Chapitre 7 Espaces vectoriels sur K=R ou C BCPST 24, 2025/2026

I Rappels sur les systéemes linéaires
1 Théorie des systémes linéaires

DEFINITION
Un systeme d’équations linéaires est la donnée de n équations Li,...,L, a p inconnues
x1,...,Tp réelles ou complexes, telles que : Vi € [1,n], L; : a; 121 + ...+ aipzp = b;.

Les scalaires (a; j)iep,»; sont les coefficients principaux du systéme.
J€l1,p]
Les scalaires (b;)ic[1,,] forment le second membre du systeme.

Lorsqu’ils sont tous nuls, on dit que le systéme est homogéne.

Ecriture matricielle :
On pose : A = (a j)icnng € M, p(K) la matrice des coefficients principaux du systeme,
© 7 jelpl ’

X = (xj)jé[[l_yé]] € M,,1(K) la matrice-colonne des inconnues,
B = (bi)ieqi,n] € Mn,1(K) la matrice-colonne du second membre.

Ly
Alors le systeme (S) < : équivaut a I’équation matricielle : qu’on peut noter : (A4|B).

s LTL
DEFINITION

Le rang d’un systéme linéaire S est le rang de la matrice A des coefficients principaux de S. I

THEOREME x% Ensemble-solution d’un systéme linéaire xx

Soit (S) un systeme de taille n X p et de rang r. On note S C KP son ensemble-solution.

% Sir < n, alors (S) possede n — r équations auxiliaires.
Si I'une d’entre elles n’est pas vérifiée, alors S = @. Sinon S # & (systéme compatible).

* Sir = n, alors (S) est compatible, et S contient une unique, ou une infinité de solutions.

% Sir < petsi(S) est compatible, alors il possede une infinité de solutions, qui s’expriment
en fonction de p — r variables libres (p — r est le degré de liberté du systeme).

* Sir =p et si(S) est compatible, alors il posséde une unique solution.

* Sir = p =n, alors (S) est compatible et posséde une unique solution (systéme de Cramer).

% Si (S) est homogene, alors il est compatible, et admet la solution (au moins) le p-uplet nul.

2 Pratique des systémes linéaires
DEFINITION
On appelle opérations élémentaires sur les lignes d’un systeme linéaire :

o [, +— al; avec : multiplication de L; par un scalaire o non nul,
o [; <— Lj :échange des lignes L; et Ly,

n
o L, +— L;+ E apLy :ajout a L; d’'une combinaison linéaire des autres lignes.

k=1
ki

PROPOSITION
On ne change pas ’ensemble-solution d’un systéme linéaire en procédant & un nombre quel-

conque d’opérations élémentaires.

THEOREME x*x Théoréeme (algorithme) du pivot de Gauss *x
‘ On peut résoudre tout systeme linéaire par opérations élémentaires sur les lignes.

Description de l’algorithme : on choisit sur une colonne de A un coefficient non nul a; ;. On le pose comme

pivot et on s’en sert pour annuler tous les autres coefficients de la méme colonne, grace a des opérations
Ak j
= L.

élémentaires du type : Ly <— Li —
am-

On poursuit en appliquant le méme procédé & la sous-matrice A7) obtenue & partir de A en supprimant

la ligne ¢ et la colonne 7, jusqu’a obtenir une sous-matrice nulle, ou vide.

On résout alors (S) par remontée, en utilisant les pivots dans l'ordre inverse de leur apparition.

Le nombre de pivots est égal au rang de la matrice A (et du systéme linéaire).



Exercice 1 : Résoudre dans R* ou R3 les systemes linéaires suivants :

20 +3y+ 52+ Tt =4 20 +5y+4z+t=3 Sr+1ly+22=1
(S1)Sdx+y+22+2t=0 (S2) o +4dy+22+2t=2 (S3) 245y +z2=2
Tx+2y+5z24+3t="7 r+y+2z—t=0 —3x+Ty+32=3

II Espaces vectoriels : définition et exemples

1 Définition et notations
DEFINITION

Soient E un ensemble, + : £ X E — E une addition dans E et . : K x E — E un produit externe.
Alors le triplet (E,+, .) est un K-espace vectoriel si les propriétés suivantes sont vérifiées :

Propriétés de 'addition :
e L’addition dans E est associative : V(z,y,2) € E3, (z+y)+z=12+ (y+ 2)

e [ contient un élément-neutre noté O vérifiant : Vx € E, x+0g =0g+x ==z
e Tout élément x de E possede un symétrique : Ve € E,Jy e F, z+y=y+ 2 =0g
e L’addition dans E est commutative : V(z,y) € E?, 2 +y=y+x

Propriétés du produit externe :

e 1 est ’élément-neutre du produit externe : Vzr € E, l.x =x

Distributivité sur I'addition vectorielle : VA € K,V(z,y) € E?, A(z+y) =Xz + Ay
Distributivité sur I'addition scalaire : V(\, u) € K% Vo € B, (A+p).x = Ao + p.x
Associativité : V(A u) € K2, Vz € B, (\p).xz = \.(u.x)

On note alors : (E, 4+, . ) est un K-ev, ou encore : E est un K-ev (les lois + et . sont alors sous-entendues).
Les éléments de E sont appelés les vecteurs de F, les éléments de K sont les scalaires.

Si K = R, on dit aussi que F est un espace vectoriel réel ; si K = C, on parle d’espace vectoriel complexe.
L’élément-neutre O est appelé le vecteur-nul de E, parfois noté 0.

Le symétrique d’un vecteur = € E est noté —zx.

2 Exemples

a L’ensemble K"

Soit n € N*. Alors K" est le produit cartésien de K par lui-méme n fois.

C’est ’ensemble des n-uplets (x1,- - ,x,) ot x; € K pour tout i € [1,n].

Pour deux n-uplets = (1, ,x,) et y = (y1,- - ,yn) éléments de K™, et pour A € K, on pose :
e z+y=(r1+y, -, Tn+yn) €K"
e Az =(Azy, -, Azy) € K"

Alors ‘ (K™, +, .) est un K-ev. ‘

Ezemples : R? est un R-ev, assimilable & un plan géométrique, R? est un R-ev, assimilable & I’espace.
Le couple (1, —2) est un vecteur de R?, le triplet (2,1,5) est un vecteur de R3.

b Ensemble de polynomes
L’addition de deux polyndmes et la multiplication d’un polynéme par une constante munissent R[X] ou
C[X] d’une structure d’espace vectoriel sur R ou C. Le vecteur nul de K[X] est le polynéme nul.

preuve :

c Ensemble des applications de [ dans R

Soit I un intervalle réel. Alors E = F(I,R) = R! muni de I’addition de deux applications, et du produit
d’une application par un réel est un espace vectoriel réel. Le vecteur nul de R’ est la fonction nulle.
preuve :

d Ensemble de matrices

Soient n,p € N*. L’ensemble M,, ,(K) des matrices & n lignes et p colonnes et a coefficients dans K,
muni de I’addition matricielle et du produit d’un scalaire par une matrice, est un K-ev.

La matrice nulle 0,, ,, est le vecteur nul de M,, ,(K).

preuve :



e Ensemble de VAR définies sur un univers {2
L’ensemble des VAR définies sur le méme univers €2 forme un R-ev.

f Ensemble des suites réelles ou complexes

Soit E = F(N,R) = RN I’ensemble des suites réelles.

Pour deux suites u = (un)neN, v = (Un)neNn € F et pour un réel A, on pose :
® u+v=(Un+ Vp)neN
e \u= ()\un)nGN

Alors (F(N,R), +, .) est un R-ev. Le vecteur nul de F(N, R) est la suite nulle.
De facon similaire, ’ensemble CN des suites complexes est un C-ev.

3 Calculs dans un espace vectoriel
Soit F un K-ev. Pour tous scalaires A\, u € K, pour tous vecteurs x,y € E :

e r—y=2x+(—y) e 0.z =0g

e \0g =0g o (—p)x=—px

o \—y)=-)\y e A—plar=Az—pzx

e Mz —y)=Ax— Ay e \x=0g<A=0 ou z=0g
preuves :

4 Combinaisons linéaires

DEFINITION
Soit n € N* et soient 1, - ,x, des vecteurs d’un espace vectoriel E et Ay, --- A, des scalaires.
n
T = E Ai.x; est un vecteur appelé combinaison linéaire des vecteurs x1,--- ,z,.

i=1

Exercice 2 : Dans R?, on pose u = (3,8,2), v = (1,1,—1) et w = (0,5, 5).
Montrer que w est combinaison linéaire de u et v.

III Sous-espaces vectoriels

1 Définition
DEFINITION

Soit (E,+, .) un K-ev et soit F' une partie de E. Alors F' est un sous-espace vectoriel de E si :
e F est non vide : F # &
e F est stable par combinaison linéaire : V(z,y) € F2,V(\,u) € K2, Ao +pyeF

On note : F est un s-ev de E.
Remarque : si F est un s-ev de E, alors O € F.

2 Exemples et contre-exemples

Exemples usuels :
* Dans un K-ev E quelconque :
{0g} (s-ev nul de E), et E sont des s-ev de E,
{Az, A€ K} =K.z = Vect(x) est la droite vectorielle engendrée par z € E,x # Op.

x Dans F = K", soient aq,...,a, des scalaires fixés :

i=1
L’ensemble solution d’un systéme linéaire homogene de taille n X p est un s-ev de KP?.

n
{(l‘h S zn) € KT Z a;r; = 0} I’ensemble-solution d’une équation linéaire homogene.

Par exemple, les solutions (z,y, z) de I"équation 2z — y + 3z = 0 forment un s-ev de R3.
* Dans K[X], soit n € N :
K,,[X] Pensemble des polynémes de degré inférieur ou égal a n.
% Dans F = RR, soient a € R et n € N fixés :
{f € E, f(a) =0} Pensemble des applications qui s’annulent en a,
C>(R,R) l'ensemble des applications infiniment dérivables,



C™(R,R) lensemble des applications n fois dérivables, et de dérivée n-éme continue,
I’ensemble des solutions d’une équation différentielle linéaire homogene.
% Dans £ = M, (K) (n € N*) :
D, (K) l'ensemble des matrices diagonales,
T.7(K), 7,7 (K) I'ensemble des matrices triangulaires supérieures ou inférieures,
Sn(K), A, (K) les ensembles des matrices symétriques ou anti-symétriques.
* Dans E = F(N,K) = KN I'ensemble des suites réelles ou complexes :
I’ensemble des suites convergentes,
I’ensemble des suites bornées,
I’ensemble des suites vérifiant une relation de récurrence linéaire d’ordre p.
preuves :

Contre-exemples : les sous-ensembles suivants ne sont pas des s-ev
e les solutions dans K™ d’une équation linéaire non homogene, ou d’une équation non linéaire.

{(z,y) e R? 2z —y =1} et {(x,y) € R?, 22 — y*> = 0} ne sont pas des s-ev de R?.
Dans K[X], 'ensemble des polynémes de degré égal a n € N.

e Dans KN, I’ensemble des suites croissantes, 'ensemble des suites divergentes.
e Dans R, I'ensemble des fonctions positives, I’ensemble des fonctions bijectives.

e Dans M,,(K), 'ensemble des matrices inversibles.

PROPRIETE
Soient Fi et F5 deux s-ev d’'un méme espace vectoriel E.
Alors Fi N Fy est encore un s-ev de FE.
Remarque : Cette propriété se généralise a toute intersection de sous-espaces vectoriels.
Attention : C’est faux en général pour la réunion !
preuve :
Exercice 3 : Dans R3, on définit les plans P et Q d’équations P: 2z —y+2z=0et Q: 2 —y+ 3z =0.
Déterminer P N Q.
Exercice 4 : Montrer que F; U F5 est un s-ev de E si et seulement si : Fy C Fy ou Fr C F7.

3 Sous-espace vectoriel engendré
DEFINITION

Soit F un K-ev et soit P C E une partie non vide de F.
Alors 'ensemble des combinaisons linéaires d’éléments de P est un sous-espace vectoriel
de FE, noté Vect(P), et appelé sous-espace vectoriel engendré par P.

Ezxemples :
x Soit x # 0 € E. Alors Vect({z}) = K.z est la droite vectorielle engendrée par x.

% Soit n € N. Alors Vect({1, X, -, X"}) = R, [X].
Exercice 5 : Dans R?, déterminer une équation de Vect(u,v), avec u = (0,1,2) et v = (1, -1, 3).
PROPRIETE

Soit P une partie non vide d'un K-ev E.

Alors Vect(P) est le plus petit s-ev de E (au sens de l'inclusion) qui contient P.
preuve :

IV  Familles particuliéres de vecteurs

1 Famille génératrice
DEFINITION

Soit F un K-ev, et soit F une famille finie de vecteurs de FE.
Alors on dit que la famille F est génératrice si Vect(F) = E.

On retient qu’'une famille est génératrice si tout vecteur x de F est une combinaison linéaire des vecteurs
de cette famille.

n
F = (x1,...,x,) est génératrice < Vr € E, I(A1,---,\,) € K", |z = Z)"xl
i=1
Remarque : Toute famille de laquelle on peut extraire une famille génératrice est encore génératrice.



DEFINITION

Soit F' C E un s-ev. Alors F est génératrice de F' si Vect(F) = F.
On dit aussi que F engendre F'.

Exercice 6 : Montrer que la famille (X +1, X241, X2+ X) est génératrice de Ro[X].

2 Famille liée

DEFINITION
Soit E un K-ev, et soit F = (z1,...,2,) une famille finie de vecteurs de E.
Alors on dit que la famille F est liée s’il existe A1, -- , A, € K, non tous nuls, tels que :

n

Exemple : La famille ((3,—2), (—6,4)) est liée dans R?, car 2(3,—2) + (—6,4) = (0,0) = Ogz.
Remarques :
* Une famille qui contient le vecteur nul Og est toujours liée.

* Si, a une famille liée, on ajoute des vecteurs, alors on obtient encore une famille liée.

*

La famille (z,y) est liée signifie que x et y sont colinéaires.

% Soit F = (x1,...,%,) une famille liée. Alors I'un (au moins) des vecteurs de la famille est combi-
naison linéaire des autres : n
Jig € [1,n], 3N\, ) €K™ | iy = > A
=1
i#ig

3 Famille libre

DEFINITION

Soit E un K-ev, et soit F = (z1,...,2,) une famille finie de vecteurs de E.
Alors on dit que la famille F est libre si elle n’est pas liée.

Dans ce cas, V(A1,-+-,A,) € K™, Z)\sz =0g=Vie[l,n], \,=0.
i=1

Vocabulaire : On dit alors que les vecteurs xq,- - - , x, sont linéairement indépendants.
. 12 03 21
Exercice 7 : Dans M>(R), on pose A = (O 1), B = (2 O> et C = (2 2).

__ Montrer que la famille (A4, B, C) est libre.
PROPRIETE

‘ Toute famille de polynémes non nuls de K[X] de degrés 2 & 2 distincts est libre.
preuve :

4 Base
DEFINITION

Soit E' un K-ev, et soit B = (z1,...,zy,) une famille finie de vecteurs de E.

Alors on dit que la famille B est une base de F si elle est libre et génératrice.

Dans ce cas, tout vecteur de FE s’écrit de fagon unique comme une combinaison linéaire
d’éléments de B :

Vo€ B, Ay, ) €K [z =D Mo
i=1
Les scalaires A1, - -+, A, sont appelés les coordonnées de = dans la base B.

-eme

Ezemples : * Dans K", pour tout ¢ € [1,n], on note e; le n-uplet de K™ comportant 1 en % place
et 0 partout ailleurs. Alors C = (e, ea,...,e,) est la base canonique de K™.
* La base canonique de M, ,(K) est (E;;, (i,7) € [1,n] x [1,p])
ol la matrice E;; possede le coefficient 1 en position (4, j) et 0 partout ailleurs.
preuves :

DEFINITION

Soit F' un s-ev d’un espace vectoriel . On dit qu'une famille finie d’éléments de F'
est une base de F si elle est libre et si elle engendre F'.

Exemple : La base canonique de K,,[X] est : (1, X, X2,..., X™).
Exercice 8 : Déterminer une base de F' = {(x,y, 2)ER3, 22 —y+z= O}.



V Dimension

1 Définition
DEFINITION

Soit E un K-ev possédant une base B de cardinal fini n € N*.
Alors pour toute base B’ de E, B’ est finie et de cardinal n.
Le cardinal commun a toute base de E s’appelle la dimension de E, notée : dim F.

Ezxemples et contre-exemples :
e La base canonique de K" contient n vecteurs, donc K" est un espace vectoriel de dimension n.
e La base canonique de K,,[X] contient (n + 1) vecteurs, donc : dim (K, [X]) =n + 1.
A contrario, K[X] n’est pas de dimension finie (il ne posseéde aucune base finie).
e 7(R,R) n’est pas de dimension finie.
Remarque : Par convention, on dira que F = {Og} est de dimension 0.

2 Lien avec les familles particulieres

PROPRIETE
Soit E un K-ev de dimension finie n, et soit F une famille finie de vecteurs de E. Alors :

x Si F est libre, alors F est de cardinal p < n, et dans ce cas on peut compléter la famille
F en une base de F.

* JF est libre et de cardinal n si et seulement si ¢’est une base de E.

x Si F est génératrice, alors F est de cardinal p > n, et dans ce cas on peut en extraire
une base de F.

x JF est génératrice et de cardinal n si et seulement si c’est une base de E.

Exercice 9 : Soient u = (1,3),v = (0,5) et w = (—1,4) € R%. Montrer que (u,v,w) est liée.

Exercice 10 : Dans F = R3[X],onpose P| = X2 =2, P, =2X3+ X +1,P3=3X —let P, =5.
Montrer que (Py, P2, Ps, Py) est une base de R3[X].

3 Dimension de sous-espaces vectoriels

PROPRIETE
x Soit £ un K-ev de dimension finie n € N, et soit F' un s-ev de F.
Alors F est de dimension finie, et dim F' < dim E.
Si dim F' < dim F, on dit que F est un s-ev strict de E.
x Solent F' et G deux s-ev d'un K-ev E de dimension finie. Alors :
e si FFC G, alorsdimF < dimG;

e si FCGetdimF =dimG, alors F' = G.

preuves :
Exercice 11 : Décrire tous les s-ev de R?, puis ceux de R3.

4 Rang d’une famille de vecteurs
DEFINITION

Soient E un K-ev et F une famille finie de vecteurs de E. Alors on appelle rang de la famille F
la dimension de Vect(F). On note : rg(F) = dim (Vect(F)).

PROPRIETE
Soit F une famille finie de cardinal p d’un espace vectoriel EF de dimension n.
On note r = rg(F) le rang de la famille 7. Alors :

er<p et r<n
e 7 =n si et seulement si la famille F est génératrice, et dans ce cas p > n.

e r = p si et seulement si la famille F est libre, et dans ce cas p < n.

o r =p =n si et seulement si la famille F est une base de E.



VI Aspect matriciel
1 Définitions

Soit E un K-ev de dimension finie n € N*. Soit B = (uy,- -+ ,uy) une base de E.
DEFINITION
n
* Soit v un vecteur de E. Il s’écrit alors (de fagon unique) : v = Z Ailg,
i=1
ot les (\;)1<i<n sont les coordonnées du vecteur v dans la base B.
A1
Alors on dit que la matrice-colonne X = | : | est la matrice du vecteur v dans la base B,
et on note X = Matg(v). A
* Soient vy, ..., v, des vecteurs de E.
Alors on appelle matrice des vecteurs vy, -+ ,v, dans la base B la matrice :
A1l A2t Ay
A21 A22 o0 Ag
Matp(vy,- -+ vp) = [ 770 777 TP € My p(K)
>\n,1 A77,,2 )\n,p
ou pour tout j € [1,p], (A1, -+, An,;) sont les coordonnées du vecteur v; dans la base B.
Si on note F la famille de vecteurs (v1,...,v,), on peut écrire : Matg(vi,- - ,vp) = Matg(F).

Ezemple : Soient vy = (1,2,1),v9 = (0,4,3) et v3 = (5,1,6) trois vecteurs de R?.

1 0 5
Soit C la base canonique de R3. Alors : Mate (vq, v, v3) = 2 4 1
1 3 6

Cas particulier : Pour toute base B, Matg(B) = I, ou I, est la matrice identité de M, (K).

PROPRIETE
Soit F une famille finie de vecteurs de E, et soit B une base de E. Alors :

* 1g(F) =rg(Matg(F))
% F est une base de E si et seulement si Matg(F) est inversible.

2 Rappels sur les changements de bases
DEFINITION
Soient B = (uy, - ,u,) et B/ = (u}, - ,ul) deux bases de E. Soit P = Matg(5’').

U 'n

Alors on dit que P est la matrice de passage de la base B a la base ', et on note P = P 3.

PRrROPOSITION
Soient B et B’ deux bases de E et P = Matg(5’) la matrice de passage de B a 5.

Soit v un vecteur de E. On pose X = Matg(v) et X’ = Matp (v).
Onaalors: |X=PX'|ou|X =P 1X ]

Exercice 12 : Soit P = X3 + X2 — 1 € R3[X].
Déterminer les coordonnées de P dans la base (P, Py, P3, Py) de 'exercice 10.




