Devoir Maison n°3

Suite implicite

Soit $n \in \mathbb{N}^*$. On définit la fonction f_n par : $\forall x \in \mathbb{R}$, $f_n(x) = nx^3 + n^2x - 2$.

- 1. (a) Montrer que l'équation $f_n(x) = 0$ admet une unique solution, notée a_n .
 - (b) Déterminer a_1 .
 - (c) Montrer que : $\forall n \ge 2, \ 0 < a_n < 1.$
- 2. (a) Écrire en langage Python une fonction suite(n) prenant en entrée un entier $n \ge 1$ et renvoyant une valeur approchée de a_n à 10^{-6} près.

 On pourra utiliser la dichotomie.
 - (b) Tester cette fonction pour n = 2 et donner une valeur approchée de a_2 .
- 3. (a) Pour tout $n \ge 1$, déterminer le signe de $f_{n+1}(a_n)$. En déduire les variations de la suite $(a_n)_{n \ge 1}$
 - (b) Montrer que la suite $(a_n)_{n\geqslant 1}$ converge, et déterminer sa limite.
- 4. Pour tout entier naturel $n \ge 1$, on pose $u_n = n^2 a_n$.
 - (a) Représenter à l'aide d'un script Python les termes de la suite (u_n) pour $n \in [1, 40]$. On utilisera la fonction plt.ylim(1.8, 2.1) importée du module matplotlib.pyplot, pour limiter les ordonnées entre les valeurs 1, 8 et 2, 1.
 - (b) Quelle conjecture peut-on faire sur le comportement asymptotique de la suite $(u_n)_{n\geqslant 1}$?
 - (c) Déterminer un équivalent de a_n .
- 5. On pose : $g(x) = \frac{2x^3 + 1}{3x^2 + 2}$.
 - (a) Montrer que la fonction g est croissante sur $[a_2, 1]$.
 - (b) On définit la suite $(x_n)_{n\geqslant 0}$ par : $\begin{cases} x_0=1\\ \forall n\geqslant 0,\ x_{n+1}=g(x_n) \end{cases}$

Étudier la convergence et la limite éventuelle de la suite $(x_n)_{n\geq 0}$.