
Chapitre 7 Espaces vectoriels sur K = R ou C BCPST 2A, 2025/2026

I Rappels sur les systèmes linéaires
1 Théorie des systèmes linéaires
Définition

Un système d’équations linéaires est la donnée de n équations L1, . . . , Ln à p inconnues
x1, . . . , xp réelles ou complexes, telles que : ∀i ∈ J1, nK, Li : ai,1 x1 + . . .+ ai,p xp = bi.

Les scalaires (ai,j) i∈J1,nK
j∈J1,pK

sont les coefficients principaux du système.

Les scalaires (bi)i∈J1,nK forment le second membre du système.

Lorsqu’ils sont tous nuls, on dit que le système est homogène.

Écriture matricielle :
On pose : A = (ai,j) i∈J1,nK

j∈J1,pK
∈Mn,p(K) la matrice des coefficients principaux du système,

X = (xj)j∈J1,pK ∈Mp,1(K) la matrice-colonne des inconnues,
B = (bi)i∈J1,nK ∈Mn,1(K) la matrice-colonne du second membre.

Alors le système (S)


L1

...

Ln

équivaut à l’équation matricielle : AX = B qu’on peut noter : (A|B).

Définition

Le rang d’un système linéaire S est le rang de la matrice A des coefficients principaux de S.

Théorème ∗∗ Ensemble-solution d’un système linéaire ∗∗
Soit (S) un système de taille n× p et de rang r. On note S ⊂ Kp son ensemble-solution.

∗ Si r < n, alors (S) possède n− r équations auxiliaires.
Si l’une d’entre elles n’est pas vérifiée, alors S = ∅. Sinon S 6= ∅ (système compatible).

∗ Si r = n, alors (S) est compatible, et S contient une unique, ou une infinité de solutions.

∗ Si r < p et si (S) est compatible, alors il possède une infinité de solutions, qui s’expriment
en fonction de p− r variables libres (p− r est le degré de liberté du système).

∗ Si r = p et si (S) est compatible, alors il possède une unique solution.

∗ Si r = p = n, alors (S) est compatible et possède une unique solution (système de Cramer).

∗ Si (S) est homogène, alors il est compatible, et admet la solution (au moins) le p-uplet nul.

2 Pratique des systèmes linéaires
Définition

On appelle opérations élémentaires sur les lignes d’un système linéaire :

� Li ←− αLi avec α 6= 0 : multiplication de Li par un scalaire α non nul,

� Li ←→ Lk : échange des lignes Li et Lk,

� Li ←− Li +

n∑
k=1
k 6=i

αkLk : ajout à Li d’une combinaison linéaire des autres lignes.

Proposition
On ne change pas l’ensemble-solution d’un système linéaire en procédant à un nombre quel-
conque d’opérations élémentaires.

Théorème ∗∗ Théorème (algorithme) du pivot de Gauss ∗∗
On peut résoudre tout système linéaire par opérations élémentaires sur les lignes.

Description de l’algorithme : on choisit sur une colonne de A un coefficient non nul ai,j . On le pose comme
pivot et on s’en sert pour annuler tous les autres coefficients de la même colonne, grâce à des opérations

élémentaires du type : Lk ←− Lk −
ak,j
ai,j

Li.

On poursuit en appliquant le même procédé à la sous-matrice A(i,j) obtenue à partir de A en supprimant
la ligne i et la colonne j, jusqu’à obtenir une sous-matrice nulle, ou vide.
On résout alors (S) par remontée, en utilisant les pivots dans l’ordre inverse de leur apparition.
Le nombre de pivots est égal au rang de la matrice A (et du système linéaire).
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Exercice 1 : Résoudre dans R4 ou R3 les systèmes linéaires suivants :

(S1)


2x+ 3y + 5z + 7t = 4

4x+ y + 2z + 2t = 0

7x+ 2y + 5z + 3t = 7

(S2)


2x+ 5y + 4z + t = 3

x+ 4y + 2z + 2t = 2

x+ y + 2z − t = 0

(S3)


5x+ 11y + 2z = 1

2x+ 5y + z = 2

−3x+ 7y + 3z = 3

II Espaces vectoriels : définition et exemples

1 Définition et notations
Définition

Soient E un ensemble, + : E × E → E une addition dans E et . : K× E → E un produit externe.
Alors le triplet (E,+, . ) est un K-espace vectoriel si les propriétés suivantes sont vérifiées :

Propriétés de l’addition :

� L’addition dans E est associative : ∀(x, y, z) ∈ E3, (x+ y) + z = x+ (y + z)

� E contient un élément-neutre noté 0E vérifiant : ∀x ∈ E, x+ 0E = 0E + x = x

� Tout élément x de E possède un symétrique : ∀x ∈ E,∃y ∈ E, x+ y = y + x = 0E

� L’addition dans E est commutative : ∀(x, y) ∈ E2, x+ y = y + x

Propriétés du produit externe :

� 1 est l’élément-neutre du produit externe : ∀x ∈ E, 1.x = x

� Distributivité sur l’addition vectorielle : ∀λ ∈ K,∀(x, y) ∈ E2, λ.(x+ y) = λ.x+ λ.y

� Distributivité sur l’addition scalaire : ∀(λ, µ) ∈ K2,∀x ∈ E, (λ+ µ).x = λ.x+ µ.x

� Associativité : ∀(λ, µ) ∈ K2,∀x ∈ E, (λµ).x = λ.(µ.x)

On note alors : (E,+, .,) est un K-ev, ou encore : E est un K-ev (les lois + et . sont alors sous-entendues).
Les éléments de E sont appelés les vecteurs de E, les éléments de K sont les scalaires.
Si K = R, on dit aussi que E est un espace vectoriel réel ; si K = C, on parle d’espace vectoriel complexe.

L’élément-neutre 0E est appelé le vecteur-nul de E, parfois noté
−→
0 .

Le symétrique d’un vecteur x ∈ E est noté −x.

2 Exemples
a L’ensemble Kn

Soit n ∈ N?. Alors Kn est le produit cartésien de K par lui-même n fois.
C’est l’ensemble des n-uplets (x1, · · · , xn) où xi ∈ K pour tout i ∈ J1, nK.
Pour deux n-uplets x = (x1, · · · , xn) et y = (y1, · · · , yn) éléments de Kn, et pour λ ∈ K, on pose :

� x+ y = (x1 + y1, · · · , xn + yn) ∈ Kn

� λ.x = (λx1, · · · , λxn) ∈ Kn

Alors (Kn,+, . ) est un K-ev.

Exemples : R2 est un R-ev, assimilable à un plan géométrique, R3 est un R-ev, assimilable à l’espace.
Le couple (1,−2) est un vecteur de R2, le triplet (2, 1, 5) est un vecteur de R3.

b Ensemble de polynômes

L’addition de deux polynômes et la multiplication d’un polynôme par une constante munissent R[X] ou
C[X] d’une structure d’espace vectoriel sur R ou C. Le vecteur nul de K[X] est le polynôme nul.

preuve :

c Ensemble des applications de I dans R

Soit I un intervalle réel. Alors E = F(I,R) = RI muni de l’addition de deux applications, et du produit
d’une application par un réel est un espace vectoriel réel. Le vecteur nul de RI est la fonction nulle.
preuve :

d Ensemble de matrices

Soient n, p ∈ N?. L’ensemble Mn,p(K) des matrices à n lignes et p colonnes et à coefficients dans K,
muni de l’addition matricielle et du produit d’un scalaire par une matrice, est un K-ev.
La matrice nulle 0n,p est le vecteur nul de Mn,p(K).
preuve :
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e Ensemble de VAR définies sur un univers Ω

L’ensemble des VAR définies sur le même univers Ω forme un R-ev.

f Ensemble des suites réelles ou complexes

Soit E = F(N,R) = RN l’ensemble des suites réelles.
Pour deux suites u = (un)n∈N, v = (vn)n∈N ∈ E et pour un réel λ, on pose :

� u+ v = (un + vn)n∈N

� λ.u = (λun)n∈N

Alors (F(N,R),+, . ) est un R-ev. Le vecteur nul de F(N,R) est la suite nulle.
De façon similaire, l’ensemble CN des suites complexes est un C-ev.

3 Calculs dans un espace vectoriel
Soit E un K-ev. Pour tous scalaires λ, µ ∈ K, pour tous vecteurs x, y ∈ E :

� x− y = x+ (−y)

� λ.0E = 0E

� λ(−y) = −λ.y
� λ.(x− y) = λ.x− λ.y

� 0.x = 0E

� (−µ).x = −µ.x
� (λ− µ).x = λ.x− µ.x
� λ.x = 0E ⇔ λ = 0 ou x = 0E

preuves :

4 Combinaisons linéaires
Définition

Soit n ∈ N? et soient x1, · · · , xn des vecteurs d’un espace vectoriel E et λ1, · · ·λn des scalaires.

x =

n∑
i=1

λi.xi est un vecteur appelé combinaison linéaire des vecteurs x1, · · · , xn.

Exercice 2 : Dans R3, on pose u = (3, 8, 2), v = (1, 1,−1) et w = (0, 5, 5).
Montrer que w est combinaison linéaire de u et v.

III Sous-espaces vectoriels

1 Définition
Définition

Soit (E,+, . ) un K-ev et soit F une partie de E. Alors F est un sous-espace vectoriel de E si :

� F est non vide : F 6= ∅
� F est stable par combinaison linéaire : ∀(x, y) ∈ F 2,∀(λ, µ) ∈ K2, λ.x+ µ.y ∈ F

On note : F est un s-ev de E.
Remarque : si F est un s-ev de E, alors 0E ∈ F .

2 Exemples et contre-exemples

Exemples usuels :

∗ Dans un K-ev E quelconque :

{0E} (s-ev nul de E), et E sont des s-ev de E,

{λ.x, λ ∈ K} = K.x = Vect(x) est la droite vectorielle engendrée par x ∈ E, x 6= 0E .

∗ Dans E = Kn, soient a1, . . . , an des scalaires fixés :{
(x1, . . . , xn) ∈ Kn,

n∑
i=1

aixi = 0

}
l’ensemble-solution d’une équation linéaire homogène.

L’ensemble solution d’un système linéaire homogène de taille n× p est un s-ev de Kp.

Par exemple, les solutions (x, y, z) de l’équation 2x− y + 3z = 0 forment un s-ev de R3.

∗ Dans K[X], soit n ∈ N :

Kn[X] l’ensemble des polynômes de degré inférieur ou égal à n.

∗ Dans E = RR, soient a ∈ R et n ∈ N fixés :

{f ∈ E, f(a) = 0} l’ensemble des applications qui s’annulent en a,

C∞(R,R) l’ensemble des applications infiniment dérivables,

3



Cn(R,R) l’ensemble des applications n fois dérivables, et de dérivée n-ème continue,

l’ensemble des solutions d’une équation différentielle linéaire homogène.

∗ Dans E =Mn(K) (n ∈ N?) :

Dn(K) l’ensemble des matrices diagonales,

T +
n (K), T −n (K) l’ensemble des matrices triangulaires supérieures ou inférieures,

Sn(K), An(K) les ensembles des matrices symétriques ou anti-symétriques.

∗ Dans E = F(N,K) = KN l’ensemble des suites réelles ou complexes :

l’ensemble des suites convergentes,

l’ensemble des suites bornées,

l’ensemble des suites vérifiant une relation de récurrence linéaire d’ordre p.

preuves :

Contre-exemples : les sous-ensembles suivants ne sont pas des s-ev
� les solutions dans Kn d’une équation linéaire non homogène, ou d’une équation non linéaire.{

(x, y) ∈ R2, 2x− y = 1
}

et
{

(x, y) ∈ R2, 2x− y2 = 0
}

ne sont pas des s-ev de R2.

� Dans K[X], l’ensemble des polynômes de degré égal à n ∈ N.

� Dans KN, l’ensemble des suites croissantes, l’ensemble des suites divergentes.

� Dans RR, l’ensemble des fonctions positives, l’ensemble des fonctions bijectives.

� Dans Mn(K), l’ensemble des matrices inversibles.

Propriété
Soient F1 et F2 deux s-ev d’un même espace vectoriel E.
Alors F1 ∩ F2 est encore un s-ev de E.

Remarque : Cette propriété se généralise à toute intersection de sous-espaces vectoriels.
Attention : C’est faux en général pour la réunion !
preuve :

Exercice 3 : Dans R3, on définit les plans P et Q d’équations P : 2x− y + z = 0 et Q : x− y + 3z = 0.
Déterminer P ∩Q.

Exercice 4 : Montrer que F1 ∪ F2 est un s-ev de E si et seulement si : F1 ⊂ F2 ou F2 ⊂ F1.

3 Sous-espace vectoriel engendré
Définition

Soit E un K-ev et soit P ⊂ E une partie non vide de E.
Alors l’ensemble des combinaisons linéaires d’éléments de P est un sous-espace vectoriel
de E, noté Vect(P ), et appelé sous-espace vectoriel engendré par P .

Exemples :
∗ Soit x 6= 0E ∈ E. Alors Vect({x}) = K.x est la droite vectorielle engendrée par x.

∗ Soit n ∈ N. Alors Vect({1, X, · · · , Xn}) = Rn[X].

Exercice 5 : Dans R3, déterminer une équation de Vect(u, v), avec u = (0, 1, 2) et v = (1,−1, 3).

Propriété
Soit P une partie non vide d’un K-ev E.
Alors Vect(P ) est le plus petit s-ev de E (au sens de l’inclusion) qui contient P .

preuve :

IV Familles particulières de vecteurs
1 Famille génératrice
Définition

Soit E un K-ev, et soit F une famille finie de vecteurs de E.
Alors on dit que la famille F est génératrice si Vect(F) = E.

On retient qu’une famille est génératrice si tout vecteur x de E est une combinaison linéaire des vecteurs
de cette famille.

F = (x1, . . . , xn) est génératrice ⇔ ∀x ∈ E, ∃(λ1, · · · , λn) ∈ Kn, | x =

n∑
i=1

λi.xi

Remarque : Toute famille de laquelle on peut extraire une famille génératrice est encore génératrice.
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Définition

Soit F ⊂ E un s-ev. Alors F est génératrice de F si Vect(F) = F .
On dit aussi que F engendre F .

Exercice 6 : Montrer que la famille
(
X + 1, X2 + 1, X2 +X

)
est génératrice de R2[X].

2 Famille liée
Définition

Soit E un K-ev, et soit F = (x1, . . . , xn) une famille finie de vecteurs de E.
Alors on dit que la famille F est liée s’il existe λ1, · · · , λn ∈ K, non tous nuls, tels que :

n∑
i=1

λi.xi = 0E

Exemple : La famille ((3,−2), (−6, 4)) est liée dans R2, car 2(3,−2) + (−6, 4) = (0, 0) = 0R2 .
Remarques :
∗ Une famille qui contient le vecteur nul 0E est toujours liée.

∗ Si, à une famille liée, on ajoute des vecteurs, alors on obtient encore une famille liée.

∗ La famille (x, y) est liée signifie que x et y sont colinéaires.

∗ Soit F = (x1, . . . , xn) une famille liée. Alors l’un (au moins) des vecteurs de la famille est combi-
naison linéaire des autres :

∃i0 ∈ J1, nK,∃(λ1, · · · , λn) ∈ Kn | xi0 =

n∑
i=1
i6=i0

λi.xi
3 Famille libre
Définition

Soit E un K-ev, et soit F = (x1, . . . , xn) une famille finie de vecteurs de E.
Alors on dit que la famille F est libre si elle n’est pas liée.

Dans ce cas, ∀(λ1, · · · , λn) ∈ Kn,

n∑
i=1

λi.xi = 0E ⇒ ∀i ∈ J1, nK, λi = 0.

Vocabulaire : On dit alors que les vecteurs x1, · · · , xn sont linéairement indépendants.

Exercice 7 : Dans M2(R), on pose A =

(
1 2
0 1

)
, B =

(
0 3
2 0

)
et C =

(
2 1
2 2

)
.

Montrer que la famille (A,B,C) est libre.
Propriété

Toute famille de polynômes non nuls de K[X] de degrés 2 à 2 distincts est libre.

preuve :

4 Base
Définition

Soit E un K-ev, et soit B = (x1, . . . , xn) une famille finie de vecteurs de E.
Alors on dit que la famille B est une base de E si elle est libre et génératrice.
Dans ce cas, tout vecteur de E s’écrit de façon unique comme une combinaison linéaire
d’éléments de B :

∀x ∈ E, ∃!(λ1, · · · , λn) ∈ Kn | x =

n∑
i=1

λi.xi

Les scalaires λ1, · · · , λn sont appelés les coordonnées de x dans la base B.

Exemples : ∗ Dans Kn, pour tout i ∈ J1, nK, on note ei le n-uplet de Kn comportant 1 en ième place
et 0 partout ailleurs. Alors C = (e1, e2, . . . , en) est la base canonique de Kn.

∗ La base canonique de Mn,p(K) est
(
Eij , (i, j) ∈ J1, nK× J1, pK

)
où la matrice Eij possède le coefficient 1 en position (i, j) et 0 partout ailleurs.

preuves :

Définition

Soit F un s-ev d’un espace vectoriel E. On dit qu’une famille finie d’éléments de F
est une base de F si elle est libre et si elle engendre F .

Exemple : La base canonique de Kn[X] est : (1, X,X2, . . . , Xn).
Exercice 8 : Déterminer une base de F =

{
(x, y, z) ∈ R3, 2x− y + z = 0

}
.
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V Dimension

1 Définition
Définition

Soit E un K-ev possédant une base B de cardinal fini n ∈ N?.
Alors pour toute base B′ de E, B′ est finie et de cardinal n.
Le cardinal commun à toute base de E s’appelle la dimension de E, notée : dimE.

Exemples et contre-exemples :

� La base canonique de Kn contient n vecteurs, donc Kn est un espace vectoriel de dimension n.

� La base canonique de Kn[X] contient (n+ 1) vecteurs, donc : dim (Kn[X]) = n+ 1.

A contrario, K[X] n’est pas de dimension finie (il ne possède aucune base finie).

� F(R,R) n’est pas de dimension finie.

Remarque : Par convention, on dira que E = {0E} est de dimension 0.

2 Lien avec les familles particulières

Propriété
Soit E un K-ev de dimension finie n, et soit F une famille finie de vecteurs de E. Alors :

∗ Si F est libre, alors F est de cardinal p 6 n, et dans ce cas on peut compléter la famille
F en une base de E.

∗ F est libre et de cardinal n si et seulement si c’est une base de E.

∗ Si F est génératrice, alors F est de cardinal p > n, et dans ce cas on peut en extraire
une base de E.

∗ F est génératrice et de cardinal n si et seulement si c’est une base de E.

Exercice 9 : Soient u = (1, 3), v = (0, 5) et w = (−1, 4) ∈ R2. Montrer que (u, v, w) est liée.

Exercice 10 : Dans E = R3[X], on pose P1 = X2 − 2, P2 = 2X3 +X + 1, P3 = 3X − 1 et P4 = 5.
Montrer que (P1, P2, P3, P4) est une base de R3[X].

3 Dimension de sous-espaces vectoriels

Propriété
∗ Soit E un K-ev de dimension finie n ∈ N, et soit F un s-ev de E.

Alors F est de dimension finie, et dimF 6 dimE.
Si dimF < dimE, on dit que F est un s-ev strict de E.

∗ Soient F et G deux s-ev d’un K-ev E de dimension finie. Alors :

� si F ⊂ G, alors dimF 6 dimG ;

� si F ⊂ G et dimF = dimG, alors F = G.

preuves :
Exercice 11 : Décrire tous les s-ev de R2, puis ceux de R3.

4 Rang d’une famille de vecteurs
Définition

Soient E un K-ev et F une famille finie de vecteurs de E. Alors on appelle rang de la famille F
la dimension de Vect(F). On note : rg(F) = dim

(
Vect(F)

)
.

Propriété
Soit F une famille finie de cardinal p d’un espace vectoriel E de dimension n.
On note r = rg(F) le rang de la famille F . Alors :

� r 6 p et r 6 n

� r = n si et seulement si la famille F est génératrice, et dans ce cas p > n.

� r = p si et seulement si la famille F est libre, et dans ce cas p 6 n.

� r = p = n si et seulement si la famille F est une base de E.
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VI Aspect matriciel

1 Définitions

Soit E un K-ev de dimension finie n ∈ N?. Soit B = (u1, · · · , un) une base de E.

Définition

∗ Soit v un vecteur de E. Il s’écrit alors (de façon unique) : v =

n∑
i=1

λiui,

où les (λi)16i6n sont les coordonnées du vecteur v dans la base B.

Alors on dit que la matrice-colonne X =

λ1

...
λn

 est la matrice du vecteur v dans la base B,

et on note X = MatB(v).

∗ Soient v1, . . . , vp des vecteurs de E.
Alors on appelle matrice des vecteurs v1, · · · , vp dans la base B la matrice :

MatB(v1, · · · , vp) =


λ1,1 λ1,2 · · · λ1,p

λ2,1 λ2,2 · · · λ2,p

...
...

. . .
...

λn,1 λn,2 · · · λn,p

 ∈Mn,p(K)

où pour tout j ∈ J1, pK, (λ1,j , · · · , λn,j) sont les coordonnées du vecteur vj dans la base B.
Si on note F la famille de vecteurs (v1, . . . , vp), on peut écrire : MatB(v1, · · · , vp) = MatB(F).

Exemple : Soient v1 = (1, 2, 1), v2 = (0, 4, 3) et v3 = (5, 1, 6) trois vecteurs de R3.

Soit C la base canonique de R3. Alors : MatC(v1, v2, v3) =

 1 0 5
2 4 1
1 3 6

.

Cas particulier : Pour toute base B, MatB(B) = In, où In est la matrice identité de Mn(K).

Propriété
Soit F une famille finie de vecteurs de E, et soit B une base de E. Alors :
∗ rg(F) = rg (MatB(F))
∗ F est une base de E si et seulement si MatB(F) est inversible.

2 Rappels sur les changements de bases
Définition

Soient B = (u1, · · · , un) et B′ = (u′1, · · · , u′n) deux bases de E. Soit P = MatB(B′).

Alors on dit que P est la matrice de passage de la base B à la base B′, et on note P = PB,B′ .

Proposition
Soient B et B′ deux bases de E et P = MatB(B′) la matrice de passage de B à B′.
Soit v un vecteur de E. On pose X = MatB(v) et X ′ = MatB′(v).

On a alors : X = PX ′ ou X ′ = P−1X.

Exercice 12 : Soit P = X3 +X2 − 1 ∈ R3[X].
Déterminer les coordonnées de P dans la base (P1, P2, P3, P4) de l’exercice 10.

7


