
BCPST 2A 2025/2026

Correction de la feuille Exo 16 : Diagonalisation.

Ex 1 : (non corrigé)

Ex 2 : (non corrigé)

Ex 3 : (non corrigé)

Ex 4 : (non corrigé)

Ex 5 : (non corrigé)

Ex 6 : 1) (Calcul faisable si on s’organise bien)

Ce calcul n’était pas demandé.

(A+ 4I4)
2 =


1 1 −3 5
1 1 5 −3
1 1 1 1
1 1 1 1



1 1 −3 5
1 1 5 −3
1 1 1 1
1 1 1 1

 = 4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1



donc (A+ 4I4)
3 = 4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1



1 1 −3 5
1 1 5 −3
1 1 1 1
1 1 1 1

 = 16


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1



et enfin : A(A+ 4I4)
3 = 16


−3 1 −3 5
1 −3 5 −3
1 1 −3 1
1 1 1 −3



1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


A(A+ 4I4)

3 = 0

2) En notant P (X) = X(X + 4)3 on a P (A) = 0 et les racines de P sont 0 et −4,
donc ( en utilisant un résultat démontré en classe mais pas au programme ) le spectre de A est inclus

dans {0,−4}.
Il reste à montrer que 0 et 4 sont bien des valeurs propres de A.

Pour λ = 0.

rg(A− 0I4) = rg


−3 1 −3 5
1 −3 5 −3
1 1 −3 1
1 1 1 −3



= rg


0 0 0 0
1 −3 5 −3
1 1 −3 1
1 1 1 −3



= rg


1 −3 5 −3
1 1 −3 1
1 1 1 −3
0 0 0 0



= rg


1 −3 5 −3
0 4 −8 4
0 4 −4 0
0 0 0 0



= rg


1 −3 5 −3
0 4 −8 4

0 0 4 −4
0 0 0 0


= 3 ( ̸= 4)

donc 0 est une valeur propre de A



Pour λ = −4.

rg(A+ 4I4) = rg


1 1 −3 5
1 1 5 −3
1 1 1 1
1 1 1 1



= rg


1 1 −3 5
0 0 8 −8
0 0 4 −4
0 0 4 −4



= rg


1 1 −3 5

0 0 8 −8
0 0 0 0
0 0 0 0


= 2 ( ̸= 4)

donc −4 est une valeur propre de A

En conclusion :

Le spectre de A est {0,−4}

3) Sp(A) = {0,−4} et les calculs de rang précédents montrent que : dim(E0(A)) = 1 et dim(E−4(A)) = 2

donc la somme des dimensions des sous-espaces propres de A est différente de 4

or A ∈M4(R) donc

A n’est pas diagonalisable

Ex 7 : 1) En posant A =

a b c
1 0 0
0 1 0

 on a : ∀n ∈ N,

un+3

un+2

un+1

 = A

un+2

un+1

un


On peut alors montrer par récurrence sur n que

∀n ∈ N,

un+2

un+1

un

 = An

u2

u1

u0


2) a. (fait au tableau par valentin ENV Nantes 2024)

A a trois valeurs propres distinctes : 1, −1 et 2 et A ∈M3(R) donc

A est diagonalisable

b. A est diagonalisable et le spectre de A est {1,−1, 2} donc pour une matrice P inversible on a :

A = P

1 0 0
0 −1 0
0 0 2

P−1

On montre alors par récurrence sur n que

An = P

1 0 0
0 (−1)n 0
0 0 2n

P−1

Cela entraine :

An = P

1 0 0
0 0 0
0 0 0

P−1 + P

0 0 0
0 (−1)n 0
0 0 0

P−1 + P

0 0 0
0 0 0
0 0 2n

P−1

ou encore :

An = P

1 0 0
0 0 0
0 0 0

P−1 + (−1)nP

0 0 0
0 1 0
0 0 0

P−1 + 2nP

0 0 0
0 0 0
0 0 1

P−1



En posant : R1 = P

1 0 0
0 0 0
0 0 0

P−1, R2 = P

0 0 0
0 1 0
0 0 0

P−1 et R3 = P

0 0 0
0 0 0
0 0 1

P−1

on a bien :

pour tout entier n, An = R1 + (−1)nR2 + 2nR3.

c. Pour tout n ∈ N,un+2

un+1

un

 = An

u2

u1

u0

 = R1

u2

u1

u0

+ (−1)nR2

u2

u1

u0

+ 2nR3

u2

u1

u0



donc en posant α, β, γ le dernière composante respectivement de R1

u2

u1

u0

, R2

u2

u1

u0

 et R3

u2

u1

u0


on a bien :

∀n ∈ N, un = α+ β(−1)n + γ2n

3) a. (fait au tableau par Thimothé ENV Nantes 2025)

A a deux valeurs propres distinctes : 1 et 2 et dim(E1(A))+dim(E2(A)) = 2 ̸= 3 donc

A n’est pas diagonalisable

b. On cherche x, y, z tels que :4 −5 2
1 0 0
0 1 0

4 1 x
2 1 y
1 1 z

 =

4 1 x
2 1 y
1 1 z

2 0 0
0 1 1
0 0 1


cela donne le système 4x− 5y + 2z = 1 + x

x = 1 + y
y = 1 + z

⇐⇒ · · · ⇐⇒

 4x− 5y + 2z = 1 + x
y − x = 1

0 = 0

Prenons le vecteur

2
1
0

 et vérifions qu’il convient :

En posant : P =

4 1 2
2 1 1
1 1 0

, on a rg(P ) = · · · = 3 donc P est inversible

et 4 −5 2
1 0 0
0 1 0

4 1 2
2 1 1
1 1 0

 =

4 1 2
2 1 1
1 1 0

2 0 0
0 1 1
0 0 1


donc on a A = PBP−1 et ainsi

A et B sont semblables

Remarque sur le raisonnement : On a fait une analyse synthèse.

c. On note D =

2 0 0
0 1 0
0 0 1

 et N =

0 0 0
0 0 1
0 0 0

 de sorte que : B = D +N

DN =

2 0 0
0 1 0
0 0 1

0 0 0
0 0 1
0 0 0

 =

0 0 0
0 0 1
0 0 0

 et ND =

0 0 0
0 0 1
0 0 0

2 0 0
0 1 0
0 0 1

 =

0 0 0
0 0 1
0 0 0





on a donc DN = ND et ainsi (formule du binôme) :

Bn = (N +D)n

=

n∑
k=0

(
n

k

)
NkDn−k

= Dn + nNDn−1 car N2 = 0

=

2n 0 0
0 1 0
0 0 1

+ n

0 0 0
0 0 1
0 0 0

2n−1 0 0
0 1 0
0 0 1


=

2n 0 0
0 1 0
0 0 1

+

0 0 0
0 0 n
0 0 0



pour tout entier naturel n, Bn =

2n 0 0
0 1 n
0 0 1


Remarque : on aurait ici aussi faire une analyse synthèse : en observant les premières puissances de

B il est assez facile de faire la conjecture que Bn est

2n 0 0
0 1 n
0 0 1

 puis il reste à le démontrer par

un raisonnement par récurrence.

d. (non corrigé)

Ex 8 : 1) On remarque qu’avec A =

 5 −2 −2
−4 3 2
6 −4 −2

 on a bien la relation : X ′ = AX.

Cherchons les valeurs propres de A :

rg(A− λI3) = rg

5− λ −2 −2
−4 3− λ 2
6 −4 −2− λ


= rg

 −4 3− λ 2
6 −4 −2− λ

5− λ −2 −2


= rg

−4 3− λ 2

0 2− 6λ 4− 4λ

0 −4λ+ 8 P (λ)

 6L2 + 4L1 → L2

6L3 + (λ− 5)L1 → L3

avec : P (λ) = −12 + (λ− 5)(−2− λ) = −λ2 + 3λ− 2 = −(λ− 1)(λ− 2)

le rang de A− λI3 est différent de 3 si, et seulement si,

(2− 6λ)P (λ)− (−4λ+ 8)(4− 4λ) = 0

or

(2− 6λ)P (λ)− (−4λ+ 8)(4− 4λ) = (2− 6λ)(−(λ− 1)(λ− 2))− (−4λ+ 8)(4− 4λ)

= (λ− 1)((6λ− 2)(λ− 2) + 4(8− 4λ))

= (λ− 1)(λ− 2)(6λ− 2− 16)

= 6(λ− 1)(λ− 2)(λ− 3)

Donc le spectre de A est {1, 2, 3}

La matrice A appartient à M3(R) et possède trois valeurs propres distinctes donc

A est diagonalisable.



On montre que : (A détailler)1
0
2

 est une base de E1(A),

 2
−2
5

 de E2(A) et

 1
−1
2

 de E3(A)

Donc (en juxtaposant les bases on obtient une base formée de vecteurs propres)

en posant : P =

1 2 1
0 −2 −1
2 5 2

 et D =

1 0 0
0 2 0
0 0 3

 on a : A = PDP−1

2) Y (t) = P−1X(t) donc les fonctions a, b et c sont des combinaisons linéaires des fonctions x, y et z qui
sont dérivables donc

les fonctions a, b et c sont dérivables sur R

On peut aussi remarquer que pour tout t ∈ R, Y ′(t) = P−1X ′(t)

En utilisant la relation Y (t) = P−1X(t) il vient : ∀t ∈ R, Y ′(t) = DY (t)

il vient : ∀t ∈ R,

 a′(t) = a(t)
b′(t) = 2b(t)
c′(t) = 3c(t)

et ainsi ∃(k1, k2, k3) ∈ R3 : ∀t ∈ R,


a(t) = k1e

t

b(t) = k2e
2t

c(t) = k3e
3t

3) • (Analyse) en conclusion des questions précédentes la relation X(t) = PY (t) donne

∃(k1, k2, k3) ∈ R3 : ∀t ∈ R,


x(t) = k1e

t + 2k2e
2t + k3e

3t

y(t) = −2k2e2t − k3e
3t

z(t) = 2k1e
t + 5k2e

2t + 2k3e
3t

• (Synthèse) Réciproquement pour (k1, k2, k3) ∈ R3 si on pose


x(t) = k1e

t + 2k2e
2t + k3e

3t

y(t) = −2k2e2t − k3e
3t

z(t) = 2k1e
t + 5k2e

2t + 2k3e
3t

(c’est à dire X = PY ),

on retrouve bien X ′ = AX donc (x, y, z) est solution du système différentiel.

En conclusion :

(x, y, z) une solution si, et seulement si, ∃(k1, k2, k3) ∈ R3 : ∀t ∈ R,


x(t) = k1e

t + 2k2e
2t + k3e

3t

y(t) = −2k2e2t − k3e
3t

z(t) = 2k1e
t + 5k2e

2t + 2k3e
3t

Remarque : On n’a jamais eu besoin de calculer les coefficients de P−1

4) La condition initiale (x(0), y(0), z(0)) = (1, 1, 1) donne le système suivant :

1 2 1
0 −2 −1
2 5 2

k1
k2
k3

 =

1
1
1

 ⇐⇒

1 2 1
0 −2 −1
0 1 0

k1
k2
k3

 =

 1
1
−1

 L3 ← L3 − 2L1

⇐⇒ (k1, k2, k3) = (2,−1, 1)

La solution vérifiant (x(0), y(0), z(0)) = (1, 1, 1) est définie par

∀t ∈ R,


x(t) = 2et − 2e2t + e3t

y(t) = 2e2t − e3t

z(t) = 4et − 5e2t + 2e3t

Ex 9 : (non corrigé)


