
BCPST 2A 2025/2026

Correction de la feuille Cours 7 3 : Diagonalisation.

Ex 1 : (Démonstration de cours)

1) Soit (α1, α2) ∈ K2 tel que α1u1 + α2u2 = 0E , (1)

comme f est linéaire on en déduit α1f(u1) + α2f(u2) = 0E , puis α1λ1u1 + α2λ2u2 = 0E (2)

En faisant (2)− λ2(1) on obtient : α1(λ1 − λ2)u1 = 0E ,

et comme λ1 − λ2 ̸= 0 et u1 ̸= 0E on en déduit α1 = 0

en reprenant(1)on en déduit α2u2 = 0E qui entrâıne α2 = 0 car u2 ̸= 0E .

on a bien montré que : α1u1 + α2u2 = 0E =⇒ α1 = α2 = 0

(u1, u2) est une famille libre

2) On fixe m dans N∗.

Soient u1, ... , um des vecteurs propres associés à m valeurs propres distinctes λ1, ... , λm.

Montrons par une récurrence finie que (u1, ..., um) est une famille libre.

• Pour k = 1,

comme u1 est un vecteur propre u1 ̸= 0E donc (u1) est une famille libre.

• Soit k ∈ [[1,m− 1]] tel que (u1, ..., uk) est une famille libre,

(Montrons que (u1, ..., uk+1) est une famille libre)

Soient (α1, ..., αk+1) ∈ Kk+1 tel que

k+1∑
j=1

αjuj = 0E , (1)

comme f est linéaire on en déduit

k+1∑
j=1

αjf(uj) = 0E , puis

k+1∑
j=1

αjλjuj = 0E (2)

en faisant (2)− λλk+1
(1) on obtient :

k∑
j=1

αj(λj − λk+1)uj = 0E ,

et comme on a supposé que (u1, ..., uk) est libre on en déduit ∀j ∈ [[1, k]], αj(λj − λk+1) = 0

sachant de plus que ∀j ∈ [[1, k]], λj − λk+1 ̸= 0 on a ∀j ∈ [[1, k]], αj = 0.

en reprenant (1) on en déduit αk+1uk+1 = 0E qui entrâıne αk+1 = 0 car uk+1 ̸= 0E .

on a bien montré que :

k+1∑
j=1

αjuj = 0E =⇒ ∀j ∈ [[1, k]], αj = 0

(La famille (u1, ..., uk+1) est libre)

• En conclusion (de ce raisonnement par récurrence) :

(u1, ..., um) est une famille libre

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Remarque sur le raisonnement par récurrence finie utilisée ci-dessus.

On a montré :
P(1) (Vraie)

P(1) ⇒ P(2)

...

P(m− 1) ⇒ P(m)

ce qui permet d’affirmer que :

P(m) est vraie.
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Ex 2 : 1) On remarque que (1, 1) ̸= (0, 0) et f((1, 1)) = 1 (1, 1) donc 1 est une valeur propre de f ,

de même (1,−1) ̸= (0, 0) et f((1,−1)) = −1 (1,−1) donc −1 est une valeur propre de f .

or f ∈ L (R2) a au plus 2 valeurs propres distinctes donc

Le spectre de f est {−1; 1}

Remarque : f est diagonalisable car il a deux valeurs propres distinctes et c’est un endomorphisme d’un
espace vectoriel de dimension 2.

2) On remarque que : rg(M − 3I3) ̸= 2 donc 3 ∈ Sp(M),

de même rg(M + 2I3) ̸= 2 donc −2 ∈ Sp(M) et rg(M − 2I3) ̸= 2 donc 2 ∈ Sp(M)

or M ∈ M3(R) a au plus 3 valeurs propres distinctes donc

Le spectre de M est {−2; 2; 3}

Remarque : M est diagonalisable car il a trois valeurs propres distinctes et c’est une matrice de M3(R).

Ex 3 : (Démonstration de cours)

Soit f un endomorphisme de E.

1) Soient m ∈ N∗, λ1, ..., λm m valeurs propres distinctes de f et u1, ..., um des vecteurs vérifiant :

∀i ∈ [[1;m]], ui ∈ Eλi(f) et

m∑
i=1

ui = 0E

Montrons par l’absurde que : ∀i ∈ [[1;m]], ui = 0E ,

On suppose qu’il existe au moins un i pour lequel ui ̸= 0E ,

on note alors ui1 , ui2 , ... , uir les vecteurs non nuls de la famille (u1, ..., um)

on a alors

r∑
k=1

uik = 0E et ui1 , ui2 , ... , uir sont des vecteurs propres associés à r valeurs propres distinctes.

ce qui est impossible car le théorème démontré à l’exercice Ex 1 montre que la famille (ui1 , ui2 , ..., uir )
est une famille libre.

En conclusion :

Si ∀i ∈ [[1;m]], ui ∈ Eλi
(f) et

m∑
i=1

ui = 0E alors ∀i ∈ [[1;m]], ui = 0E

Remarque : On dit que les sous-espaces propres associés à des valeurs propres distinctes sont en somme
directe.

Mais cette notion est n’est pas au programme de BCPST.

2) Montrons le théorème suivant :

Soient B1, ... ,Bm des familles de vecteurs de E et λ1, ... , λm des scalaires.

Si λ1, ... , λm sont m valeurs propres distinctes de f et

si B1, ... ,Bm sont respectivement des bases des sous espaces propres Eλ1
(f), ... , Eλm

(f),

alors (B1, ... ,Bm) est une famille libre.

−−−−−−−−−−−−−−−−−−

On suppose que : λ1, ... , λm sont m valeurs propres distinctes de f

et que B1, ... ,Bm sont respectivement des bases des sous espaces propres Eλ1
(f), ... , Eλm

(f).

On utilise les notations suivantes.

Pour i ∈ [[1,m]], Bi = (ui,j)1⩽j⩽ni
une base de Eλi

(f)

et I = {(i, j) ∈ N2 | 1 ⩽ i ⩽ m et 1 ⩽ j ⩽ ni },

Montrons que B = (ui,j)(i,j)∈I est une famille libre.
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Soit (αi,j) ∈ KI tel
∑

(i,j)∈I

αi,jui,j = 0E ,

on a alors :

m∑
i=1

 ni∑
j=1

αi,jui,j


︸ ︷︷ ︸

∈Eλi
(f)

= 0E ce qui entraine avec le lemme de la question 1) que :

∀i ∈ [[1;m]],

ni∑
j=1

αi,jui,j = 0E

mais on sait que pour chaque i, la famille (ui,j)1⩽j⩽ni est libre donc on peut en déduire que :

∀i ∈ [[1;m]],∀j ∈ [[1;ni]], αi,j = 0

En conclusion :

La juxtaposition (B1, ... ,Bm) est libre.

Ex 4 : Remarque : on essaye de ”trouver” le spectre par un raisonnement avant d’étudier rg(M − λIn), mais la
méthode consiste à chercher les λ tels que rg(M − λIn) < n.

1) On note : M =

(
2 1
2 1

)
.

D’une part rg(M) = 1 donc 0 ∈ Sp(M), d’autre part M

(
1
1

)
= 3

(
1
1

)
donc 3 ∈ Sp(M),

or M ∈ M2(R) possède au plus deux valeurs propres distinctes donc Sp(M) = {0; 3}

La matrice M de M2(R) a 2 valeurs propres distinctes donc (Condition suffisante)(
2 1
2 1

)
est diagonalisable

2) On note : M =
1

3

(
2 0
5 2

)
.

On remarque que M est triangulaire donc Sp(M) =

{
2

3

}

de plus : rg

(
M − 2

3
I2

)
= rg

(
0 0
5/3 0

)
= 1 donc dim(E 2

3
(M)) = 2− 1 = 1

M appartient à M2(R) et
∑

λ∈Sp(M)

dim(Eλ(M)) = 1 ̸= 2 donc (Condition nécessaire et suffisante)

1

3

(
2 0
5 2

)
n’est pas diagonalisable

3) On note : M =

1 1 0
1 1 0
0 0 1

.

• rg(M) = 2 donc 0 ∈ Sp(M), • rg(M − I3) = rg

0 1 0
1 0 0
0 0 0

 = 2 donc 1 ∈ Sp(M).

• rg(M − 2I3) = rg

−1 1 0
1 −1 0
0 0 −1

 = 2 donc 2 ∈ Sp(M).

or M ∈ M2(R) possède au plus deux valeurs propres distinctes donc Sp(M) = {0; 1; 2}

La matrice M de M3(R) a 3 valeurs propres distinctes donc (Condition suffisante)1 1 0
1 1 0
0 0 1

 est diagonalisable
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4) On note : M =

2 0 2
2 2 0
0 0 2

.

rg(M − λI3) = rg

2− λ 0 2
2 2− λ 0
0 0 2− λ

 = rg

 2 2− λ 0
2− λ 0 2
0 0 2− λ

 = rg

2 2− λ 0
0 (2− λ)2 2
0 0 2− λ


︸ ︷︷ ︸

triangulaire

donc rg(M − λI3) < 3 ⇐⇒ λ = 2 ce qui donne Sp(M) = {2}

de plus : rg (M − 2I3) = rg

2 0 0
0 0 2
0 0 0

 = 2 donc dim(E2(M)) = 3− 2 = 1

M appartient à M3(R) et
∑

λ∈Sp(M)

dim(Eλ(M)) = 1 ̸= 3 donc (Condition nécessaire et suffisante)

2 0 2
2 2 0
0 0 2

 n’est pas diagonalisable

5) On note : M =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

.

Pour cette matrice on peut faire plusieurs approches comme remarquer que M2 = I4 donc les valeurs
propres sont dans {−1, 1}. Ensuite en étudie le rg(M − I4) et le le rg(M + I4) pour trouver le spectre et
la diagonalisation

6) (non corrigé)

7) La matrice M =

 3 0 0
1 2 0
−1 0 1

 est triangulaire donc son spectre est {1, 2, 3}

La matrice M de M3(R) a 3 valeurs propres distinctes donc (Condition suffisante) 3 0 0
1 2 0
−1 0 1

 est diagonalisable

8) La matrice M =

 3 0 0
1 2 0
−1 0 2

 est triangulaire donc son spectre est {2, 3}

de plus : rg (M − 2I3) = rg

 1 0 0
1 0 0
−1 0 0

 = 1 donc dim(E2(M)) = 3− 1 = 2

Remarque de Nokomie : on peut en déduire que dim(E3(M)) = 1 (En effet :
∑

λ∈Sp(M)

dim(Eλ(M)) ⩽ 3)

M appartient à M3(R) et
∑

λ∈Sp(M)

dim(Eλ(M)) = 3 donc (Condition nécessaire et suffisante)

 3 0 0
1 2 0
−1 0 2

 est diagonalisable
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Ex 5 : 1) La matrice de f dans la base B est

(
4 1
−2 1

)
on la note M∣∣∣∣4− λ 2

−2 1− λ

∣∣∣∣ = (4− λ)(1− λ) + 4 = λ2 − 5λ+ 6 = (λ− 2)(λ− 3)

donc le spectre de f est {2, 3}, (f est diagonalisable)

M − 2I2 =

(
2 1
−2 −1

)
donc

(
1
−2

)
est une base de E2(M)

M − 3I2 =

(
1 1
−2 −2

)
donc

(
1
−1

)
est une base de E3(M)

Par juxtaposition :

((
1
−2

)
,

(
1
−1

))
est une base de M3,1(R) formée de vecteurs propres de M .

ce qui entrâıne que : B′ = (e1 − 2e2, e1 − e2) est une base de E formée de vecteurs propres de M .

La matrice de f dans la base (e1 − 2e2, e1 − e2) est

(
2 0
0 3

)

2) La matrice de f dans la base B est

0 −1 0
1 0 0
0 0 1

 on la note M

Pour λ ∈ R,

rg(M − λI3) = rg

−λ −1 0
1 −λ 0
0 0 1− λ

 = rg

 1 −λ 0
−λ −1 0
0 0 1− λ

 = rg

1 −λ 0
0 −1− λ2 0
0 0 1− λ


︸ ︷︷ ︸

triangulaire

donc Sp(M) = {1} et dim(E1)(M) = 1 et ainsi (Condition nécessaire et suffisante)

M n’est pas diagonalisable

f n’est pas diagonalisable

3) Juste la fin du raisonnement

Le spectre de M est {0, 3},1
1
0

 est une base de E3(M) et

 1
−2
0

 ,

0
0
1

 est une base de E0(M)

donc B = ((1, 1, 0), (1,−2, 0), (0, 0, 1)) est une base et la matrice de f dans B est

3 0 0
0 0 0
0 0 0


f est diagonalisable

4) (non corrigé)

Ex 6 : 1)

∣∣∣∣−λ 2
−1 −λ

∣∣∣∣ = λ2 + 2 donc

• sur R , le spectre est vide et donc

M1 n’est pas diagonalisable

• sur C ,M1 de M2(C) possède deux valeurs propres distinctes i
√
2 et −i

√
2 doncM1 est diagonalisable,(

x
y

)
∈ Ei

√
2(M1) ⇐⇒

(
−1 −i

√
2

0 0

)(
x
y

)
=

(
0
0

)

donc Ei
√
2(M1) = Vect <

(√
2
i

)
>
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(
x
y

)
∈ E−i

√
2(M1) ⇐⇒

(
−1 i

√
2

0 0

)(
x
y

)
=

(
0
0

)

donc E−i
√
2(M1) = Vect <

(√
2

−i

)
>

En juxtaposant les bases on obtient une base formée de vecteurs propres

Plus précisément, en posant P =

(√
2

√
2

i −i

)
on a P inversible et M1 = P

(
i
√
2 0

0 −i
√
2

)
P−1

2)

det(M2 − λI2) =

∣∣∣∣−λ 1
−6 5− λ

∣∣∣∣
= λ2 − 5λ+ 6

= (λ− 2)(λ− 3)

donc Sp(M2) = {2 , 3}

M2 ∈ M2(R) et a deux valeurs propres distinctes donc M2 est diagonalisable(
x
y

)
∈ E2(M2) ⇐⇒

(
−2 1
−6 3

)(
x
y

)
=

(
0
0

)

donc E2(M2) = Vect <

(
1
2

)
>

(
x
y

)
∈ E3(M2) ⇐⇒

(
−3 1
−6 2

)(
x
y

)
=

(
0
0

)

donc E3(M2) = Vect <

(
1
3

)
>

En juxtaposant les bases on obtient une base formée de vecteurs propres

Plus précisément, en posant P =

(
1 1
2 3

)
on a P inversible et M2 = P

(
2 0
0 3

)
P−1

3)

det(M3 − λI2) =

∣∣∣∣−1− λ 1
−1 1− λ

∣∣∣∣
= λ2

donc Sp(M3) = {0}

de plus rg(M3) = 1 donc dim(E0(M3)) = 1

M3 ∈ M2(R) et
∑

λ∈Sp(M3)

dim(Eλ(M3)) ̸= 2 donc M3 n’est pas diagonalisable

4) M4 est triangulaire donc Sp(M4) = {2}

Si M4 était diagonalisable alors on aurait M4 semblable à

(
2 0
0 2

)
, ce qui impossible car seule

(
2 0
0 2

)
est semblable à

(
2 0
0 2

)
.

En conclusion : M4 n’est pas diagonalisable

5) • si K = R, Sp(M5) = {1} et dim(E1(M5)) = 1 donc M5 n’est pas diagonalisable .

• si K = C, Sp(M5) =
{
1, ei

2π
3 , e−i 2π

3

}
M5 appartient à M3(C) et possède 3 valeurs propres distinctes donc

M5 est diagonalisable
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1
1
1

 est une base de E1(M5)

ei
2π
3

ei
4π
3

1

 de E
ei

2π
3
(M5)

e−i 2π
3

e−i 4π
3

1

 de E
e−i 2π

3
(M5)

On note : j = ei
2π
3 ,

En juxtaposant les bases on obtient une base formée de vecteurs propres

Plus précisément, en posant P =

1 j j2

1 j2 j
1 1 1

 on a P inversible et M5 = P

1 0 0
0 j 0
0 0 j2

P−1

6) Le spectre de M6 est {1, 2}0
1
0

 ,

 1
0
−1

 est une base de E2(M6)

 0
1
−1

 est une base de E1(M6)

M6 ∈ M3(R) et
∑

λ∈Sp(M6)

dim(Eλ(M6)) = 3 donc M6 est diagonalisable

En juxtaposant les bases on obtient une base formée de vecteurs propres

Plus précisément, en posant P =

0 1 0
1 0 1
0 −1 −1

 on a P inversible et M6 = P

2 0 0
0 2 0
0 0 1

P−1

7) Sp(M7) = {−5 , 0 , 2} 4
−35
46

 est une base de E−5(M7))

 1
0
−1

 de E0(M7))

1
0
1

 de E2(M7))

M7 appartient à M3(C) et possède 3 valeurs propres distinctes donc

M7 est diagonalisable

En juxtaposant les bases on obtient une base formée de vecteurs propres

Plus précisément, en posant P =

 4 1 1
−35 0 0
46 −1 1

 on a P inversible et M7 = P

−5 0 0
0 0 0
0 0 2

P−1

8) (non corrigé)

Ex 7 : Soit M une matrice quelconque de Mn(K).

1) (En classe on a utilisé le rang mais on peut aussi faire ainsi :)

Soit λ ∈ K,

λ ∈ Sp(M) ⇐⇒ M − λ In non inversible

⇐⇒ (M − λ In)
⊤ non inversible

⇐⇒ M⊤ − λ I⊤n non inversible

⇐⇒ M⊤ − λ In non inversible

⇐⇒ λ ∈ Sp(M⊤)

donc Sp(M) = Sp(M⊤)

2) Soit λ ∈ Sp(M)
(
= Sp(M⊤)

)
,

dim (Eλ(M)) = n− rg(M − λIn) (théorème du rang)

= n− rg((M − λIn)
⊤)

= n− rg(M⊤ − λIn)

= dim
(
Eλ(M

⊤)
)

or on sait que M diagonalisable si, et seulement si,
∑

λ∈Sp(M)

dim (Eλ(M)) = n

donc M diagonalisable si, et seulement si,
∑

λ∈Sp(MT )

dim
(
Eλ(M

T )
)
= n

et ainsi

M est diagonalisable si, et seulement si, M⊤ est diagonalisable
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Une autre démonstration sans le théorème, qui montre qu’il suffit de montrer une implica-
tion. :

• Montrons l’implication directe :

On suppose que M est diagonalisable.

on note P une matrice inversible et ∆ une matrice diagonale telles que M = P∆P−1.

on a alors M⊤ = (P−1)⊤∆⊤P⊤ et donc M⊤ = (P⊤)−1∆P⊤

en posant Q = (P⊤)−1 on a une matrice inversible telle que M⊤ = Q∆Q−1,

donc M⊤ est diagonalisable.

• Comme (M⊤)⊤ = M , en appliquant l’implication précédente à M⊤ on obtient la réciproque :

si M⊤ est diagonalisable alors M est diagonalisable

En conclusion :

M est diagonalisable si, et seulement si, M⊤ est diagonalisable

Ex 8 : 1) On suppose que sp(M) = {λ) et M diagonalisable,

M est diagonalisable donc semblable à une matrice diagonale ∆, on note P telle que M = P∆P−1

or deux matrices semblables ont même spectre donc

∆ est une matrice diagonale avec une seule valeur propre ce qui entraine ∆ = λIn

Il vient M = P∆P−1

= P (λIn)P
−1

= λPP−1

= λIn

si sp(M) = {λ) et M diagonalisable alors M = λIn

2) Si M a une unique valeur propre et si M n’est pas de la forme λM alors M n’est pas diagonalisable.

3) • sp(A1) = {0} (à justifier) donc si A1 était diagonalisable elle serait nulle,

mais A1 n’est pas la matrice nulle donc A1 n’est pas diagonalisable

• sp(A2) = {1} (matrice triangulaire) donc si A2 était diagonalisable elle serait égale à l’identité,

mais A2 n’est pas l’identité donc A2 n’est pas diagonalisable

• sp(A3) = {2} (à justifier) donc si A3 était diagonalisable elle serait égale à 2I3,

mais A3 ̸= 2I3 donc A3 n’est pas diagonalisable

Ex 9 : 1) a. Soient (α, β) ∈ R2 et (A,B) ∈ Mn(R)2,

tr(αA+ βB) =

n∑
i=1

(αA+ βB)i,i

=

n∑
i=1

(α(A)i,i + β(B)i,i)

= α

n∑
i=1

(A)i,i + β

n∑
i=1

(B)i,i

= α tr(A) + β tr(B)

L’application trace est bien une forme linéaire.
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b. Soit (A,B) ∈ Mn(R)2,

tr(AB) =

n∑
i=1

(AB)i,i

=

n∑
i=1

(
n∑

k=1

(A)i,k(B)k,i

)

=

n∑
i=1

(
n∑

k=1

(B)k,i(A)i,k

)

=

n∑
k=1

(
n∑

i=1

(B)k,i(A)i,k

)

=

n∑
k=1

(BA)k,k

= tr(BA)

Pour toutes matrices A et B de Mn(R), tr(AB) = tr(BA)

c. On suppose que pour une matrice P inversible A = P−1BP ,

tr(A) = tr((P−1B)P )

= tr(PP−1B)

= tr(InB)

= tr(B)

Deux matrices semblables ont la même trace.

2) a. On suppose A est diagonalisable, elle semblable à une matrice diagonale ∆,

• A et ∆ sont semblables :

donc (cours) Sp(A) = Sp(∆) et dim(Eλ(A)) = dim(Eλ(∆)) ce qui entraine∑
λ∈Sp(A)

λ dim(Eλ(A)) =
∑

λ∈Sp(∆)

λ dim(Eλ(∆))

• ∆ est diagonale donc le rang de ∆ − λIn est égal au nombre de coefficients non nuls sur sa
diagonale,

donc dim(Eλ(∆)) est égal au nombre d’apparitions de λ sur la diagonale de ∆ et ainsi :

tr(∆) =
∑

λ∈Sp(∆)

λ dim(Eλ(∆))

• A et ∆ sont semblables donc (question 1)c) tr(A) =tr(∆).

si A est une matrice carrée diagonalisable alors : tr(A) =
∑

λ∈Sp(A)

λ dim(Eλ(A))

Dans toutes les feuilles d’exercices lorsqu’on a montré que M = P∆P−1 vérifier que M et ∆ ont même

trace.
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