Programme de colles Semaine 6 du 3/11 au 7/11/2025

Suites réelles

• Vocabulaire des suites réelles : (strictement) positive/négative, (strictement) croissante/décroissante, minorée, majorée, bornée, périodique.

Ces propriétés peuvent s'énoncer à partir d'un certain rang.

- Limite (finie ou infinie) d'une suite. Unicité de la limite.
- Suites extraites de rangs pairs et impairs. Théorème des suites extraites.
- Opérations usuelles sur les limites.
- Propriétés liées à la relation d'ordre :
 - * Signe d'une suite de limite $\ell \in \mathbf{R}^*$
 - * Passage à la limite dans une inégalité
 - * Théorème d'encadrement (des gendarmes)
 - * Théorème de comparaison
 - * Théorème de convergence monotone
- Suites adjacentes, théorème des suites adjacentes
- Relation de négligeabilité, notation "petit o", échelle de croissances comparées
- Relation d'équivalence, notation \sim
 - * Deux suite équivalentes sont de même nature
 - * Opérations sur les équivalents
 - * Équivalents usuels pour des suites de limite nulle
- Suites récurrentes usuelles :
 - * Suites arithmétiques
 - * Suites géométriques
 - * Suites arithmético-géométriques
 - * Suites récurrentes linéaires d'ordre 2
- Autres exemples de suites récurrentes, du type : $u_{n+1} = f(u_n)$

L'étude de telles suites devra être guidée.

• Suites implicites : u_n est l'unique solution d'une équation (E_n) . L'étude de telles suites devra être guidée.

Dynamiques de populations

• Exemples de modèles discrets, définis par des suites récurrentes.

Utilisation de l'outil informatique.

Le modèle de Malthus discret : $p_{n+1} = \alpha . p_n$

• Exemples de modèles continus, définis par une équation différentielle.

Le modèle de Malthus continu : $p'(t) = \alpha . p(t)$

Le modèle logistique continu : $p'(t) = \alpha . p(t) . \left(1 - \frac{p(t)}{K}\right)$

Le modèle de Gompertz : $p'(t) = \alpha.p(t). \ln \left(\frac{K}{p(t)}\right)$

Questions de cours :

- 1. Énoncer la définition d'une suite arithmétique, terme général, somme des termes consécutifs
- 2. Énoncer la définition d'une suite géométrique, terme général, somme des termes consécutifs
- 3. Terme général d'une suite vérifiant une relation du type $u_{n+2} = au_{n+1} + bu_n$ dans le cas $a^2 4b > 0$
- 4. Terme général d'une suite vérifiant une relation du type $u_{n+2} = au_{n+1} + bu_n$ dans le cas $a^2 4b = 0$
- 5. Terme général d'une suite vérifiant une relation du type $u_{n+2} = au_{n+1} + bu_n$ dans le cas $a^2 4b < 0$

- 6. Énoncer la définition d'une suite majorée, minorée, bornée
- 7. Énoncer la définition et le théorème des suites adjacentes
- 8. Définition de suites équivalentes et donner des équivalents usuels au choix de l'examinateur
- 9. Croissances comparées entre les suites puissance $n^{\alpha}(\alpha > 0)$, géométrique $a^{n}(a > 1)$ et factorielle n!
- 10. Citer le théorème des gendarmes (ou d'encadrement)
- 11. Citer le théorème de comparaison
- 12. Citer le théorème des suites extraites de rangs pairs et impairs