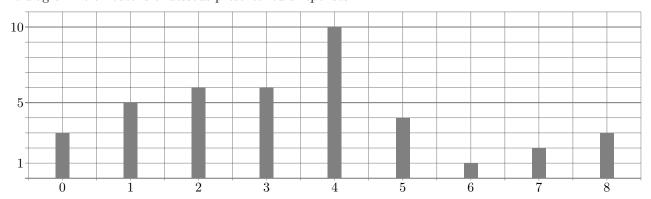
Exercice 1

On a demandé à des adolescents de 14 à 18 ans combien de fois ils allaient au cinéma par an. Le diagramme en bâtons ci-dessous présente leurs réponses :



- 1. Quelle est la population étudiée et quel est son effectif? Quel est le caractère étudié?
- 2. Déterminer l'étendue, le mode, la médiane, la moyenne et l'écart-type de cette série.

Exercice 2

Dans une entreprise de 90 employés, la répartition des salaires (en milliers d'euros) est donnée par :

classe de salaire	[1; 1,6[[1,6; 2,0[[2,0; 2,4[[2,4; 2,8[[2,8; 3,4[[3,4; 4,2[[4,2;5,0[
effectif	12	12	14	15	17	12	8

- 1. Construire l'histogramme associé à cette série. En déduire la classe modale.
- 2. Déterminer la valeur de la médiane de cette série, ainsi que l'écart interquartile.
- 3. Calculer la moyenne et l'écart-type de cette série statistique.

Exercice 3

Lors d'un concours d'entrée à une grande école, deux jurys différents attribuent aux candidats des notes sur 20, résumées par classes dans le tableau suivant :

classe de note	[0, 2[[2, 4[[4, 6[[6, 7[[7, 8[[8, 9[[9, 10[[10, 11[[11, 13[[13, 17]
x : effectif (jury A)	0	1	2	6	10	12	18	28	15	8
y : effectif (jury B)	1	2	1	10	14	16	18	24	11	3

- 1. Calculer la moyenne \bar{x} et l'écart-type s_x des notes accordées par le jury A.
- 2. Calculer la moyenne \bar{y} et l'écart-type s_y des notes accordées par le jury B.
- 3. On désire harmoniser les notes par péréquation. Pour ce faire, on modifie affinement les notes du jury B de manière à obtenir une moyenne et un écart-type identiques à ceux du jury A.

On pose donc z = ay + b où $a \in \mathbb{R}_+$ et $b \in \mathbb{R}$ sont choisis tels que $\bar{z} = \bar{x}$ et $s_z = s_x$.

- a. Déterminer a et b.
- b. Un candidat du jury B ayant obtenu initialement 9,2 a-t-il maintenant la moyenne?

Exercice 4

Une entreprise souhaite faire des prévisions sur son chiffre d'affaires (en millions d'euro). Ses chiffres d'affaires réalisés depuis 2014 sont donnés dans le tableau suivant :

année	2016	2017	2018	2019	2020	2021	2022	2023
x: rang de l'année	0	1	2	3	4	5	6	7
y: chiffre d'affaires	16	19	22	23	24	26	27	30

- 1. Représenter le nuage de points M_0, M_1, \dots, M_7 de cette série statistique. Un ajustement affine est-il indiqué dans cette situation?
- 2. Déterminer le point moyen G du nuage de points et le placer sur le dessin.
- 3. Soit G_1 le point moyen du nuage des points M_0 , M_1 , M_2 , M_3 et soit G_2 le point moyen des points M_4 , M_5 , M_6 , M_7 . Calculer les coordonnées de G_1 et de G_2 puis donner une équation de la droite (G_1G_2) , dite droite de Mayer. Placer G_1 , G_2 et (G_1G_2) sur le dessin. Que constate-t-on? Donner une explication.
- 4. Déterminer la droite de régression (de y par rapport à x) et la représenter sur le dessin.
- 5. Estimer, à l'aide de la droite de *Mayer* puis de la droite de régression, le chiffre d'affaires prévisible pour 2024.

Exercice 5

L'étude d'une population animale en voie de disparition a donné les résultats suivants :

année	1950	1960	1970	1980	1990	2000	2010
x: rang de l'année	0	10	20	30	40	50	60
y: nombre d'individus	15 000	4 500	1 300	250	110	30	8

- 1. Représenter le nuage de points $M_0,\,M_1,\,\cdots,\,M_6$ de cette série statistique double. Un ajustement affine est-il indiqué dans cette situation?
- 2. On pose $z = \ln(y)$.
 - a. Dans le tableau précédent, remplacer la ligne de y par celle de z. Représenter alors le nuage de points L_0, L_1, \dots, L_6 de cette nouvelle série statistique double. Un ajustement affine est-il maintenant indiqué?
 - b. Déterminer la droite de régression (de z par rapport à x) et la représenter sur le dessin.
 - c. En déduire α , β réels tels que $y = \alpha \beta^x$. Est-il étonnant que β soit inférieur à 1?

Exercice 6

- 1. Soit $n \in \mathbb{N}^*$. On considère la série statistique bivariée $S = \{(k, k^2), k \in [-n, n]\}$.
 - a. Montrer que : $\overline{x} = \overline{xy} = 0$.
 - b. En déduire que le coefficient de corrélation linéaire r_{xy} est nul.
- 2. Soit $n \in \mathbb{N}^*$. On considère la série statistique bivariée $S = \{(k, k^2), k \in [0, n]\}$.
 - a. Exprimer $\overline{x}, \overline{y}, \overline{xy}$ en fonction de n. On rappelle que : $\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4}$.
 - b. En déduire que : $s_x^2 = \frac{n(n+2)}{12}$ et $\operatorname{Cov}(x,y) = \frac{n^2(n+2)}{12}$.
 - c. On admet que : $\forall n \in \mathbb{N}$, $\sum_{k=0}^{n} k^4 = \frac{1}{30} n(n+1)(2n+1)(3n^2+3n-1)$.

Montrer que : $s_y^2 = \frac{1}{180} n(n+2)(2n+1)(8n-3)$.

d. En déduire le coefficient de corrélation linéaire r_{xy} , préciser sa limite lorsque n tend vers $+\infty$.

2