Exercice 1 . Calculer, quand elles existent, les dérivées partielles d'ordre 1 des fonctions :

1.
$$f(x,y) = xe^{\cos(xy)}$$

3.
$$h(x,y) = \sqrt{x^2 + y^2}$$

2.
$$g(x,y) = x^2y^2 \operatorname{Arctan}(xy^2)$$

4.
$$i(x, y) = ye^{-x^2+y}$$

Exercice 2. Soit V une application de classe C^1 sur \mathbb{R}^2 .

Soit la fonction $\Phi : \mathbf{R}_+^* \longrightarrow \mathbf{R}$ définie, pour tout $t \in \mathbf{R}_+^*$, par : $\Phi(t) = V(t^2 + 1, e^t + \ln t - 1)$. Exprimer la dérivée de Φ en fonction des dérivées partielles de V.

Exercice 3. Le but de cet exercice est de déterminer toutes les fonctions f définies et de classe C^2 sur \mathbf{R}^2 vérifiant :

$$\begin{cases} f(0,0) = \alpha, & f(0,\frac{\pi}{4}) = \beta \quad \text{avec } \alpha, \beta \in \mathbf{R}^* \\ \forall (x,y) \in \mathbf{R}^2, & \frac{\partial f}{\partial x}(x,y) = -2f(x,y) \text{ et } \frac{\partial^2 f}{\partial y^2}(x,y) = -4f(x,y) \end{cases}$$

- 1. Soit $x \in \mathbf{R}$ fixé, on note $g_x(y) = f(x, y)$. Montrer que g_x vérifie une équation différentielle linéaire d'ordre 2.
- 2. Résoudre cette EDL₂ et en déduire qu'il existe des fonctions $A, B : \mathbf{R} \to \mathbf{R}$ telles que : $\forall (x,y) \in \mathbf{R}^2, \ f(x,y) = A(x)\cos(2y) + B(x)\sin(2y)$.
- 3. Soit $y \in \mathbf{R}$ un réel fixé. Déterminer une équation différentielle d'ordre 1 portant sur les fonctions A et B et dépendante du paramètre y.
- 4. Écrire puis résoudre ces équations différentielles pour y=0, puis pour $y=\frac{\pi}{4}$.
- 5. Montrer enfin que : $\forall (x,y) \in \mathbb{R}^2$, $f(x,y) = e^{-2x} (\alpha \cos(2y) + \beta \sin(2y))$.

Exercice 4. Étudier les extrema des fonctions

$$f(x,y) = x^2 + y^2 - x^3$$
 et $g(x,y) = x^3 + y^3 - 3xy$.

Exercice $\mathbf{5}$. (G2E 2005) On considère le système (S) constitués des équations différentielles suivantes :

$$(S) \begin{cases} x' = y^2 \\ y' = \sin x \end{cases}$$

où x et y sont deux fonctions dérivables de la variable $t \in \mathbf{R}$.

- 1. Déterminer les solutions constantes de (S).
- 2. a. On considère une fonction V de classe \mathcal{C}^1 sur \mathbf{R}^2 . À quelle condition sur les dérivées partielles de V la fonction composée $\Phi: t \longmapsto V(x(t), y(t))$ est-elle constante lorsque (x,y) est une solution de (S)?
 - b. Vérifier que la fonction $V(x,y) = \cos x + \frac{y^3}{3}$ répond à la condition précédente.
- 3. On considère la solution (x_0, y_0) de (S) qui satisfait $x_0(0) = 0$ et $y_0(0) = -\sqrt[3]{3}$. Montrer que : $\forall t \in \mathbf{R}, y_0(t) = \sqrt[3]{-3\cos(x_0(t))}$.