

|akj | ce qui est impossible car A est à

diagonale strictement dominante, donc on peut affirmer que xk = 0 ce qui entraîne que X = 0.

On a montré que AX = 0 =⇒ X = 0 donc

A est inversible

6) a) Non, car on vient de démontrer que toute matrice à diagonale dominante sont inversibles.

b) Oui, par exemple M =

(
0 1
1 0

)
est inversible et pas à diagonale strictement dominante.
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Partie A : Etude des valeurs propres d’une matrice.

7)

rg(L− λI3) = rg


−λ 2 1
1

2
−λ 0

0
3

5

2

5
− λ


= rg

 1 −2λ 0
−λ 2 1
0 3 2− 5λ

 2L2 ↔ L1

L3 ← 5L3

= rg

1 −2λ 0
0 2− 2λ2 1
0 3 2− 5λ


L2 ← L2 + λL1

= rg

1 −2λ 0
0 2− 2λ2 1
0 F (λ) 0

 L3 ← L3 − (2− 5λ)L2

(où F (λ) = 3− (2− 5λ)(2− 2λ2) = −10λ3 + 4λ2 + 10λ− 1

= rg

1 0 −2λ
0 1 2− 2λ2

0 0 F (λ)


︸ ︷︷ ︸

triangulaire

C3 ↔ C2

donc rg(M5 − λI3) < 3 si, et seulement si, F (λ) = 0

rg(L− λI3) ̸= 3 si, et seulement si, 10λ3 − 4λ2 − 10λ+ 1 = 0

8) Le polynôme P est dérivable sur R et ∀x ∈ R, P ′(x) = 30x2 − 8x− 10

• P ′(−1) = 16 > 0, P ′(0) = −10 < 0 et P ′ est continue sur l’intervalle donc ∃a ∈]− 1, 0[: P ′(a) = 0.
• P ′(0) = −10 < 0, P ′(1) = 16 > 0 et P ′ est continue sur l’intervalle donc ∃b ∈]0, 1[: P ′(b) = 0.

P ′ admet deux racines réelles a et b vérifiant −1 < a < 0 < b < 1

9) P ′ est un trinôme de coefficient dominant positif donc on connait son signe et ainsi les variations de P .
De plus P (x) ∼

−∞
30x2 = −∞ et P (x) ∼

+∞
30x2 = +∞

On a ainsi le tableau de variations de P :

x

P ′x)

P

−∞ −1 a 0
2

5
b 1 2 +∞

+ 0 - 0 +

−∞−∞

P (a) > 0P (a) > 0

P (b) < 0P (b) < 0

+∞+∞

−3
1

−3 −3

45

10) On remarque que P (0) = 1 > 0 donc les variations de P permettent d’affirmer que P (a) > 0.

De plus P

(
2

5

)
= −3, P (1) = −3 et P (2) = 45

(On applique à P le théorème des valeurs intermédiaires)
• P est continue et change de signe entre −1 et a donc il existe une racine de P dans ]− 1; a[

• P est continue et change de signe entre 0 et
2

5
donc il existe une racine de P dans

]
a;

2

5

[
• P est continue et change de signe entre 1 et 2 donc il existe une racine de P dans ]1; 2[

P admet trois racines réelles λ1, λ2 et λ3 vérifiant : −1 < λ1 < 0 < λ2 <
2

5
< 1 < λ3 < 2

3



11) def f(x):
return 10*x**3 - 4*x**2 - 10*x + 1

a, b, eps = 1, 2, 10**-4
while b-a > eps:

c =(a+b)/2
if f(c) < 0: # ici f est croissante, f(a) < 0

a = c
else:

b = c
print(c)

12) Je trace la courbe et je localise la racine puis je calcule P (1,17) < 0 et P (1,18) > 0

λ3 ≈ 1,17

Partie B : Un premier modèle de Leslie.

jn+1

an+1

vn+1

 =


0 2 1
1

2
0 0

0
3

5

2

5


jn
an
vn


13) On interprète les coefficients de la matrice L comme des taux de transition et de fécondité entre deux

générations.
• A la première ligne : le jeunes adultes donnent en moyenne naissances à deux jeunes et les adultes agés à
un jeune.
• A la deuxième ligne : La moitié des jeunes deviennent jeunes adultes (La moitié des jeunes sortent du
modèle) aucun jeune adulte ne reste dans cette classe.
• A la troisième ligne : 60% des jeunes adultes survivent et deviennent âgés, 40% des adultes âgés survivent.

14) On pose dans cette question X0 = (100, 60, 40) et on note pour chaque n dans N, tn = jn + an + vn.
a) t0 = j0 + a0 + v0 = 100 + 60 + 40 = 200 et t1 = j1 + ai + vi = 160 + 50 + 52 = 262 > 200

donc (tn) n’est pas constante

b) tn représente l’effectif total de la population à la génaration n.
(tn) n’est pas constante signifie que cet effectif varie entre les générations.

15) a) Soit U = (u1, u2, u3) un vecteur non nul et λ un réel tel que LU = λU

Nécessairement λ est une valeur propre de L et U vérifie le système :

1 −2λ 0
0 2− 2λ2 1
0 0 0

u1

u2

u3

 =

0
0
0


(Grâce au calcul sur le rang de la question 5))

Si on impose u2 = 1, il vient : U =

 2λ
1

2(λ2 − 1))


Remarque : d’autres expression sont possibles en particulier pour u3.

b) Pour avoir un vecteur propre U avec u2 = 1 et u1 > 0 et u3 > 0 on a nécessairement λ̂ = λ3

et alors la question précédente montre qu’il y a un unique vecteur propre associé vérifiant u2 = 1.

il existe un unique V ∈M3,1(R) et un unique réel λ̂ tels que : v1 > 0, v2 = 1 et v3 > 0 et LV = λ̂V

c)

(LV )∗ = (λ̂V )∗

=
1

λ̂v1 + λ̂v2 + λ̂v3

λ̂v1
λ̂v2
λ̂v3


=

λ̂

λ̂v1 + λ̂v2 + λ̂v3

v1
v2
v3


=

1

v1 + v2 + v3

v1
v2
v3


4



(LV )∗ = V ∗

Interprétation : Les composantes de V ∗ représentent les proportions des différentes classes.
(LV )∗ = V ∗ signifie que si la population initiale est V alors à chaque génération l’effectif de chaque
classe est multiplié par λ3 et mais les proportions entre classes restent inchangées.

V ∗ est une répartition stable du modèle

16) a) Montrons, par récurrence sur n, que pour tout n ∈ N, Xn = LnX0.
• Pour n = 0,

L0 = I3 donc on a bien X0 = L0X0.

• Soit n ∈ N tel que Xn = LnX0,

on a Xn = LnX0 et Xn+1 = LXn donc Xn+1 = Ln+1X0

En conclusion :

pour tout n ∈ N, Xn = LnX0

b)

Xn = LnX0

= Ln (α1U1 + α2U2 + α3U3)

= α1L
nU1 + α2L

nU2 + α3L
nU3

et comme ce sont des vecteurs propre de L il vient :

Xn = α1λ
n
1U1 + α2λ

n
2U2 + α3λ

n
3U3

c) α3 ̸= 0 donc l’égalité précédente donne :

∣∣∣∣∣∣∣∣ 1

α3λn
3

Xn − U3

∣∣∣∣∣∣∣∣
1

=

∣∣∣∣∣∣∣∣α1

(
λ1

λ3

)n

U1 + α2

(
λ2

λ3

)n

U2

∣∣∣∣∣∣∣∣
1

⩽ |α1|
∣∣∣∣λ1

λ3

∣∣∣∣n ||U1||1 + |α2|
∣∣∣∣λ2

λ3

∣∣∣∣n ||U2||1

or
∣∣∣∣λ1

λ3

∣∣∣∣ < 1 et
∣∣∣∣λ2

λ3

∣∣∣∣ < 1 donc

la suite
(

1

α3λn
3

Xn

)
converge vers U3

d) A long terme on a la répartition U∗
3 = V ∗ =

1

2λ3 + 1 + 2(λ2
3 − 1)

 2λ3

1
2(λ2

3 − 1)


En prenant la valeur approchée de λ3, on obtient à long terme la répartition :

57% de jeunes, 24% d’adultes jeunes et 19% d’adultes agés

Partie C : Autour des matrices stochastiques.

17) a) A est stochastique par lignes si, et seulement si, ∀(i, j) ∈ [[1, n]], ai,j ⩾ 0 et
n∑

j=1

ai,j = 1

et
n∑

j=1

ai,j = 1 ⇐⇒
n∑

j=1

ai,j(1n)j = 1

⇐⇒ (A1n)i = (1n)i

A est stochastique par lignes si, et seulement si, A ⩾ 0 et A1n = 1n
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b) Soient A et B deux matrices stochastiques par lignes,

• D’une part sachant que A ⩾ 0 et B ⩾ 0 on a bien AB ⩾ 0 (montré la question 1),

• d’autre part : AB1n = A1n = 1n

donc AB est stochastique.

le produit de deux matrices stochastiques par lignes de Mn(R) l’est, elle aussi

c) Soient A une matrice stochastique par lignes,
A0 = In qui est stochastique et si pour un entier k, Ak l’est alors d’après 15)a) Ak+1 l’est aussi,

on a bien (Récurrence) :

Les puissances d’une matrice stochastique par lignes de Mn(R) le sont, elles aussi

d) si A est stochastique par lignes alors A1n = 1n

donc comme 1n ̸= 0n on a bien 1 ∈ Sp(A).

si A est stochastique par lignes alors 1 est une valeur propre de A

18) a) i. AX = λX donc (AX)k = λXk donc
n∑

j=1

ak,jxj = λxk

En passant au module on a :

|λ|.|xk| =

∣∣∣∣∣∣
n∑

j=1

ak,jxj

∣∣∣∣∣∣
⩽

n∑
j=1

|ak,jxj |

⩽
n∑

j=1

ak,j |xj | car les ak sont des réels positifs

⩽
n∑

j=1

ak,j |xk| car en plus |xk| est le plus grand des |xj |

|λ|.|xk| ⩽
n∑

j=1

akj . |xk|

ii. On a X ̸= 0n×1 donc |xk| > 0 et ainsi l’inégalité précédente donne |λ| ⩽
n∑

j=1

akj

or A est stochastique par lignes donc
n∑

j=1

akj = 1

ce qui donne :

|λ| ⩽ 1
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b) i.

(B − In−1)ii = |bii − 1|
= |ai,i − 1|
= 1− ai,i

=

n∑
j=1

aij − ai,i

=

n∑
j=1
j ̸=i

aij

>

n−1∑
j=1
j ̸=i

aij (car A > 0)

>

n−1∑
j=1
j ̸=i

bij

>

n−1∑
j=1
j ̸=i

|(B − In−1)ij |

donc

B − In−1 est à diagonale strictement dominante

on peut en déduire (question 5)) que B − In−1 est inversible et ainsi que son rang vaut n− 1.
or sachant que le rang d’une matrice est la dimension de l’espace engendré par les lignes ou par les
colonnes on en déduit que :

rg(A− In) ∈ {n− 1, n}
et comme 1 est une valeur propre de A il vient :

rg(A− In) = n− 1

ii. Le théorème du rang appliqué directement à A− In donne directement :

le sous-espace propre de A associé à 1 est de dimension 1

iii. AX = λX donc (AX)k = λXk donc
n∑

j=1

ak,jxj = λxk puis λxk − akkxk =

n∑
j=1
j ̸=k

akjxj

en passant au module il vient : |λ− akk| |xk| ⩽
n∑

j=1
j ̸=k

|akj | |xj | puis |λ− akk| |xk| ⩽
n∑

j=1
j ̸=k

|akj | |xk|

or X ̸= 0 donc xk ̸= 0 et alors :

|λ− akk| ⩽
n∑

j=1
j ̸=k

|akj |

iv. On suppose que |λ| = 1

L’inégalité précédente donne : |λ− akk| ⩽ 1− akk donc |λ− akk| ⩽ |λ| − |akk|
or l’inégalité triangulaire donne |λ− akk| ⩽ |λ| − |akk|.
On a donc |λ − akk| = |λ| − |akk| qui entraine (cas d’égalité dans l’inégalité triangulaire) qu’il existe
α ∈ R+ tel que : λ = αakk, et comme akk ∈ R+ on a λ = 1

On a montré que : |λ| = 1⇒ λ = 1, or on sait de |λ| ⩽ 1 donc

si λ ̸= 1 alors |λ| < 1

19) a) On remarque A est stochastique par colonnes si, et seulement si, AT est stochastique par lignes

or 1T
nA = 1T

n équivaut à AT 1n = 1n
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A est stochastique par colonnes si, et seulement si, A ⩾ 0 et 1T
nA = 1T

n

b) • Soit λ ∈ C,

rg(A− λ In) = rg
(
(A− λ In)

⊤
)

= rg(AT − λ ITn )

= rg(AT − λ In)

ainsi : λ ∈ Sp(A) ⇐⇒ rg(A− λ In) < n ⇐⇒ rg(AT − λ In) < n ⇐⇒ λ ∈ Sp(AT )

donc Sp(A) = Sp(A⊤)

• Soit λ ∈ Sp(A)
(
= Sp(A⊤)

)
,

dim (Eλ(A)) = n− rg(A− λIn) (théorème du rang)

= n− rg(A⊤ − λIn)

= dim
(
Eλ(A

⊤)
)

Pour tout λ ∈ Sp(A), dim
(
Eλ(A

⊤)
)
= dim (Eλ(A))

c) (non corrigé)
20) (rapidement)

Soit A une matrice stochastique et vérifiant ∃m ∈ N, Am > 0,
• d’après 17) d) on a 1 ∈ Sp(A)

• d’après 18)b)ii. on a : dim(E1(A
m)) = 1 ce qui entraine (E1(A)) ⊂ E1(A

m)) que dim(E1(A)) = 1

• d’après 18)b)iv. on a : ∀λ ∈ Sp(Am) \ {1}, |λ| < 1

ce qui entraine (λ ∈ Sp(A) ⇒ λm ∈ Sp(Am)) que ∀λ ∈ Sp(A) \ {1}, |λ| < 1

Partie D : Un modèle de Leslie conservatif à quatre états.

Xn+1 = LXn, L =


1/2 1/3 1/4 1

1/2 0 0 0

0 2/3 0 0

0 0 3/4 0

 .

21) a) On interprète les coefficients de L entre comme des transferts d’effectifs entre deux générations :
• La première colonne : La moitié des follicules au repos reste au repos et l’autre passe à l’état 2.
• La deuxième colonne : 1/3 des follicules de l’état 2 revient au repos et 2/3 passent à l’état 3.
• La troisième colonne : 1/4 des follicules de l’état 3 revient au repos et 3/4 passent à l’état 4.
• La quatrième colonne : tous les follicules de l’état 4 reviennent au repos à la génération suivante.

b) On remarque que Tn = 14Xn et on a 14L = 14 donc Tn+1 = 14LXn = 14Xn = Tn.

(Tn) est constante

Interprétation : L’effectif total n’évolue pas .

c) (Non rédigé : récurrence sur n) si X0 ∈ S, alors Xn ∈ S pour tout n ∈ N .

d) L2 =


∗ ∗ ∗ ∗
∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0



∗ ∗ ∗ ∗
∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0

 =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ 0 0 0
0 ∗ 0 0

 L4 =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ 0 0 0
0 ∗ 0 0



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ 0 0 0
0 ∗ 0 0

 =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


L4 > 0

22) a) oui et non : oui car L remplie toutes les conditions, et non car il ne permet pas de savoir que X ∈ S.
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b) C’est la résolution d’un système on trouve X∗ =


12
25
6
25
4
25
3
25


c) X∗ donne l’unique répartition stationnaire de follicules entre les trois états.

Si a une génération donnée la population de follicules est répartie selon ces proportions (48%, 24%,
16%, 12%) alors on obtiendra la même proportion la génération suivante.

23) a) i. (non rédigé) La valeur propre est 1

ii. (non rédigé) Appliquer à L le lemme de la partie C. La dimension de E1(L) est 1 et les autres
valeurs propres sont de modules < 1

|λ2| < 1, |λ3| < 1 et |λ4| < 1

iii. LU2 = λ2U2 donc 1T
4 LU2 = λ21T

4 U2 et comme L est stochastique en colonnes 1T
4 U2 = λ21T

4 U2

on en déduit que (1− λ2)1
T
4 U2 = 0 et comme λ2 ̸= 1 il vient 1T

4 U2 = 0 et donc U2 ∈ H
On montre de même que U3 ∈ H et U4 ∈ H

b) Soit (Xn)n∈N une suite vérifiant Xn+1 = LXn, avec X0 ̸= 0 et X0 ⩾ 0 .

On note T0 = x0,1 + x0,2 + x0,3 + x0,4 et


α1

α2

α3

α4

 la matrice des coordonnées de X0 dans base B.

i. T0 est la somme de 4 réels ⩾ 0 et non tous nuls donc T0 ̸= 0

Interprétation T0 est le nombre total de follicules pileux.
(On a montré qu’il était constant au cours des différentes générations)

ii. (non rédigé) Il suffit de multiplier X0 = α1U1 + α2U2 + α3U3 + α4U4 à gauche par 14 et d’utiliser
le résultat de 20) a) iii. α1 = T0

iii. Même raisonnement qu’à la question 14) c) :

||Xn − α1U1||1 ⩽ |α2| |λ2|n ||U2||1 + |α3| |λ3|n ||U3||1 + |α4| |λ4|n ||U4||1

et comme |λ2| < 1, |λ3| < 1 et |λ4| < 1 il vient :

(Xn) converge vers T0 X
∗

iv. Interprétation : Quel que soit la répartition initiale, après "plusieurs" générations, la population
des follicules se répartit selon les proportions de stables X∗.
Si vous avez des idées, vous pouvez préciser ici les limites de ce modèle.
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