Exercice 1 : Soit x un réel strictement positif.

Montrer que pour tout entier $n \ge 2$, on a l'inégalité de Bernoulli :

$$(1+x)^n > 1 + nx.$$

Exercice 2: a) Montrer que : $\forall n \in \mathbb{N}, n! \geqslant 2^{n-1}$.

Pour quelle(s) valeur(s) de $n \in \mathbb{N}$ a-t-on : $2^n > n^2$?

Exercice 3 : Soit $(a_n)_{n \in \mathbb{N}}$ la suite définie par : $a_0 = 1$, $a_1 = 3$ et $\forall n \in \mathbb{N}$, $a_{n+2} = 2a_{n+1} - a_n$. Montrer que : $\forall n \in \mathbf{N}, \quad a_n = 2n + 1.$

Exercice 4 : Soit $(F_n)_{n \in \mathbb{N}}$ la suite de Fibonacci, définie par :

$$F_0 = F_1 = 1$$
 et $\forall n \in \mathbb{N}$, $F_{n+2} = F_{n+1} + F_n$.

Montrer que :

$$\forall n \geqslant 1, \quad F_n < \left(\frac{7}{4}\right)^n.$$

Exercice 5: Soit $n \in \mathbb{N}$. Pour tout entier k, on pose $a_k = 3k + 1$.

1. Écrire en extension (c'est-à-dire sans le symbole Σ) puis calculer les sommes suivantes :

a.
$$S_1 = \sum_{k=2}^{6} a_{2k}$$
,

b.
$$S_2 = \sum_{k=4}^{10} a_{10-k}$$
, c. $S_3 = \sum_{k=0}^{2n} a_k$.

c.
$$S_3 = \sum_{k=0}^{2n} a_k$$
.

2. Écrire à l'aide du signe \sum la somme T suivante puis la calculer :

$$T = a_7 + a_9 + a_{11} + \dots + a_{49} + a_{51}.$$

Exercice 6: Calculer:

1.
$$\sum_{k=0}^{n+1} (2 - k^2)$$

$$4. \sum_{k=n-1}^{2n} (k+3)^2$$

7.
$$\sum_{k=1}^{n-1} \left(3^{2k+1} - 3^{2k-1} \right)$$

2.
$$\sum_{j=1}^{2n} \frac{j^2}{n}$$

$$5. \sum_{k=0}^{n} (k^2 + n + 3)$$

$$8. \prod_{k=1}^{n} \frac{2k+1}{2k-1}$$

3.
$$\sum_{j=3}^{n+2} (j-2)^2$$

6.
$$\sum_{k=0}^{n} a^k 2^{3k} b^{-k}$$

9.
$$\sum_{k=2}^{n^2} (1 - a^2)^{2k+1}$$

Exercice 7: Soit un entier $n \ge 2$. On pose, pour x dans $]0,1[, f(x) = \sum_{n=1}^{n-1} x^n]$.

En dérivant f de deux façons différentes, montrer que pour tout x dans]0,1[:

$$\sum_{k=1}^{n-1} kx^{k-1} = \frac{-nx^{n-1} + nx^n + 1 - x^n}{(1-x)^2}.$$

Exercice 8: Étudier la convergence de la suite de terme général en utilisant des majorations/minorations:

1.
$$u_n = \sum_{k=1}^n \frac{1}{k2^k} \quad (n \in \mathbf{N}^*).$$

2.
$$v_n = \sum_{k=1}^n \frac{1}{(k+1)^2}$$
 (indication: majorer $\frac{1}{(k+1)^2}$ par $\frac{1}{k(k+1)}$ et utiliser un télescopage).

3.
$$w_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} \quad (n \in \mathbf{N}^*).$$

Exercice 9 : Soit $n \in \mathbb{N}$.

L'objectif de l'exercice est de proposer une autre méthode pour calculer $S_n = \sum_{i=1}^n k^2$.

- 1. Calculer de deux manières $\sum_{k=0}^{n} [(k+1)^3 k^3]$.
- 2. En déduire une expression en fonction de n de S_n ne faisant pas intervenir le symbole $\sum S_n$

Exercice 10 : Pour tout entier n dans \mathbf{N} on pose : $S_n = \sum_{k=0}^{n} k.k!$

Simplifier l'expression de S_n pour tout entier n en remarquant que k = (k+1) - 1.

Exercice 11 : Soit x un réel et $n \in \mathbb{N}^*$. Simplifier :

$$1. \ A = \sum_{k=0}^{n} \binom{n}{k} x^k$$

4.
$$D = \sum_{k=0}^{n} (-1)^k \binom{n}{k}$$

7.
$$G = \sum_{k=1}^{n} \binom{n}{k} 3^k$$

2.
$$B = \sum_{k=0}^{n} (-1)^k \binom{n}{k} x^k$$
 5. $E = \sum_{k=0}^{n} \binom{n}{k} 3^k$ 8. $H = \sum_{k=0}^{n} \binom{n}{k} 3^{k+1}$

5.
$$E = \sum_{k=0}^{n} \binom{n}{k} 3^k$$

8.
$$H = \sum_{k=0}^{n} \binom{n}{k} 3^{k+1}$$

3.
$$C = \sum_{k=0}^{n} (-1)^k \binom{n}{k} x^{2k}$$
 6. $F = \sum_{k=0}^{n-2} \binom{n}{k} 3^k$

6.
$$F = \sum_{k=0}^{n-2} {n \choose k} 3^k$$

9.
$$K = \sum_{k=0}^{n} \binom{n}{k} 2^{3+kt}, \quad t \in \mathbf{R}.$$

Exercice 12: Calculer:

1.
$$A = \sum_{j=0}^{n} \binom{n}{n-j} a^{-j}$$
, 3. $C = \sum_{k=0}^{n} k \binom{n}{k}$, 5. $E = \sum_{0 \le k \le l \le n} \frac{k}{l+1}$,

$$3. C = \sum_{k=0}^{n} k \binom{n}{k}$$

$$5. E = \sum_{0 \le k \le l \le n} \frac{k}{l+1}.$$

2.
$$B = \sum_{k=1}^{n} {n-1 \choose k-1} b^k$$

4.
$$D = \sum_{m=0}^{n} \sum_{q=1}^{m} p(q^2 + 1)$$

2.
$$B = \sum_{k=1}^{n} {n-1 \choose k-1} b^k$$
, 4. $D = \sum_{n=0}^{n} \sum_{q=1}^{m} p(q^2+1)$, 6. $F = \sum_{j=0}^{n} \sum_{k=j}^{n} {n \choose k} {k \choose j} a^j b^{k-j}$.

Exercice 13 : Soit a un réel, n un entier naturel, t un réel. Déterminer la valeur de :

$$C(t) = \sum_{k=0}^{n} {n \choose k} \cos(a+kt) \quad \text{et} \quad S(t) = \sum_{k=0}^{n} {n \choose k} \sin(a+kt).$$

Indication: on pourra chercher à calculer C(t) + iS(t).

Exercice 14: Exprimer à l'aide des factorielles le produit

$$\prod_{k=0}^{p-1} \frac{n-k}{p-k}.$$

2

Que reconnaît-on?