Exercice ${\bf 1}$. Déterminer un développement limité à l'ordre 3 en 0 de :

1.
$$f_1: x \mapsto e^{\frac{x}{2}} - \sqrt{1+x}$$

4.
$$f_4: x \mapsto \sqrt{\cos x}$$

$$2. \ f_2: x \mapsto e^x \times \ln(1+x)$$

5.
$$f_5: x \mapsto \frac{e^x}{\cos x}$$

3.
$$f_3: x \mapsto \ln(\cos x)$$

6.
$$f_6: x \mapsto \sin(x-x^2)$$

Exercice 2.

1. Étudier la limite en 0 de
$$f_7: x \mapsto \frac{e^x}{x^3} - \frac{1}{x^3(1-x)} + \frac{\sin x}{2x^2}$$
.

2. Étudier la limite en
$$+\infty$$
 de $f_8: x \mapsto x^2 (\ln(x+1) - \ln x) - x$

Exercice 3 . Donner un développement limité à l'ordre 3 en 1 de $f_9: x \mapsto e^x \times \ln(2+x)$.

Exercice 4. Pour tout
$$x \in \mathbf{R}$$
, on pose $\operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}$ et $\operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}$.

Soit $n \in \mathbb{N}$. Déterminer un DL_{2n} de $\mathrm{ch}(x)$ et un DL_{2n+1} de $\mathrm{sh}(x)$ en 0.

Exercice 5 . Soit
$$\tilde{\sin}: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$$
 définie par $\tilde{\sin}(x) = \sin x$.

- 1. Rappeler pourquoi sin réalise une bijection de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ dans [-1, 1].
- 2. On appelle Arcsin la bijection réciproque de $\tilde{\sin}.$
 - a. Étudier la dérivabilité de Arcsin.
 - b. Donner un DL_4 de Arcsin en 0.

Exercice 6. Soit $f: \mathbf{R} \to \mathbf{R}$ définie par $f(x) = e^{-\frac{1}{|x|}}$ si $x \neq 0$, et f(0) = 0.

- 1. Montrer que f est continue sur \mathbf{R} .
- 2. Soit $n \in \mathbf{N}^*$.
 - a. Étudier la limite en 0 de $\frac{f(x)}{x^n}$.
 - b. Établir un DL_n de f en 0.