Exercice 1 . Résoudre sur R les équations différentielles suivantes :

1.
$$3y' + 5y + 1 = 0$$

2.
$$u + \tau \frac{du}{dt} = E$$
 où $\tau, E \in \mathbf{R}_+^*$, $u(0) = 0$.

Exercice 2.

- 1. Soit l'équation différentielle suivante sur \mathbf{R} : (E) $y' + 2y = 2x^2 + 3$.
 - a. Trouver une solution particulière de (E) sous forme d'un polynôme de degré 2.
 - b. Résoudre alors l'équation (E).
- 2. Soit l'équation différentielle suivante sur $\mathbf{R}:(E)$ $y'-y=3e^t+2$.
 - a. Trouver une solution particulière de l'équation $y' y = 3e^t$ sous la forme ate^t .
 - b. En déduire une solution particulière de (E).
 - c. Résoudre enfin l'équation (E).

Exercice 3 . Donner les solutions générales sur ${\bf R}$ des équations différentielles suivantes, puis calculer la solution vérifiant les conditions initiales données :

1.
$$y'' - 3y' + 2y = 0$$
, $y'(0) = y(0) = 1$.

2.
$$y'' + 2y' + 2y = 0$$
, $y(0) = 0$, $y'(0) = 1$.

3.
$$y'' - 2y' + y = 0$$
, $y(0) = 0$, $y'(0) = -2$.

Exercice 4 . Résoudre les équations différentielles :

1.
$$\frac{d^2u}{dt^2} + \omega^2 u = E, \quad \omega, E \in \mathbf{R}_+^*,$$

- 2. $y'' 3y' + 2y = x^3$ (on cherchera une solution polynômiale de degré 3).
- 3. $y'' 2y' + y = e^x + xe^{-x}$ (on cherchera à superposer des solutions en $\lambda x^2 e^x$ et $(ax + b)e^{-x}$).
- 4. $y'' y = e^{-x} \cos x$ (on cherchera une solution de la forme $e^{-x} (\lambda \cos x + \mu \sin x)$).

Exercice 5 . Résoudre les équations différentielles suivantes sur les ensembles indiqués.

1.
$$y' + xy = x$$
, sur **R**.

$$2. \ \frac{dC}{dt} + k_2C = a_0e^{-k_1t}, \quad \text{ sur } \mathbf{R}.$$

3.
$$y' - y \tan x = -\cos x$$
, sur $] - \frac{\pi}{2}, \frac{\pi}{2}[$.

4.
$$y' \cos x + y \sin x = x$$
, sur $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

Exercice 6 . Résoudre l'équation différentielle : $y^{(4)} - 2y'' + y = 0$, où $y^{(4)}$ désigne la dérivée d'ordre 4 de y.

Indication : on pourra poser z = y'' - y et rechercher une équation différentielle vérifiée par z. Puis on superposera des solutions en $\lambda x e^x$ et $\lambda x e^{-x}$.

Exercice 7. Déterminer les fonctions f dérivables telles que : $\forall x \in \mathbf{R}$, f'(x) = f(-x). Indication : on pourra montrer que f est deux fois dérivable et chercher une équation différentielle linéaire du second ordre vérifiée par f.

Exercice 8. Dans un élevage de poules "Isabrown", on note P la masse d'une poule (en grammes) en fonction de temps t (en semaines). On suppose que c'est une fonction dérivable de \mathbf{R}_+ dans \mathbf{R}_+^* et qu'elle vérifie l'équation différentielle (trouvée expérimentalement) :

(E)
$$P' = 0.25P - 0.000125P^2$$

- 1. Supposons qu'il existe une solution P définie sur un intervalle I non vide et sur lequel la fonction P ne s'annule pas. Pour tout t dans I, on pose alors $y(t) = \frac{1}{P(t)}$.
 - Écrire l'équation différentielle vérifiée par la fonction y et donner ses solutions.
- 2. En déduire les solutions P de l'équation (E).
- 3. On remarque qu'une poule de 4 semaines pèse 200 g. Quel sera son poids à 12 semaines ? Vers quelle valeur son poids tendra-t-il à se stabiliser ?

Exercice 9. Soit (E_1) l'équation différentielle : $x^2y'' + xy' - y = 0$, $x \in]0, +\infty[$.

- 1. Montrer que la fonction définie sur \mathbf{R}_{+}^{\star} par y(x) = x est solution de (E_1) .
- 2. Soit y une solution de (E_1) et z la fonction définie par la relation y(x) = xz(x). Trouver une équation différentielle du premier ordre, notée (E_2) , et vérifiée par z'.
- 3. Trouver les solutions de (E_2) , et en déduire celles de (E_1) .

Exercice 10 . On considère l'équation différentielle :

$$(E)$$
 $x^2y'' + y = 0, x \in]0, +\infty[.$

Soit y une solution de l'équation (E). On effectue le changement de variables $x = e^t$, et on considère la fonction z définie sur \mathbf{R} par $z(t) = y(e^t)$.

- 1. Trouver une équation différentielle simple vérifiée par z.
- 2. En déduire les solutions de l'équation (E).