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’ Correction de la feuille_Cours_8_2 : Propriétés des intégrales convergentes.

1 1
Ex 1: 1) e D’une part : t — In(¢) est continue sur |0, 1] et / In(t)dt = [t In(t) — t] — =1
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donc / In(t) dt converge et vaut —1.
0

x
est continue sur [0, 1] et /
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dt converge et vaut 2.
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En conclusion (linéarité) :
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In(t) + ——— | dt converge et vaut 1
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2) Soit k>1, F:tr— o est une primitive de f: ¢t +— T Sur 10; +o00],
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f est continue sur [1;4+o00[ et lim F(t) =0 (€ R) donc pour tout k > 1, / —— dt converge.
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On peut en déduire (linéarité) que :
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Ex 2: 1) On sait que / f(t)dt est convergente donc on peut appliquer la relation de Chasles.
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2)  (non corrigé.)
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Ex3: 1) VteR, 1g,(t)e >0 et / 1g, (t) e " dt converge donc / g, (H)e " dt =0
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2) Vt €]0,1[, (In(t))* <0 et / (In(t))® dt converge donc / In®(t)dt <0
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3) je ne sais pas, la fonction change de signe en 1, je ne trouve pas d’argument simple pour trouver le signe
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Ex 4 : (non corrigé)
Ex 5 : (non corrigé)
Ex 6 : (non corrigé)

Ex 7 : (non corrigé)



Ex 8 :

1) e La fonction f :

t — el est continue sur | — oo; 400
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e La fonction f est paire il suffit donc d’étudier / ft)de
0

Pourx}O,/ f(t)dt:/ e_tdt:{—e_tr
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En conclusion :

2) La fonction f:t+— %
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1 donc / f(t)dt converge et vaut 1.
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/ e 1! dt converge et vaut 2
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est continue sur [—1, 1] sauf en zéro.
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e La fonction f est impaire, il suffit donc d’étudier / flt)de
0

Pour z €]0,1], /1f(t>dt:/1\}{dt: [Qﬁ}:xﬁ

En conclusion :
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2 donc / f(t)dt converge .
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/ % dt converge et vaut 0
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3) Pour cette intégrale on va directement au bon argument, inutile de parler de la parité.

La fonction f :t+——

t 1
211 est continue sur R, F:¢+—— 5 In(1 + t?) est une primitive de f sur R

et lim F(t) = 4oo donc
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/ ———— dt diverge
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Pour la suite juste la réponse
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(a>0) converge et vaut —
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converge et vaut 0 (Indication faire une IPP)
cette intégrale diverge mais elle n’a rien a faire la.
converge et vaut 0.

converge et vaut m

converge et vaut 0
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10)/ In|t|dt diverge
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11) / —dt diverge
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converge et vaut 0



