On considère les applications suivantes :

 $f_1: \mathbf{R}^4 \longrightarrow \mathbf{R}^2$ définie par : $f_1(x, y, z, t) = (y, y)$.

 $f_2: \mathbf{R}^3 \longrightarrow \mathbf{R}^3$ définie par : $f_2(x, y, z) = (x + 2, y + 1, z - 2)$.

 $f_3: \mathbf{R}^4 \longrightarrow \mathbf{R}^4$ définie par : $f_3(x, y, z, t) = (x + y - t, x + y + z + t, y - z + t, x + y - z + t)$.

 $f_4: \mathbf{R}^3 \longrightarrow \mathbf{R}^4$ définie par : $f_4(x, y, z) = (3x + y + 3z, x + 2y - 4z, y - 3z, 2x - y + 7z)$.

 $f_5: \mathbf{R}^2 \longrightarrow \mathbf{R}^2$ définie par : $f_5(x,y) = (x+y,xy)$.

 $f_6: \mathbf{R}^3 \longrightarrow \mathbf{R}^3$ définie par : $f_6(x, y, z) = (x + 2y, y, x + z)$.

 $f_7: \mathbf{R}^2 \longrightarrow \mathbf{R}^3$ définie par : $f_7(x,y) = (x,y,x+y)$.

Exercice 1 . Pour chacune des applications ci-dessus, dire si elle est linéaire ou non.

Exercice 2. Déterminer les applications $f_1 \circ f_3$ et $f_4 \circ f_6$.

Exercice 3 . Déterminer, pour chacune des applications linéaires ci-dessus :

- 1. une base du noyau, le rang de l'application linéaire et une base de son image;
- 2. si elle est injective, surjective, bijective. Donner la réciproque des applications linéaires bijectives.

Exercice 4. Soient $\mathcal{B} = (i, j, k)$ une base de \mathbb{R}^3 , f et g des endomorphismes de \mathbb{R}^3 tels que :

$$\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} -2 & 4 & 2 \\ -4 & 8 & 4 \\ 5 & -10 & -5 \end{pmatrix}$$
 et $\operatorname{Mat}_{\mathcal{B}}(g) = \begin{pmatrix} 5 & -8 & -4 \\ 8 & -15 & -8 \\ -10 & 20 & 11 \end{pmatrix}$.

- 1. Montrer que $f \circ f = f$. Déterminer le noyau et l'image de f. On dit que f est un projecteur.
- 2. Montrer que $g \circ g = \text{Id}$. En déduire le noyau et l'image de g. On dit que g est une symétrie.

Exercice 5 . Soit f l'application linéaire de \mathbf{R}^3 dans lui-même définie par :

$$f(1,0,0) = (-2,-2,-4), \quad f(0,1,0) = (-3,-1,-4) \quad \text{et} \quad f(0,0,1) = (3,2,5).$$

- 1. Donner la matrice A de f dans la base canonique.
- 2. Soit $N = \{u \in \mathbf{R}^3, \ f(u) = 0\}$ et $I = \{u \in \mathbf{R}^3, \ f(u) = u\}$. Justifier que N et I sont des sous-espaces vectoriels de \mathbf{R}^3 , en donner des bases \mathcal{B}_N et \mathcal{B}_I .
- 3. Montrer que la réunion des deux bases \mathcal{B}_N et \mathcal{B}_I est une base \mathcal{B} de \mathbf{R}^3 .
- 4. Écrire la matrice B de f dans cette base.

Exercice 6. L'espace \mathbb{R}^3 est muni de la base canonique (e_1, e_2, e_3) . On considère l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est : $\begin{pmatrix} 1 & -2 & -1 \\ 2 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$.

- 1. Déterminer une base de $\operatorname{Ker} f$ et une base de $\operatorname{Im} f$.
- 2. Soient $u = e_1 + e_2 e_3$, $v = f(e_1)$ et $w = f(e_2)$. Justifier que $\mathcal{B} = (u, v, w)$ est une base de \mathbf{R}^3 et déterminer la matrice de f dans cette base.

Exercice 7. Soit $u: \mathbf{R}^2 \to \mathbf{R}^2$, $(x,y) \mapsto (2x - 4y, x - 2y)$.

- 1. Calculer la composée $u \circ u$.
- 2. Déterminer le noyau et l'image de u. Que remarque-t-on? Peut-on l'expliquer?
- 3. Soit $a \in \mathbb{R}^2$ tel que $u(a) \neq 0$, et b = u(a). Démontrer que la famille $\mathcal{B} = (a, b)$ est libre, puis que c'est une base de \mathbb{R}^2 . Essayez de faire la preuve dans le cas général.
- 4. Calculer la matrice de u dans la base \mathcal{B} .

Exercice 8. Dans \mathbb{R}^3 muni d'une base $\mathcal{B} = (u_1, u_2, u_3)$, on considère l'endomorphisme f dont la matrice dans cette base est donnée par :

$$M = \begin{pmatrix} 3 & -3 & 6 \\ 1 & -1 & 2 \\ -1 & 1 & -2 \end{pmatrix}.$$

- 1. Déterminer $\operatorname{Ker} f$ et $\operatorname{Im} f$.
- 2. Déterminer f^2 et justifier que : Im $f \subset \text{Ker } f$.

Exercice 9 . On considère l'application linéaire f définie par :

$$f: \mathbf{R}^3 \longrightarrow \mathbf{R}^2$$

 $(x, y, z) \longmapsto (x + 2y - z, -x + y + z)$

- 1. Donner la matrice de f dans les bases canoniques.
- 2. On pose $u_1 = (1,0,1)$, $u_2 = (1,1,0)$, $u_3 = (1,1,1)$, $v_1 = (1,0)$ et $v_2 = (1,1)$.
 - a. Montrer que $\mathcal{B} = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 et que $\mathcal{C} = (v_1, v_2)$ est une base de \mathbb{R}^2 .
 - b. Déterminer la matrice de f dans les bases \mathcal{B} et \mathcal{C} .

Exercice 10 . Soient \mathbb{R}^3 muni d'une base (e_1, e_2, e_3) et f l'endomorphisme dont la matrice relativement à cette base est donnée par :

$$A = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Soient $u = e_3$, $v = e_1 - e_2$ et $w = e_1 + e_2$.

- 1. Montrer que (u, v, w) est une base de \mathbb{R}^3 .
- 2. Déterminer la matrice de f dans la base (u, v, w).
- 3. En déduire, pour tout entier naturel n, la matrice de f^n dans la base (u, v, w).
- 4. Comment en déduit-on la matrice de f^n dans la base (e_1, e_2, e_3) ?

Exercice 11. Soit $\mathcal{B} = (b_1, b_2, b_3, b_4)$ une base de \mathbf{R}^4 et f l'endomorphisme dont la matrice dans la base \mathcal{B} est donnée par :

$$A = \left(\begin{array}{cccc} 2 & -1 & 1 & -3 \\ 1 & 0 & 1 & -3 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & -1 \end{array}\right)$$

- 1. f est-il bijectif?
- 2. Soit F l'ensemble des vecteurs invariants par f. Montrer que F est un sous-espace vectoriel de dimension 2 et en donner une base (u_1, u_2) .
- 3. Soit G l'ensemble des vecteurs u de \mathbb{R}^4 tels que f(u) = -u. Montrer que G est un sous-espace vectoriel de dimension 1 et en donner une base (v).

2

- 4. Montrer que $\mathcal{B}_1 = (u_1, u_2, v, b_1)$ est une base de \mathbf{R}^4 . Écrire la matrice de passage de \mathcal{B} à \mathcal{B}_1 .
- 5. Écrire la matrice de f dans la base \mathcal{B}_1 .
- 6. Écrire la matrice de f^{-1} dans la base \mathcal{B}_1 .