Dans ce chapitre, K désigne R ou C.

Ι Polynômes à coefficients dans K

Définition 1

DÉFINITION

On appelle **polynôme** à une indéterminée et à coefficients dans K toute expression de la forme :

$$P = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n = \sum_{k=0}^{n} a_k X^k$$

où $n \in \mathbb{N}$ et $(a_0, a_1, a_2, \dots, a_n) \in \mathbb{K}^{n+1}$. X est appelée l'indéterminée.

Les éléments a_0, a_1, \dots, a_n de **K** sont les **coefficients** du polynôme P.

L'ensemble des polynômes à une indéterminée et à coefficients dans K est noté K[X].

Exemples:

Cas Particuliers:

- On appelle **polynôme constant** tout polynôme de la forme a_0 où $a_0 \in \mathbf{K}$.
- Le polynôme nul est celui dont tous les coefficients sont nuls. On le note 0.
- On appelle **monôme** tout polynôme de la forme $a_n X^n$ où $n \in \mathbb{N}$ et $a_n \in \mathbb{K}$.

Égalité de polynômes

Deux polynômes $P=\sum_{k=0}^p a_k X^k$ et $Q=\sum_{k=0}^q b_k X^k$ sont égaux lorsqu'ils ont les mêmes coefficients :

 $\forall k \in \mathbf{N}, \ a_k = b_k, \text{ en convenant que} : \forall k > p, \ a_k = 0 \text{ et } \forall k > q, \ b_k = 0.$

MÉTHODE: Lorsque deux polynômes sont égaux, on identifie leurs coefficients.

CAS PARTICULIER : Un polynôme est nul si, et seulement si, tous ses coefficients sont nuls.

Exercice 1: Déterminer $a, b, c \in \mathbf{R}$ tels que $(a-1)X^3 + (a+b)X^2 + (b-c)X = 6X^2 + 2X$.

Degré d'un polynôme

DÉFINITION

* Soit $P = \sum_{k=0}^{n} a_k X^k$ un polynôme non nul. On appelle **degré de** P et on note $\deg(P)$ le plus grand entier k tel que $a_k \neq 0$. On convient que $\deg(0) = -\infty$.

* Soit $n \in \mathbb{N}$. $\mathbb{K}_n[X]$ est l'ensemble des polynômes de degré inférieur ou égal à n à coefficients dans \mathbb{K} .

Exemples:

- $\bullet \deg(X^2 + 5X^3 X^9) = 9.$
- $\deg\left(\sum_{k=0}^{n}a_{k}X^{k}\right)\leqslant n$ avec égalité si, et seulement si $a_{n}\neq0.$
- Soit $P \in \mathbf{K}[X]$. Alors P est constant si, et seulement si $\deg(P) \leq 0$.
- $\mathbf{R}_2[X] = \{aX^2 + bX + c, (a, b, c) \in \mathbf{R}^3\}.$ C'est l'ensemble des polynômes à coefficients réels de degré 2,1,0 ou $-\infty$. Lorsque deg(P) = 2, on dit que P est un trinôme.

DÉFINITION

Soit $P=\sum_{k=0}^n a_k X^k$ de degré n (donc $a_n\neq 0$). Alors : $* a_n X^n \text{ est appelé } \mathbf{monôme \ dominant \ de} \ P.$

* a_n est appelé **coefficient dominant** de P.

Lorsque le coefficient dominant est égal à 1, le polynôme P est dit **unitaire**.

Exemple: $8X^2 + 4X^7$ a pour monôme dominant $4X^7$ et pour coefficient dominant 4.

II Opérations sur les polynômes

1 Combinaisons linéaires dans K[X]

Soient
$$P = \sum_{k=0}^{p} a_k X^k$$
 et $Q = \sum_{k=0}^{q} b_k X^k$ dans $\mathbf{K}[X]$, et soit $\lambda \in \mathbf{K}$.

DÉFINITION

On définit la somme P+Q et le produit $\lambda.P$ par :

*
$$P + Q = \sum_{k=0}^{\max(p,q)} (a_k + b_k) X^k$$
, avec la convention que $a_k = 0$ si $k > p$ et $b_k = 0$ si $k > q$.

$$* \lambda.P = \sum_{k=0}^{p} \lambda a_k X^k.$$

Une combinaison linéaire de P et Q est un polynôme $\lambda P + \mu Q$, avec $\lambda, \mu \in \mathbf{K}$.

Propriété

1.
$$\forall P, Q \in \mathbf{K}[X], \quad \deg(P+Q) \leq \max(\deg P, \deg Q)$$

2.
$$\forall \lambda \in \mathbf{K}, \forall P \in \mathbf{K}[X], \quad \deg(\lambda.P) = \begin{cases} \deg P & \text{si } \lambda \neq 0 \\ -\infty & \text{si } \lambda = 0 \end{cases}$$

 $Remarque: Si\ P\ et\ Q\ ont\ des\ degrés\ différents,\ alors\ deg(P+Q)=\max(\deg P,\deg Q).$

2 Multiplication des polynômes

DÉFINITION

On définit le produit
$$PQ$$
 par : $PQ = \sum_{k=0}^{p+q} c_k X^k$ avec $\forall k \in [0, p+q], \quad c_k = \sum_{i=0}^k a_i b_{k-i}$ avec comme précédemment la convention que : $a_k = 0$ si $k > p$ et $b_k = 0$ si $k > q$.

Exercice 2 : Déterminer le produit PQ lorsque : $P = 1 + 3X - X^2$ et $Q = X + X^2$

Propriété

- * $\forall P, Q \in \mathbf{K}[X], \quad \deg(PQ) = \deg P + \deg Q$
- * Les seuls polynômes inversibles sont les polynômes constants non nuls.
- $* \forall P, Q \in \mathbf{K}[X], \quad PQ = 0 \Leftrightarrow P = 0 \text{ ou } Q = 0.$

preuves:

3 Composition

DÉFINITION

La composée des polynômes
$$P = \sum_{k=0}^p a_k X^k$$
 et $Q = \sum_{k=0}^q b_k X^k \in \mathbf{K}[X]$ est définie par : $P \circ Q = P(Q(X)) = \sum_{k=0}^p a_k \left(\sum_{j=0}^q b_j X^j\right)^k$. C'est encore un polynôme de $\mathbf{K}[X]$.

Exercice 3: Déterminer $P \circ Q$ puis $Q \circ P$ lorsque $P = X^2 - 1$ et Q = X + 1.

Propriété

- * La composée des polynômes n'est pas commutative.
- | * $\forall P,Q \in \mathbf{K}[X]$, si P,Q sont non nuls, alors : $\deg(P \circ Q) = \deg(P) \times \deg(Q)$. preuve :

III Dérivation dans K[X]

1 Dérivée d'un polynôme

DÉFINITION

Soit
$$P=\sum_{k=0}^p a_k X^k\in \mathbf{K}[X]$$
. On définit le **polynôme dérivé de** P , noté P' , par :
$$P'=\sum_{k=1}^p k a_k X^{k-1}=\sum_{k=0}^{p-1} (k+1)a_{k+1}X^k$$

On définit le **polynôme dérivé** n-ième de P, noté $P^{(n)}$, par récurrence :

$$\begin{cases} P^{(0)} = P \\ \forall k \in \mathbf{N}, \quad P^{(k+1)} = (P^{(k)})' \end{cases}$$

Exemple: si $P \in \mathbf{K}_0[X]$, alors P' = 0.

Remarque : cette définition correspond à la dérivée des fonctions polynomiales d'une variable réelle.

2 Propriétés de la dérivée

Propriété

*
$$\forall P \in \mathbf{K}[X], \quad \deg(P') = \begin{cases} \deg(P) - 1 & \text{si } \deg P \geqslant 1 \\ -\infty & \text{si } \deg P \leqslant 0 \end{cases}$$

* $\forall P \in \mathbf{K}[X], \quad \deg(P) \leqslant n \Rightarrow P^{(n+1)} = 0$

Exercice 4: Soit $n \in \mathbb{N}^*$, et soit $P = X^n$. Déterminer $P^{(n)}$.

Propriété

*
$$\forall P, Q \in \mathbf{K}[X], \ \forall \lambda, \mu \in \mathbf{K}, \ (\lambda P + \mu Q)' = \lambda P' + \mu Q'.$$

*
$$\forall P, Q \in \mathbf{K}[X], \quad (PQ)' = P'Q + PQ'.$$

*
$$\forall P \in \mathbf{K}[X], \ \forall n \in \mathbf{N}, \ (P^n)' = nP'P^{n-1}.$$

*
$$\forall P, Q \in \mathbf{K}[X], \quad (P \circ Q)' = Q' \times (P' \circ Q).$$

preuves:

IV Racines d'un polynôme

1 Définition

DÉFINITION

Soit $P \in \mathbf{K}[X]$ et $\alpha \in \mathbf{K}$.

On dit que α est une racine de P (ou un zéro de P) lorsque $P(\alpha) = 0$.

Exemple : on trouve les racines dans **K** d'un polynôme P de degré 2 en calculant son discriminant. Si $P = aX^2 + bX + c$ avec $a \neq 0$, on pose $\Delta = b^2 - 4ac$.

Cas où
$$\mathbf{K} = \mathbf{R} : * \text{Si } \Delta \geqslant 0$$
, on pose : $\alpha = \frac{-b - \sqrt{\Delta}}{2a}$ et $\beta = \frac{-b + \sqrt{\Delta}}{2a}$

 α et β sont les racines de P ($\alpha = \beta$ quand $\Delta = 0$) et $P = a(X - \alpha)(X - \beta)$

* Si $\Delta < 0$, alors P n'a pas de racine réelle (et ne peut se factoriser).

3

Cas où
$$\mathbf{K} = \mathbf{C}$$
: Soit $\delta \in \mathbf{C}$ tel que $\delta^2 = \Delta$. On pose : $\alpha = \frac{-b - \delta}{2a}$ et $\beta = \frac{-b + \delta}{2a}$

Alors α et β sont les racines de P ($\alpha = \beta$ quand $\Delta = 0$) et $P = a(X - \alpha)(X - \beta)$

Lorsque les coefficients a, b, c sont réels :

$$\Delta \geqslant 0 \implies (\delta = \sqrt{\Delta} \text{ et } \alpha, \beta \in \mathbf{R}) \text{ et } \Delta < 0 \implies (\delta = i\sqrt{-\Delta} \text{ et } \beta = \overline{\alpha} \in \mathbf{C} \setminus \mathbf{R}).$$

Exercice ${\bf 5}$: Factoriser dans ${\bf C}$ et dans ${\bf R}$ les trinômes :

$$P_1 = 2X^2 - 3X + 1$$
 $P_2 = X^2 + 1$ $P_3 = 2X^2 - 2X + 5$

2 Divisibilité dans K[X]

DÉFINITION

Soient $A, B \in \mathbf{K}[X]$. On dit que B divise A s'il existe un polynôme Q tel que A = BQ. On note alors $B \mid A$, et on dit que B est un diviseur de A ou que A est un multiple de B.

Exemples:

- $(X-1)|(X^2-1) \operatorname{car} X^2 1 = (X-1)(X+1)$.
- Tous les polynômes divisent 0.
- Si $\deg P = 0$, alors P divise tout polynôme.
- Si $P, Q \in \mathbf{K}[X]$ et P | Q avec $Q \neq 0$, alors $\deg P \leqslant \deg Q$.
- Si $P \mid Q$ et $Q \mid R$, alors $P \mid R$.
- Si $P \mid Q$ et $Q \mid P$, alors $P = \lambda Q$ avec $\lambda \in \mathbf{K}^*$.

Exercice 6: Montrer que $\forall n \ge 2$, $X^2 \mid (X+1)^n - nX - 1$.

3 Caractérisation des racines

THÉORÈME

- * Soit P ∈ K[X] et α ∈ K.
 α est une racine de P si et seulement si P est divisible par X − α.
 * Si P admet n racines distinctes α₁, · · · , α_n, alors P est divisible par ∏(X − α_k).
- * Si P est de degré $n \ge 0$, alors P possède au maximum n racines.

preuves:

MÉTHODE : on utilise la formulation équivalente suivante pour démontrer qu'un polynôme est nul : Si un polynôme de degré inférieur ou égal à n possède au moins n+1 racines, alors il est nul.

Exemple: la fonction cos n'est pas polynomiale.

Exercice 7:

Soit P un polynôme dont la fonction polynomiale associée sur \mathbf{R} est périodique de période T>0. Montrer que P est le polynôme nul.

4 Multiplicité d'une racine

DÉFINITION

Soient $P \in \mathbf{K}[X]$ et $\alpha \in \mathbf{K}$ une racine de P.

On appelle multiplicité de la racine α dans P le plus grand entier n tel que $(X - \alpha)^n | P$.

Remarques:

- * On parle de racine simple, double, triple... quand la multiplicité vaut 1,2,3,...
- * Si α n'est pas une racine de P, alors sa multiplicité vaut 0 par convention.
- * Si $(X \alpha)^k \mid P$ avec $k \ge 1$, alors la multiplicité de α est $\ge k$. On pourra donc parler de racines *au moins simples*, *au moins doubles* ...

Exemple: Soit $P = aX^2 + bX + c$ avec $a \neq 0$. Si $\Delta = 0$, alors $-\frac{b}{2a}$ est une racine double de P.

Exercice 8

Déterminer les racines de $P = (X - 1)(X^2 - 1)(X^3 - 1)(X^4 - 1) \in \mathbf{R}[X]$ et leurs multiplicités.

Proposition

Soit $P \in \mathbf{K}[X]$ et $\alpha \in \mathbf{K}$. Les trois propositions suivantes sont équivalentes :

- * α est une racine de P de multiplicité m.
- * $\exists Q \in \mathbf{K}[X], \ P = (X \alpha)^m Q \text{ avec } Q(\alpha) \neq 0.$
- * $P(\alpha) = P'(\alpha) = \cdots = P^{(m-1)}(\alpha) = 0$ et $P^{(m)}(\alpha) \neq 0$.

preuve:

Exercice 9: Déterminer toutes les racines de $P = X^4 - 6X^2 + 8X - 3$ et leurs multiplicités.

PROPOSITION

Soit $P \in \mathbf{K}[X]$. Si P admet n racines distinctes $\alpha_1, \dots, \alpha_n$ de multiplicités respectives m_1, m_2, \cdots, m_n , alors P est divisible par $\prod (X - \alpha_k)^{m_k}$.

Décomposition d'un polynôme

Polynôme scindé

DÉFINITION

Soit $P \in \mathbf{K}[X]$ un polynôme non nul. On dit que P est **scindé** lorsqu'il est constant, ou lorsqu'il s'écrit comme un produit de facteurs de degré 1.

Exemples:

- * $4(X-2)(X-3)^5$ est scindé.
- * $X^2 + 1$ n'est pas scindé dans $\mathbf{R}[X]$. Il l'est dans $\mathbf{C}[X]$ car : $X^2 + 1 = (X i)(X + i)$.

Factorisation dans C[X] $\mathbf{2}$

THÉORÈME ** Théorème de d'Alembert-Gauss **

Dans $\mathbf{C}[X]$, tout polynôme non nul est scindé.

preuve : Théorème admis.

Corollaire

Dans C[X], tout polynôme non constant admet au moins une racine.

Il s'écrit sous la forme : $P = \lambda \prod_{k=1}^{n} (X - \alpha_k)^{m_k}$ où $\alpha_1, \dots, \alpha_n$ sont les racines de P de multiplicités m_1, \dots, m_n et λ est le coefficient dominant de P. On a : $\deg(P) = \sum_{k=1}^{n} m_k$.

Exercice 10: Soit $P = X^n - 1$ avec $n \ge 1$. Factoriser P dans $\mathbb{C}[X]$.

Factorisation dans R[X]

PROPOSITION

Soit $P \in \mathbf{R}[X]$ et $\alpha \in \mathbf{C}$. Si α est une racine de P de multiplicité m, alors $\overline{\alpha}$ est une racine de P de multiplicité m également.

preuve:

** Factorisation dans $\mathbf{R}[X]$ (hors-programme) ** PROPOSITION

Soit $P \in \mathbf{R}[X]$. Alors P se factorise dans $\mathbf{R}[X]$ sous la forme :

$$P = \lambda \prod_{k=1}^{r} (X - \alpha_k)^{m_k} \prod_{\ell=1}^{s} (a_{\ell} X^2 + b_{\ell} X + c_{\ell})^{n_{\ell}}$$

où λ est le coefficient dominant de P, $\alpha_1, ..., \alpha_r$ sont les racines réelles de P de multiplicités respectives $m_1, ..., m_r$, et où $(a_{\ell}X^2 + b_{\ell}X + c_{\ell})$ sont des trinômes de discriminant $\Delta_{\ell} < 0$.

MÉTHODES : Pour factoriser un polynôme P :

- * on factorise par X (ou par X^k) si X (ou X^k) est facteur commun
- * on repère les identités remarquables quand il y en a
- * si $P = aX^2 + bX + c$ et qu'on repère une racine évidente α , alors $\alpha\beta = \frac{c}{a}$ permet de trouver l'autre racine β , et on factorise P en $P = a(X - \alpha)(X - \beta)$
- * on utilise Δ si deg(P) = 2 et si P n'a pas de racine évidente
- * on factorise par $(X \alpha)$ si on repère une racine évidente α
- * si $\deg(P)$ est assez grand et qu'on repère une racine évidente α , on étudie sa multiplicité m en calculant $P'(\alpha)$, $P''(\alpha)$... jusqu'à trouver un résultat non nul. On factorise alors par $(X-\alpha)^m$

- * si P ne comporte que des puissances paires de X (ou multiples de 3, de 4 ...), alors on pose $T=X^2$ (ou $T=X^3,X^4\ldots$) et on factorise le polynôme Q tel que : $P=Q\circ T$ Quand P est à coefficients réels :
- * si z est une racine complexe de P, alors on factorise par $(X-z)(X-\overline{z})=X^2-2\operatorname{Re}(z)X+|z|^2$
- $\ast\,$ si z est une racine complexe de P de multiplicité m, alors on factorise par :

$$(X-z)^m (X-\overline{z})^m = (X^2 - 2\operatorname{Re}(z)X + |z|^2)^m$$

* si on sait factoriser P dans $\mathbf{C}[X]$, on regroupe les facteurs conjugués pour obtenir la factorisation dans $\mathbf{R}[X]$

Exercice 11 : Factoriser $P = X^9 - X^7 + X^5 - X^3$ dans $\mathbf{R}[X]$.