BCPST 24 2025/2026

’ Correction de la feuille_Cours_7_3 : Diagonalisation.

Ex 1: (Démonstration de cours)
1) Soit (a1,2) € K? tel que  ajuq 4+ asus = 0g, (1)
comme f est linéaire on en déduit oy f(u1) + s f(uz) = 0g, puis agAdju; + asdous = 0g (2)
En faisant (2) — A2(1) on obtient : a3 (A1 — A2)u; =0p
et comme A\ — Ao # 0 et u; # O on en déduit a; =0

en reprenant(1)on en déduit agus = 0g qui entraine oy = 0 car ug # Op.

on a bien montré que :  aiu; + asus =0 = a3 = a3 =0

| (u1,ug) est une famille libre

2) On fixe m dans N™.

Soient uq, ... , u,;, des vecteurs propres associés a m valeurs propres distinctes Ay, ... , Ap,.
Montrons par une récurrence finie que (uq, ..., U, ) est une famille libre.
e Pour k=1,

comme u; est un vecteur propre u; # O donc (uq) est une famille libre.

e Soit k € [1,m — 1] tel que (ug, ..., ux) est une famille libre,
(Montrons que (u1,...,ur+1) est une famille libre)
k+1
Soient (v, ..., apy1) € KFF tel que Zajuj =0g, (1)
j=1

k+1 k+1
comme f est linéaire on en déduit Z a;f(uj) =0g, puis Z a;jAu; =0g (2)
j=1 j=1

k
en faisant (2) — Ay,,, (1) on obtient : Z a;j(Aj — A1) u; =0g
j=1

et comme on a supposé que (u1, ..., ux) est libre on en déduit Vj € [1,k], o;j(Aj — Agy1) =0
sachant de plus que Vj € [1,k], A\j —A\py1 #0 onaVje [1,k], a; =0.
en reprenant (1) on en déduit agyiug+1 = Op qui entraine a1 = 0 car ug4+1 # Op.
k+1
on a bien montré que : Zajuj =0p = Vje[l,k], a; =0
= (La famille (w1, ..., ups1) est libre)

e En conclusion (de ce raisonnement par récurrence) :

| (u1,..., un) est une famille libre |

Remarque sur le raisonnement par récurrence finie utilisée ci-dessus.

On a montré :
P(1) (Vraie)

P(1) = P(2)

P(m —1) = P(m)
ce qui permet d’affirmer que :

P(m) est vraie.



Ex 2: 1) On remarque que (1,1) # (0,0) et f((1,1)) =1(1,1) donc 1 est une valeur propre de f,
de méme (1, —1) # (0,0) et f((1,—1)) = —1(1,—1) donc —1 est une valeur propre de f.
or f € Z(R?) a au plus 2 valeurs propres distinctes donc

| Le spectre de f est {—1;1}]

Remarque : f est diagonalisable car il a deux valeurs propres distinctes et ¢’est un endomorphisme d’un
espace vectoriel de dimension 2.

2) On remarque que : rg(M — 3I5) # 2 donc 3 € Sp(M),
de méme rg(M + 2I5) # 2 donc —2 € Sp(M) et rg(M —2I3) # 2 donc 2 € Sp(M)

or M € #3(R) a au plus 3 valeurs propres distinctes donc

’ Le spectre de M est {—2; 2;3}‘

Remarque : M est diagonalisable car il a trois valeurs propres distinctes et c’est une matrice de #5(R).

Ex 3 : (Démonstration de cours)

Soit f un endomorphisme de F.

1) Soient m € N*, Aq,..., \,, m valeurs propres distinctes de f et wuq, ..., u,, des vecteurs vérifiant :
m
Vi e [1;m], wu; € Ex,(f) et Zui:OE
i=1

Montrons par Pabsurde que : Vi € [1;m], w; =0g,

On suppose qu’il existe au moins un ¢ pour lequel u; # O,

on note alors u;,, uj,, ... , 4;, les vecteurs non nuls de la famille (uq, ..., uy,)
T
on a alors E u;, = 0p et w;,, Wiy, ... , w;, sont des vecteurs propres associés a r valeurs propres distinctes.
k=1

ce qui est impossible car le théoréme démontré & I'exercice Ex 1 montre que la famille (u;,, w;y, ..., u;, )
est une famille libre.

En conclusion :

Si Vie[l;m], u; € Ex,(f) et Zul =0g alors Vie[l;m], u; =0g
i=1

Remarque : On dit que les sous-espaces propres associés a des valeurs propres distinctes sont en somme
directe.
Mais cette notion est n’est pas au programme de BCPST.

2) Montrons le théoréme suivant :

Soient Ay, ..., B, des familles de vecteurs de E et Aq,..., A, des scalaires.
Si Ay, ..., Ay, sont m valeurs propres distinctes de f et
si B, ..., B sont respectivement des bases des sous espaces propres Ey, (f),..., Ex,, (f),
alors (%1, ..., %m) est une famille libre.
On suppose que : Ay, ..., A, sont m valeurs propres distinctes de f
et que Ay, ..., By sont respectivement des bases des sous espaces propres Ey, (f), ..., Ex,, (f).

On utilise les notations suivantes.
Pour i € [1,m], %; = (ui;)i1<j<n, une base de Ey,(f)
et I={(i,j)eN?*|1<i<metl<j<n},

Montrons que % = (u; ;) (;,j)er est une famille libre.



Ex 4 :

Soit (Oéi’j) c KI tel Z QUG 5 = Og,

(i,5)€l
m n;
on a alors : g a; u;; | =0g ce qui entraine avec le lemme de la question 1) que :
i=1 \j=1
€Ex, (f)

Vi € [[l;m]], Zai,jum =0g

j=1
mais on sait que pour chaque 4, la famille (u; j)1<;<n, est libre donc on peut en déduire que :
Vi € Hl,mﬂ,Vj e [[1,711]], Q5 = 0

En conclusion :

La juxtaposition (%, ..., B,) est libre. ‘

Remarque : on essaye de "trouver” le spectre par un raisonnement avant d’étudier rg(M — \I,), mais la
méthode consiste & chercher les X tels que rg(M — AI,,) < n.

)

2 1
On note : M = (2 1).

D’une part rg(M) = 1 donc 0 € Sp(M), d’autre part M (1) =3 (1) donc 3 € Sp(M),
or M € .#>(R) possede au plus deux valeurs propres distinctes donc |Sp(M) = {0;3}

La matrice M de .#2(R) a 2 valeurs propres distinctes donc (Condition suffisante)

(; D est diagonalisable

1/2 0
Onnote.M—3<5 2).

2
On remarque que M est triangulaire donc |Sp(M) = {3}

2
de plus : rg (M—Ig) :rg< 0 O) =1 donc dim(Ez(M))=2-1=1

3 5/3 0
M appartient a .#5(R) et Z dim(E\(M)) = 1 # 2 donc (Condition nécessaire et suffisante)
AESP(M)

172 0\ | . .
3 (5 2) n’est pas diagonalisable

1 1 0
Onnote: M=11 1 0
0 0 1
0 1 0
erg(M)=2donc0€ Sp(M), erg(M—1I3)=rg|1 0 0| =2donc1eSp(M).
0 0 0
-1 1 0
erg(M —2)=1g| 1 -1 0 | =2donc2e Sp(M).
0 0 -1

or M € .#>(R) posséde au plus deux valeurs propres distinctes donc [Sp(M) = {0; 1;2}]

La matrice M de .#3(R) a 3 valeurs propres distinctes donc (Condition suffisante)

1 10
1 1 0] est diagonalisable
0 0 1

3



2 0 2
4) Onnote: M =12 2 0
00 2
2—-X 0 2 2 2-X 0 22—\ 0
rg(M —X3)=1g| 2 2-X 0 |=rg|2-X 0 2 | =rg|0 2-X1* 2
0 0 2-2X 0 0 2-2X 0 0 2\

triangulaire

donc rg(M — Al3) <3 <= X\ =2 ce qui donne |Sp(M) = {2}

2 00
deplus:rg(M —2I3)=rg |0 0 2| =2 donc dim(Ex(M))=3-2=1
0 0 O
M appartient & .#3(R) et Z dim(E\(M)) = 1 # 3 donc (Condition nécessaire et suffisante)
AESP(M)
2 0 2
2 2 0] n’est pas diagonalisable
0 0 2
1 0 0 0
5) On note : M = 8 (1) (1) 8
0 0 01

Pour cette matrice on peut faire plusieurs approches comme remarquer que M? = Iy donc les valeurs
propres sont dans {—1,1}. Ensuite en étudie le rg(M — I4) et le le rg(M + 1) pour trouver le spectre et
la diagonalisation

6) (non corrigé)

3
7) La matrice M = | 1

0
2 est triangulaire donc son spectre est {1,2,3}
0

= O O

-1

La matrice M de .#3(R) a 3 valeurs propres distinctes donc (Condition suffisante)

3 00
1 2 0] est diagonalisable
-1 0 1

3
8) La matrice M = | 1 est triangulaire donc son spectre est {2, 3}

S N O

0

0

10 2

de plus : rg (M — 213) —rg(

Remarque de Nokomie : on peut en déduire que dim(FE5(M)) =1  (En effet : Z dim(Ex(M)) < 3)
AeSp(M)

=1 donc dim(E2(M))=3-1=2
1

o O O
oS O O

M appartient a .#3(R) et Z dim(Ex\(M)) = 3 donc (Condition nécessaire et suffisante)
AESp(M)

3
1

0 0
2 0] est diagonalisable
0 2

-1




Ex 5: 1) La matrice de f dans la base % est <_42 i) on la note M

4— ) 2
-2 1=

’:(4—)\)(1—)\)+4:>\2—5)\+6:()\—2)(>\—3)
donc le spectre de f est {2,3}, (f est diagonalisable)

2 1

M —2I, = (2 o

) donc <12) est une base de E2(M)
1 1 1
M -3, = <_2 _2) donc <_1> est une base de E3(M)

Par juxtaposition : ((_12> , <_11)> est une base de .#3 1 (R) formée de vecteurs propres de M.

ce qui entraine que : ' = (e; — 2e2, €1 — e3) est une base de E formée de vecteurs propres de M.

La matrice de f dans la base (e; — 2e2,e1 — €3) est (2 0)

0 3
0 -1 0
2) La matrice de f dans la base Best [1 0 0| on lanote M
0 0 1
Pour A € R,
-2 -1 0 1 =X 0 1 -2 0
rg(M —X3)=rg|[ 1 -\ 0 =rg|-A -1 0 =rg|0 —1-)\° 0
0 0 1-2AX 0 0 1-2AX 0 0 1-A

triangulaire
donc Sp(M) = {1} et dim(E;)(M) = 1 et ainsi (Condition nécessaire et suffisante)

M n’est pas diagonalisable

| f n'est pas diagonalisable |

3) Juste la fin du raisonnement
Le spectre de M est {0, 3},

1 1 0
1 est une base de E3(M) et -21,10 est une base de Ey(M)
0 0 1

donc £ = ((1,1,0),(1,-2,0),(0,0,1)) est une base et la matrice de f dans £ est

O O W
o O O
o O O

’ f est diagonalisable ‘

4) (non corrigé)

A2
1 -\

° , le spectre est vide et donc

’Ml n’est pas diagonalisable‘

Ex6: 1)

‘)\2+2donc

° , M de #5(C) possede deux valeurs propres distinctes iV2 et —iv/2 done M; est diagonalisable,

() ezt = (5 37) () =)

donc E; (M) = Vect < ({é) >



()<t = (3 )0)-()

donc E_; 5(M;) = Vect < (\/5) >

—i
En juxtaposant les bases on obtient une base formée de vecteurs propres
V2

7

Plus précisément, en posant | P = ({5

> on a P inversible et | M7 = P (Z 02 _1(1/5> p!

-6 5-2X\
= M -5\+6
= (A-2)(A=-3)

det(M2 - /\IQ) = ‘_A 1 ‘

donc | Sp(Ma) = {2, 3}]

My € #>(R) et a deux valeurs propres distinctes donc ’ M, est diagonalisable ‘

(D) emom = (2 3)(2)=()

donc Eq(M3) = Vect < <;) >

(5) e mom = (5 3) ()= ©)

donc E3(M2) = Vect < <é) >

En juxtaposant les bases on obtient une base formée de vecteurs propres

Plus précisément, en posant | P = <; ;) on a P inversible et | My = P <(2) g) p1

3)

det(Ms — \;) = ‘_1_A 1 ‘

-1 1-A
= A\

donc | Sp(Ms3) = {0}

de plus rg(M3) = 1 donc dim(Ey(M3)) =1

Ms € #>(R) et Z dim(E\(M3)) #2 donc | Mz n'est pas diagonalisable |
AESP(M3)
4) My est triangulaire donc Sp(My) = {2}

Si M, était diagonalisable alors on aurait M, semblable a ((2) g), ce qui impossible car seule ((2) (2))

. (2 0
est semblable & (0 2).

En conclusion : ’ My n’est pas diagonalisable ‘

5) esi K=R, Sp(M;) = {1} et dim(E1(Ms)) =1 donc [Ms n’est pas diagonalisable|.

esi K=C, Sp(Ms) = {l,ei%w,eﬂ%r}
M5 appartient & .#3(C) et posséde 3 valeurs propres distinctes donc

’ M5 est diagonalisable ‘




1 € e ZT‘K

1 est une base de F;(Ms) et de Ee'izi (Ms) i

1 1 1
On note : j = €',

En juxtaposant les bases on obtient une base formée de vecteurs propres

de B _,2¢ (Ms)

-2

1 7 3 1 0 0
Plus précisément, en posant | P = |1 j% j on a P inversibleet | Ms =P [0 5 0| P!
1 1 1 0 0 j°
6) Le spectre de Mg est {1,2}
0 1
11,10 est une base de Fo(Mg) est une base de Ey(Mjg)
0 -1 (
Mg € #3(R) et Z dim(E)(Mg)) =3 donc ’ Mg est diagonalisable ‘
AESP(Mp)
En juxtaposant les bases on obtient une base formée de vecteurs propres
0 1 0 2 00
Plus précisément, en posant | P= |1 0 1 on a P inversibleet | Mg=P |0 2 0| P!
0 -1 -1 0 01
7) Sp(M7) = {_57 0, 2}
4 1 1
-35 est une base de E_5(M7)) 0 de FEo(Mz7)) 0 de FE5(Mz7))
46 -1 1
M appartient & .#3(C) et possede 3 valeurs propres distinctes donc
’ M7 est diagonalisable ‘
En juxtaposant les bases on obtient une base formée de vecteurs propres
4 1 1 -5 0 0
Plus précisément, en posant | P=|-35 0 0 ona P inversibleet | My =P 0 0 0| P!
46 -1 1 0 0 2

8) (non corrigé)

Ex 7 : Soit M une matrice quelconque de ., (K).
1) (En classe on a utilisé le rang mais on peut aussi faire ainsi :)
Soit A € K,
A€ Sp(M) M — A, non inversible
(M —\1,,)" non inversible
MT —XI] non inversible

rreee

MT — A I, non inversible
AeSp(MT)
donc ’ Sp(M) =Sp(M ") ‘
2) Soit A € Sp(M) (=Sp(M")),
dim (Ex(M)) = n—rg(M —\,) (théoréme du rang)

or on sait que

donc

et ainsi

M diagonalisable si, et seulement si,

M diagonalisable si, et seulement si,

n—rg((M —\,)")
n—1g(M" —\I,)
dim (Ex(M "))

AESP(M)

>

AESP(MT)

> dim (Ex(M

) =

dim (E\(M™)) =n

M est diagonalisable si, et seulement si, M "

est diagonalisable

7




Ex 8 :

Ex9:

Une autre démonstration sans le théoréme, qui montre qu’il suffit de montrer une implica-
tion. :

e Montrons limplication directe :

On suppose que M est diagonalisable.

on note P une matrice inversible et A une matrice diagonale telles que M = PAP~!,
onaalors M'T =P HTATPT et donc M" = (PT)"'APT
en posant QQ = (PT)*1 on a une matrice inversible telle que M T = QAQ ™!,

donc M est diagonalisable.

e Comme (M")" = M, en appliquant I'implication précédente & M ' on obtient la réciproque :
si M7 est diagonalisable alors M est diagonalisable

En conclusion :

’ M est diagonalisable si, et seulement si, M " est diagonalisable

1) On suppose que sp(M) = {)) et M diagonalisable,
M est diagonalisable donc semblable & une matrice diagonale A, on note P telle que M = PAP~!
or deux matrices semblables ont méme spectre donc
A est une matrice diagonale avec une seule valeur propre ce qui entraine A = A\[,

Il vient M = PAP7!
= P(\,)P!
= \PP!
= M,

[si sp(M) = {)\) et M diagonalisable alors M = A, |

2) Si M a une unique valeur propre et si M n’est pas de la forme AM alors M n’est pas diagonalisable.

3) e sp(A41) = {0} (a justifier) donc si A; était diagonalisable elle serait nulle,
mais A1 n’est pas la matrice nulle donc ’ Ay n’est pas diagonalisable ‘

o sp(As) = {1} (matrice triangulaire) donc si As était diagonalisable elle serait égale a I'identité,

mais As n’est pas I'identité donc ’ Ay n’est pas diagonalisable ‘

o sp(As) = {2} (a justifier) donc si Aj était diagonalisable elle serait égale & 213,
mais Az # 213 donc ’ Az n’est pas diagonalisable ‘

1) a. Soient (a, 8) € R? et (A, B) € #,(R)?,

tr(aA + BB) = Z(OéA+5B)i,i

i=1

(a(A)i,i + B(B)isi)
=1

7
n

= « Z(A)“ +p Z(B)”

=1 i =

= atr(A)+ ptr(B)

L’application trace est bien une forme linéaire. ‘




b. Soit (A, B) € M,(R)?,

tr(AB)

I
7
-
=

= ) (BA)nx

k=1
= tr(BA)

Pour toutes matrices A et B de .4, (R), tr(AB) = tr(BA)]

¢. On suppose que pour une matrice P inversible A = P"1BP,

tr(A) = tr((P~'B)P)

tr(PP~'B)
(InB)

(B)

I
—+
=

= tr

’ Deux matrices semblables ont la méme trace. ‘

2) a. On suppose A est diagonalisable, elle semblable & une matrice diagonale A,
e A et A sont semblables :
donc (cours) Sp(A) =Sp(A) et dim(Exr(A)) = dim(Ex(A)) ce qui entraine

> Adim(Ex(A) = Y Adim(Ex(A))

AESp(A) A€Sp(A)
e A est diagonale donc le rang de A — A, est égal au nombre de coefficients non nuls sur sa
diagonale,

donc dim(FEy(A)) est égal au nombre d’apparitions de A sur la diagonale de A et ainsi :

tr(A)= > Adim(Ex(A))
AESP(A)

e A et A sont semblables donc (question 1)c)  tr(A) =tr(A).

si A est une matrice carrée diagonalisable alors : tr(A) = Z Adim(E)(A))
A€Sp(4)

Dans toutes les feuilles d’ezercices lorsqu’on a montré que M = PAP™' vérifier que M et A ont méme
trace.



