1. On applique la méthode des rectangles pour calculer une valeur approchée de l'intégrale F(x):

```
import numpy as np
   import matplotlib.pyplot as plt
3
4
   def f(x):
       return np.exp(1/x)
6
   def F(x,n=100): # par défaut n = 100 rectangles
7
8
       h = (x-1)/n
9
       S = 0
       for k in range(n):
10
            S+=h*f(1+k*h)
11
12
       return S
```

- **2.** Soit $f: t \mapsto e^{1/t}$, et notons I l'intervalle \mathbb{R}_+^* . Par définition de la notation intégrale, F est I primitive de $f \in \mathscr{C}^0(I)$ qui s'annule en x = 1. Ainsi, F est de classe \mathscr{C}^1 sur I et : $\forall x \in I$ $F'(x) = e^{1/x} > 0$. Comme F' est strictement positive sur I, F est strictement croissante sur I.
- **3.** a) Pour $\alpha \in \mathbf{R}_+$, on pose $\varphi(\alpha) = e^{\alpha} \alpha$. La fonction φ est dérivable en tant que somme de telles fonctions et : $\forall \alpha \in \mathbf{R}_+ \quad \varphi'(\alpha) = e^{\alpha} 1 \ge 0$. Il suit que φ est croissante sur \mathbf{R}_+ . Comme $\varphi(0) = 1$: $\forall \alpha \in \mathbf{R}_+ \quad \varphi(\alpha) \ge \varphi(0) \ge 0$, ce qui donne l'inégalité cherchée.
 - **b)** Soit $x \in]0,1]$ fixé, et soit $t \in [x,1]$. Comme $\alpha = 1/t$ est défini et positif, on peut utiliser le résultat de la question précédente, ce qui donne : $\forall t \in [x,1]$ $e^{1/t} \geq \frac{1}{t}$. Par croissance de l'intégrale, puisque l'on a bien $x \leq 1$: $F(x) \leq \int_x^1 \frac{1}{t} \, \mathrm{d}t = [-\ln t]_x^1 = \ln x$.
 - c) On peut donc utiliser le théorème de majoration sur les limites à partir du résultat de 3)b. : $\lim_{x\to 0} F(x) = -\infty$.
- **4. a)** Soit x > 1. Pour tout $t \in [1, x]$, le réel 1/t est défini et positif donc $e^{1/t} \ge 1$. Encore par croissance de l'intégrale, puisque $x \ge 1$: $F(x) \ge \int_1^x 1 \, dt = x 1$. Par théorème de minoration sur les limites : $\lim_{x \to +\infty} F(x) = +\infty$.
 - **b)** Soit x > 1. On pose le changement de variable $s = \frac{1}{t}$. Cette relation définit bien un changement de variables bijectif décroissant de classe \mathscr{C}^1 de $t \in [1, x]$ sur $s \in \left[\frac{1}{x}; 1\right]$.

 Comme $ds/dt = -1/t^2 = -s^2$, il vient : $F(x) = \int_{1/x}^1 \frac{e^s}{s^2} ds$.
 - c) Soit x > 1. Considérons les fonctions u, v définies par : $u(s) = -\frac{1}{s}, v(s) = e^s$. Comme u et v sont de classe \mathscr{C}^1 sur [1, x] et que $F(x) = \int_{\frac{1}{s}}^{1} = u'(s)v(s)\mathrm{d}s$, il vient par intégration par parties :

$$F(x) = \left[-\frac{e^s}{s} \right]_{1/x}^1 + \int_{1/x}^1 \frac{e^s}{s} \, ds = x e^{1/x} - e + R(x) \quad \text{où} \quad R(x) = \int_{1/x}^1 \frac{e^s}{s} \, ds.$$

- **d)** Soit $x \ge 1$. Par croissance de la fonction exponentielle [1/x; 1], l'intégrande définissant R(x) se majore $\sup[1/x; 1]$ par $\frac{e}{s}$, il vient encore par croissance de l'intégrale : $0 \le R(x) \le \int_{1/x}^1 \frac{e}{s} \, ds = e \ln(x)$.
- e) L'encadrement obtenu de la fonction R et le résultat de l'IPP nous donnent :

$$\forall x \geq 1 \quad xe^{1/x} - e \leq F(x) \leq xe^{1/x} - e + e\ln(x) \operatorname{donc} \frac{e^{1/x} - e}{x} \leq \frac{F(x)}{x} \leq \frac{e^{1/x} - e}{x} + \frac{e\ln(x)}{x}. \operatorname{Par}$$

croissances comparées : $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$, et par opérations sur les limites $\frac{e^{1/x} - e}{x} = o(1)$. Enfin par théorème des gendarmes : $\frac{F(x)}{x} = 1 + o(1)$: c'est la définition de $F(x) \underset{x \to +\infty}{\sim} x$.

- **5.** a) L'équation (E) est une équation différentielle linéaire du premier ordre. D'après le cours, les solutions s'obtiennent par ajout à une solution particulière y_p n'importe solution de l'équation homogène (H) associée.
 - **Équation homogène associée.** On considère (H) xy' + 2y = 0. On trouve avec les formules du cours les solutions. Ce sont les fonctions : $x \mapsto z_k(x) = \frac{k}{x^2}$, $k \in \mathbf{R}$ variable libre.
 - **Recherche d'une solution particulière.** Par variation de la constante : on pose pour cela $y_p(x) = k(x)z_1(x)$, où k est ici une *fonction* dérivable sur \mathbf{R}_+^* à déterminer. Alors par définition : y_p est solution de $(E) \Leftrightarrow xy_p' + 2y_p = e^{1/x} \Leftrightarrow k'(x) = e^{1/x}$ par un calcul classique.

Ainsi, il suffit de choisir : k(x) = F(x) d'après **2.** Finalement $y_p(x) = \frac{F(x)}{x^2}$ est une solution particulière de (E), et les solutions de l'équation différentielle sont les fonctions $y = y_p + z_k$.

Résolution de (*E*). La condition initiale y(1) = 0 détermine la valeur du paramètre k dans la fonction z_k . Comme F(1) = 0, on trouve finalement que $z_k(1) = 0$, donc k = 0. Ainsi $w = y_p + z_0 = y_p$.

Conclusion. la solution de (*E*) est la fonction *w* donnée par :

$$\forall x \in \mathbf{R}_+^* \quad w(x) = \frac{F(x)}{x^2}.$$

- **b)** D'après la majoration de **3.b)** : $\forall x \in]0,1], \quad w(x) \leq \frac{\ln x}{x^2}$, et d'après l'équivalent de **4.e)**, il vient par quotient d'équivalents : $w(x) \sim \frac{1}{x}$. On en conclut deux choses : $\lim_{x \to +\infty} w(x) = -\infty$ et $\lim_{x \to +\infty} w(x) = 0$.
- c) La tangente au point d'abscisse 1 à la courbe représentative de w a pour équation : T: y = w'(1)(x-1) + w(1). La fonction w étant solution de $(E): w'(1) = 2w(1) + e^1 = e$. Donc l'équation de T est : T: y = e(x-1).
- 6. Programme proposé et graphique (tracé des flèches non exigible!)

```
# Tracé de la solution w
1
   X = np.linspace(0.5,5)
   Y = [F(x)/x**2 \text{ for } x \text{ in } X]
5
   plt.plot(X,Y)
   # Tracé de la tangente (abscisse x=1)
   e = np.exp(1) # pente
   h=0.5 # longueur de la demi-tangente
   plt.arrow(1,0,1*h,e*h,width=0.02,
10
11
                length_includes_head=True,
                    color='black')
12
   plt.arrow(1,0,-1*h,-e*h,width=0.02,
                length_includes_head=True,
13
                     color='black')
   plt.grid('on')
  plt.show()
```

