Exercice 1 : Soit x > 0 un nombre réel. On pose $f(x) = x^2 \ln x$. Calculer f en les valeurs suivantes :

$$e, \qquad \frac{1}{e}, \qquad \sqrt{e}, \qquad e^2, \qquad e\sqrt{e}, \qquad \frac{1}{e^2}, \qquad \frac{1}{\sqrt{e}} \ .$$

Exercice 2 : Simplifier les expressions suivantes :

1.
$$A = \frac{\ln(81) - \ln(9)}{\ln\sqrt{3}}$$

2. $B = \ln\left((\sqrt{5} + 1)^{18}\right) + \ln\left((\sqrt{5} - 1)^{18}\right)$
3. $C = \ln\sqrt{\frac{1}{6^{-x}}}$

2.
$$B = \ln\left((\sqrt{5} + 1)^{18}\right) + \ln\left((\sqrt{5} - 1)^{18}\right)$$

$$3. \ C = \ln \sqrt{\frac{1}{e^{-x}}}$$

4.
$$D = \left[\exp \left(-\frac{1}{\ln \frac{1}{x}} \right) \right]^{\ln \frac{1}{x^2}}$$

5.
$$E = (\ln x)^2 - \ln(x^2) + 1$$

6.
$$F = \ln(e^{x(y+1)} - e^x) - x$$

Exercice 3 : Soit n un entier naturel et x un réel strictement positif. Simplifier :

1.
$$\sqrt[3]{2} \times \sqrt[3]{2^5}$$

3.
$$\sqrt[5]{3}\sqrt[3]{9}\sqrt[15]{3^2}$$

5.
$$(x^{-n+1})^2(x^3)^{n-2}$$

2.
$$(\sqrt[6]{3})^3$$

$$4. \ \frac{x^3.\sqrt{x}}{\left(\sqrt[4]{x}\right)^6}$$

6.
$$(2^{2n})^{(2n)^{2^n}}$$

Exercice 4: Dans chaque question, simplifier l'expression de f(x) en distinguant selon la valeur de x, puis tracer la courbe représentative de la fonction f.

1.
$$f(x) = |x - 3| - |2x + 1|$$

2.
$$f(x) = |x^2|, \quad x \in [-2, 2]$$

1.
$$f(x) = |x - 3| - |2x + 1|$$
 2. $f(x) = \lfloor x^2 \rfloor$, $x \in [-2, 2]$ 3. $f(x) = \lfloor x \rfloor + |x|$, $x \in [-2, 2]$

Exercice 5 : Montrer que pour tout réel x, on $a: x-1 < |x| \leq x$.

Exercice 6 : Déterminer pour chacune des fonctions suivantes leur ensemble de définition et leurs limites aux bornes de cet ensemble.

$$1. \ f(x) = e^x - x^2$$

5.
$$f(x) = \frac{e^{3x}}{x^2 + e^x}$$

9.
$$f(x) = \left(\frac{1}{x}\right)^x$$

1.
$$f(x) = e^x - x^2$$

2. $f(x) = \frac{\ln x}{x^2 - 3x - 4}$
3. $f(x) = \sqrt{x^2 + x + 1}$
4. $f(x) = e^{2x} - (x + 1)e^x$
5. $f(x) = \frac{e^{3x}}{x^2 + e^x}$
6. $f(x) = \sqrt{\frac{1 - x}{1 + x}}$
7. $f(x) = \sqrt{1 - \ln x}$

6.
$$f(x) = \sqrt{\frac{1-x}{1+x}}$$

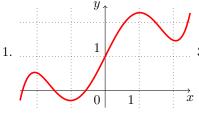
10.
$$f(x) = \frac{1}{x^2 - 3x + 2}$$

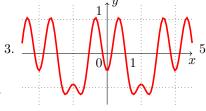
3.
$$f(x) = \sqrt{x^2 + x + 1}$$

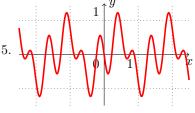
7.
$$f(x) = \sqrt{1 - \ln x}$$

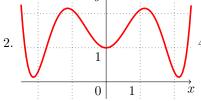
11.
$$f(x) = \ln\left(\frac{2e^{2x} + 1}{e^x - 2}\right)$$

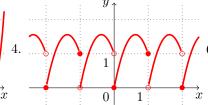
Exercice 7 : Pour chacun des graphes suivants, indiquer si la fonction correspondante semble être paire, impaire, périodique (et dans ce cas préciser la plus petite période apparente). Aucune justification n'est demandée.

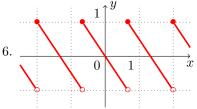












Exercice 8 : Soient $f : \mathbf{R} \to \mathbf{R}$ et $g : \mathbf{R} \to \mathbf{R}$ deux fonctions.

- 1. Montrer que, si les fonctions f et g sont paires, alors la somme f+g est une fonction paire. Que dire si f et g sont impaires, si f est paire et g impaire?
- 2. Mêmes questions avec le produit fg.
- 3. Mêmes questions avec le quotient f/g (en supposant que la fonction g ne s'annule pas).
- 4. Mêmes questions avec la composée $g \circ f$.

Exercice 9 : Donner l'ensemble de définition, et étudier la parité des fonctions suivantes

1.
$$x \mapsto 3\ln(\pi + x^2) + 1$$
 3. $x \mapsto e^{x^3 + 3x}$

$$3. \ x \mapsto e^{x^3 + 3x}$$

5.
$$x \mapsto \ln\left(\frac{1-x}{1+x}\right)$$

2.
$$x \mapsto \frac{2x^5 - 7x^3}{x^4 - x^2 + 3}$$
 4. $x \mapsto \frac{e^x + e^{-x}}{2}$

4.
$$x \mapsto \frac{e^x + e^{-x}}{2}$$

$$6. \ x \mapsto \ln(x + \sqrt{1 + x^2})$$

Exercice 10 : Déterminer l'ensemble de définition, le domaine d'existence de la dérivée et la dérivée des fonctions définies par :

1.
$$f(x) = \ln(x^2 - 3)$$

5.
$$f(x) = \frac{1}{\sqrt{x^2 - 1}}$$

6. $f(x) = \sqrt{-2 + x - x^2}$
7. $f(x) = \ln(\ln(x))$
8. $f(x) = \frac{\ln x}{1 + x^2}$
9. $f(x) = \frac{1}{\ln(x + 2)}$
10. $f(x) = x^x$
11. $f(x) = (1 + x^2)^{1/x}$

9.
$$f(x) = \frac{1}{\ln(x+2)}$$

onctions definies par:
1.
$$f(x) = \ln(x^2 - 3)$$

2. $f(x) = \sqrt{2x - 1}$
3. $f(x) = \frac{1}{\sqrt[3]{x^2}} - \frac{1}{\sqrt[3]{x}}$
4. $f(x) = \frac{1}{\sqrt{x^2 + 1}}$
5. $f(x) = \frac{1}{\sqrt{x^2 - 1}}$
6. $f(x) = \sqrt{-2 + x}$
7. $f(x) = \ln(\ln(x))$
8. $f(x) = \frac{\ln x}{1 + x^2}$

6.
$$f(x) = \sqrt{-2 + x - x^2}$$

$$10. \ f(x) = x^x$$

4.
$$f(x) = \frac{1}{\sqrt{x^2 + 1}}$$

8.
$$f(x) = \frac{\ln x}{1 + x^2}$$

11.
$$f(x) = (1+x^2)^{1/x}$$

Exercice 11 : Déterminer les dérivées secondes des fonctions 1. à 3. de l'exercice précédent.

Exercice 12 : Pour chacune des fonctions suivantes, donner l'équation de la tangente à sa courbe au point d'abscisse considéré :

1.
$$a(x) = \ln(x^2 + 1)$$
, en $x = 1$;

3.
$$c(x) = \ln(1 + xe^x)$$
, en $x = -1$;

2.
$$b(x) = \sqrt{x^2 - 4x + 5}$$
, en $x = 0$;

4.
$$d(x) = \frac{x^4 - 4}{x^2 + 2}$$
, en $x = 2$.

Exercice 13: En dressant leurs tableaux de variations, rechercher les extremums (maximum, minimum) des fonctions suivantes sur leurs domaines de définition :

1.
$$a(x) = x(1-x)$$

$$2. \ b(x) = x \ln x$$

3.
$$c(x) = \frac{x}{x^2 + 1}$$

Exercice 14: Résoudre les inéquations suivantes

1.
$$(E_1): e^{3x-5} \geqslant 12$$

3.
$$(E_3)$$
: $\exp(1 + \ln(x)) \ge 2$

2.
$$(E_2): 1 \leq e^{-x^2+x}$$

4.
$$(E_4): \ln(2x) \geqslant \ln(x^2 - 1)$$