
Chapitre 11 Variables aléatoires réelles discrètes (VARD) BCPST 2A, 2025/2026

I Définitions et notations

Dans tout ce chapitre, (Ω, T ,P) désigne un univers probabilisé.

1 Variable aléatoire réelle discrète

Définition

Une variable aléatoire réelle discrète (VARD) est une VAR X : Ω −→ R
dont l’ensemble des valeurs X(Ω) = {X(ω), ω ∈ Ω} (univers-image, ou support) est :

� ou bien fini de cardinal n ∈ N? : X(Ω) = {x1, x2, . . . , xn}
� ou bien infini dénombrable : X(Ω) = {xi , i ∈ N}.

Exemple 1 : On pioche une carte dans un jeu de 32 cartes. On gagne 4 points si on pioche un As,
1 point si on pioche une figure, et aucun point sinon. Alors le gain G est une VARD, d’univers-image
G(Ω) = {0, 1, 4}. C’est un ensemble fini de cardinal 3.

Exemple 2 : On jette une pièce bien équilibrée jusqu’à obtenir ’Pile’. On note X le rang du lancer où on
obtient ’Pile’, et on pose X = 0 si on n’obtient jamais ’Pile’.
Alors X est une VARD d’univers-image X(Ω) = N infini dénombrable. .

Exercice 1 : Décrire en français l’événement [G > 0], puis les événements [X = 3] et [X 6 5].

2 Système complet d’événements lié à une VARD

Proposition
Soit X une VARD d’univers-image X(Ω) = {xi, i ∈ I}, avec I ⊂ N fini ou infini.
Alors

(
[X = xi]

)
i∈I est un système complet d’événements.

Exercice 2 : X est la VARD de l’exemple 2. On jette X fois un dé bien équilibré et on considère
l’événement A : ”on obtient au moins une fois un As”. Calculer la probabilité de A.

3 Fonction d’une VARD

Proposition
� Soit X une VARD définie sur Ω, et soit f : R −→ R.

Alors f ◦X : Ω −→ R est encore une VARD, notée : f(X).

� Soient X1, . . . , Xn des VARD définies sur Ω, soit f : Rn −→ R.

Alors f ◦
(
X1, . . . , Xn

)
: Ω −→ R est encore une VARD.

Exemple : G est la VARD de l’exemple 1. Alors G2 est une VARD d’univers-image G2(Ω) = {0, 1, 16}.
Au cours de la même expérience, si on définit la VARD Y par Y = 2 si on pioche un trèfle, Y = 1 si on
pioche un pique et Y = 0 sinon, alors Z = G2 − 2GY + 3Y est encore une VARD.
On pourra vérifier que Z(Ω) = {0, 1, 2, 3, 6, 11, 16}.

II Loi d’une variable aléatoire réelle discrète

1 Définition

Définition

Soit X : Ω −→ R une VARD. La loi de probabilité de X est l’application :

PX :

{
X(Ω)→ [0, 1]

x 7→ P(X = x)

Déterminer la loi de la VARD X consiste à :

1. Déterminer l’univers-image X(Ω) de X ;

2. Pour tout x ∈ X(Ω), déterminer la probabilité : P(X = x).

Exemples :
• Avec la VARD de l’exemple 1, on a vu que G(Ω) = {0, 1, 4}.

P(G = 4) = P(”piocher un As”) =
4

32
=

1

8
par équiprobabilité des tirages, et de même :

P(G = 1) =
12

32
=

3

8
et P(G = 0) =

16

32
=

1

2
.

On peut ici donner la loi de G sous forme d’un tableau :
xi 0 1 4

P(G = xi)
1
2

3
8

1
8
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• Avec la VARD de l’exemple 2, X(Ω) = N et pour tout k ∈ N? l’événement [X = k] est : ”obtenir
’Face’ aux (k − 1) premiers lancers puis ’Pile’ au kème lancer ”.
Avec la notation du chapitre précédent, on a : [X = k] = ωk−1.

Pour tout n ∈ N?, on note Fn l’événement ”on obtient ’Face’ au nème lancer ”.

On a donc : [X = k] =

(
k−1⋂
n=1

Fn

)
∩ Fk ce qui donne avec la formule des probabilités composées :

P(X = k) = P(F1)×PF1
(F2)× . . .×PF1∩...∩Fk−1

(
Fk
)

Par indépendance des lancers successifs, et puisque la pièce est bien équilibrée :

P(X = k) =
1

2
× . . .× 1

2
×
(

1

2

)
soit : ∀k > 1, P(X = k) =

(
1

2

)k
.

Enfin, [X = 0] = ω∞ et P(X = 0) = 0.

2 Propriétés

Propriété
Soit X une VARD d’univers-image X(Ω).

∗ si X(Ω) est fini, X(Ω) = {x1, . . . , xn} et

n∑
k=1

P(X = xk) = 1.

∗ si X(Ω) est infini dénombrable, alors X(Ω) = {xk , k ∈ N}.

Dans ce cas, la série
∑

P(X = xk) converge et

+∞∑
k=0

P(X = xk) = 1.

Exemples précédents :

1. P(G = 0) + P(G = 1) + P(G = 4) =
1

2
+

3

8
+

1

8
= 1.

2. La série de terme général

(
1

2

)k
pour k > 1 converge et :

+∞∑
k=1

(
1

2

)k
= 1

en reconnaissant une série géométrique de raison q =
1

2
(|q| < 1)

Remarque : l’événement ”on n’obtient jamais ’Pile’ ” est quasi-impossible.

Propriété

Soit X une VARD, et soit A une partie de R. Alors : P(X ∈ A) =
∑

x∈A∩X(Ω)

P(X = x)

Exemples : Avec la VARD de l’exemple 1 : P
(
G ∈ [−2, 2]

)
= P(G = 0) + P(G = 1) =

7

8
.

Avec celle de l’exemple 2 :

P
(
1 6 X 6 n

)
=

n∑
k=1

P(X = k) =

n∑
k=1

(
1

2

)k
=

1

2
×

1− ( 1
2 )n

1− 1
2

= 1−
(

1

2

)n
(somme géométrique

de raison q 6= 1)

3 Existence d’une VARD

Théorème ∗∗ Théorème d’existence d’une VARD ∗∗
• Soient x1, . . . , xn des réels distincts et p1, . . . , pn des réels positifs.

Alors il existe une VARD X telle que X(Ω) = {x1, . . . , xn} et ∀k ∈ J1, nK, P(X = xk) = pk

si, et seulement si,

n∑
k=1

pk = 1.

• Soient (xk)k∈N des réels distincts et (pk)k∈N des réels positifs.

Alors il existe une VARD X telle que X(Ω) = {xk, k ∈ N} et ∀k ∈ N, P(X = xk) = pk

si, et seulement si,
∑
k∈N

pk est convergente, et

+∞∑
k=0

pk = 1.

Exemple : Soit λ > 0. On sait que :

+∞∑
k=0

λk

k!
= eλ. On pose : ∀k ∈ N, pk =

λk

k!
e−λ. Alors pk > 0,

∑
k>0

pk

converge et a pour somme 1. Il existe donc une VARD X donc la loi est :

X(Ω) = N et ∀k ∈ N, P(X = k) = pk =
λk

k!
e−λ.
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4 Fonction de répartition

Définition

Soit X une VAR définie sur un univers Ω.
On appelle fonction de répartition de X l’application FX : R→ [0, 1] définie par :

∀x ∈ R, FX(x) = P(X 6 x)

Exemple : pour la VARD de l’exemple 2 : ∀n ∈ N, P(1 6 X 6 n) = 1−
(

1

2

)n
[X < 1] est quasi-impossible, donc : ∀n ∈ N, P(X 6 n) = 1−

(
1

2

)n
Enfin, X ne prend que des valeurs entières, donc pour tout réel x, P(X 6 x) = P

(
X 6 bxc

)
La fonction de répartition de X a donc pour expression : FX(x) =


0 si x < 1

1−
(

1

2

)bxc
si x > 1

Propriété
Soit FX la fonction de répartition d’une VAR X. Alors :

∗ ∀x0 ∈ R, P(X = x0) = P(X 6 x0)−P(X < x0) = FX(x0)− lim
x→x0
x<x0

FX(x)

∗ FX est discontinue en un réel x0 si et seulement si P(X = x0) 6= 0.

Remarques : • en particulier, FX est continue en tout x0 /∈ X(Ω).
• la loi de probabilité de X est entièrement déterminée par sa fonction de répartition FX .

Exercice 3 : Soit X une VARD dont la fonction de répartition FX est définie par :

FX(x) =

{
0 si x < 1

1− e−n si n 6 x < n+ 1 pour un entier n > 1

1. Représenter graphiquement FX sur l’intervalle [0, 4].
2. Déterminer la loi de X.

Définition

Deux VARD X,Y définies sur le même univers Ω ont la même loi lorsque :
∗ X(Ω) = Y (Ω) ;
∗ ∀x ∈ X(Ω), P(X = x) = P(Y = x).

Remarque : X et Y ne sont pas forcément égales. Par exemple, on jette une pièce bien équilibrée, et on
définit X = 1 si on obtient ’Pile’ et 0 sinon, et Y = 1−X. Alors X et Y ont même loi, mais X 6= Y .

Théorème ∗∗ Loi d’une VARD entière ∗∗
Soit X une VARD ne prenant que des valeurs entières : X(Ω) ⊂ Z. Alors on a :

∀k ∈ Z, P(X = k) = FX(k)− FX(k − 1).

= P(X > k)−P(X > k + 1).

Exercice 4 : On lance n fois un dé bien équilibré (n ∈ N?), et on note Mn et mn respectivement le
maximum et le minimum obtenu.

1. Déterminer les univers-image de Mn et mn.

2. Pour tout k ∈ J1, 6K, montrer que : P(Mn 6 k) =

(
k

6

)n
.

3. En déduire la loi de Mn.

4. Déterminer la loi de mn.

III Variables aléatoires discrètes usuelles

1 Loi certaine : lorsqu’il n’y a aucun hasard
Définition

On dit qu’une variable aléatoire X définie sur un univers Ω suit la loi certaine de valeur a
lorsque X(Ω) est un singleton : ∃a ∈ R, X(Ω) = {a}

En conséquence, P(X = a) = 1 et pour tout b 6= a, P(X = b) = 0.
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2 Loi uniforme : loi d’équiprobabilité
Définition

Soit A = {x1, x2, · · · , xn} un sous-ensemble fini de R, de cardinal n ∈ N?.
On dit qu’une variable aléatoire X sur Ω suit la loi uniforme sur A lorsque :

� X(Ω) = A
� ∀x ∈ A, P(X = x) =

1

n
.

On note alors : X ↪→ U(A)

Remarque : Il s’agit de la loi d’équiprobabilité sur A. Elle traduit l’expression ”au hasard”.
Si A = J1, nK, la loi de X est alors donnée par : xk 1 2 · · · n

P(X = xk) 1
n

1
n · · · 1

n

Exemple : le résultat d’un lancer de dé supposé équilibré suit la loi U(J1, 6K).

3 Loi de Bernoulli : expérience à deux issues
Définition

Soit p ∈]0, 1[. Une variable aléatoire X sur Ω suit la loi de Bernoulli de paramètre p lorsque :

� X(Ω) = {0, 1}
�

{
P(X = 1) = p

P(X = 0) = 1− p
On note alors : X ↪→ B(p)

Cette loi modélise le succès (X = 1) ou l’échec (X = 0) à une expérience aléatoire donnée.
p est la probabilité du succès. Exemple : X = 1 si on obtient ’Pile’ en lançant une pièce, et X = 0 sinon.
p sera ici la probabilité de faire ’Pile’ (p = 1/2 si la pièce n’est pas truquée).

4 Loi binomiale : loi des tirages avec remise
Définition

Soient n ∈ N? et p ∈]0, 1[.
Une variable aléatoire X sur Ω suit la loi binomiale de paramètres n et p lorsque :

• X(Ω) = J0, nK • ∀k ∈ J0, nK, P(X = k) =

(
n

k

)
pk(1− p)n−k

On note alors : X ↪→ B(n, p)

X compte le nombre de succès dans la répétition de n épreuves de Bernoulli, indépendantes, et de même
paramètre p : si X1, . . . , Xn ↪→ B(p) et si X1, . . . , Xn sont mutuellement indépendantes, alors :

X =

n∑
k=1

Xk ↪→ B(n, p)

5 Loi géométrique : loi du premier succès
Définition

Soit p ∈]0, 1[. Une variable aléatoire X sur Ω suit la loi géométrique de paramètre p lorsque :

• X(Ω) = N? • ∀k ∈ N?, P(X = k) = p× (1− p)k−1

On note alors : X ↪→ G(p)

X est le rang d’apparition du premier succès lors d’une succession infinie d’épreuves de Bernoulli,
indépendantes, et de même paramètre p.

La VARD X de l’exemple 2 suit la loi géométrique de paramètre 1
2 : X ↪→ G

(
1

2

)
.

L’événement [X = 0] étant quasi-impossible, on considère que le support de X est N? plutôt que N.

Propriété
Soit X ↪→ G(p). Alors la fonction de répartition de X vérifie : ∀n ∈ N, FX(n) = 1− (1− p)n.
On a donc aussi : P(X > n) = (1− p)n.

Proposition ∗∗ Propriété d’invariance temporelle ∗∗
La loi géométrique est une loi ”sans mémoire” :
si X ↪→ G(p), alors ∀n,m ∈ N, P[X>m](X > m+ n) = P(X > n).
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6 Loi de Poisson : loi des événements rares
Définition

Soit λ ∈ R?
+. Une variable aléatoire X sur Ω suit la loi de Poisson de paramètre λ lorsque :

• X(Ω) = N • ∀k ∈ N, P(X = k) =
λk

k!
e−λ

On note alors : X ↪→ P(λ)

Les lois de Poisson sont utilisées pour modéliser le nombre d’occurences par unité de temps d’un phénomène
dont on connâıt l’occurence moyenne λ. Par exemple, si on sait qu’en moyenne il y a 8 accidents par an à
un carrefour donné, alors la VAR comptant le nombre d’accidents pendant une année fixée sera modélisée
par une loi de Poisson de paramètre λ = 8.

IV Moments d’une variable aléatoire réelle discrète
1 Moments d’ordre r
Définition

Soit X une VARD, et soit r ∈ N.
• Si X(Ω) = {x1, · · · , xn} est fini, on appelle moment d’ordre r de X le réel :

mr(X) =

n∑
k=1

(xk)r P(X = xk).

• Si X(Ω) = {xk, k ∈ N} et si la série
∑
k>0

(xk)r P(X = xk) est absolument convergente,

alors le moment d’ordre r de X est la somme de cette série : mr(X) =

+∞∑
k=0

(xk)r P(X = xk).

Exercice 5 : Soit X une VARD de loi : X(Ω) = N? et ∀k > 1, P(X = k) =
1

k(k + 1)
.

1. Vérifier que cette formule définit bien la loi d’une VAR.

2. Montrer que X n’admet aucun moment d’ordre r > 1.

Proposition
Soit X une VARD admettant un moment d’ordre r ∈ N.
Soit s ∈ N tel que s 6 r. Alors X admet aussi un moment d’ordre s.

2 Espérance, ou moyenne
Définition

L’espérance d’une VARD X est, s’il existe, son moment d’ordre 1 :

• Si X(Ω) = {x1, . . . , xn}, alors E(X) = m1(X) =

n∑
k=1

xkP(X = xk)

• Si X(Ω) = {xk, k ∈ N} et si
∑
k>0

xkP(X = xk) est absolument convergente, alors :

E(X) = m1(X) =

+∞∑
k=0

xkP(X = xk)

Remarque : L’espérance est la valeur de X qu’on peut espérer obtenir, qu’on obtient en moyenne.

Exercice 6 : Soit X une VARD de loi : X(Ω) = N \ {0, 1} et ∀k > 2, P(X = k) =
k − 1

k!
.

1. Montrer que : ∀k > 2, P(X = k) =
1

(k − 1)!
− 1

k!
.

2. En déduire que la formule proposée définit bien la loi d’une VAR X.

3. Montre que X possède une espérance, et calculer cette espérance.
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Définition

Une VAR admettant une espérance nulle est dite centrée.

Propriété ∗∗ Linéarité de l’espérance ∗∗
Soient X,Y deux VARD définies sur le même univers Ω, admettant une espérance.
Alors ∀λ, µ ∈ R, la variable aléatoire λX + µY admet une espérance, et :

E(λX + µY ) = λE(X) + µE(Y )

preuve : Résultat admis.

Propriété ∗∗ Croissance de l’espérance ∗∗
Soient X,Y deux VARD définies sur le même univers Ω, admettant une espérance.
On suppose que : ∀ω ∈ Ω, X(ω) 6 Y (ω). Alors : E(X) 6 E(Y ).
En particulier : si X > 0 (ie : ∀ω ∈ Ω, X(ω) > 0), alors : E(X) > 0.

Théorème ∗∗ Théorème de transfert ∗∗
Soit X une VARD, et soit f : R −→ R. On pose Y = f(X).

• Si X(Ω) est fini, alors : E(Y ) =
∑

x∈X(Ω)

f(x)P(X = x).

• Si X(Ω) = {xk, k ∈ N}, alors Y admet une espérance si et seulement si
∑
k>0

f(xk)P(X = xk)

converge absolument. Dans ce cas, E(Y ) =

+∞∑
k=0

f(xk)P(X = xk).

preuve : Résultat admis.

3 Variance, écart-type
Définition

Soit X une VAR telle que : • X admet une espérance E(X),
• X −E(X) admet un moment d’ordre 2.

Alors on appelle variance deX et on note V(X) le réel : V(X) = E
(
(X−E(X))2

)
= m2(X−E(X)).

Remarque : La variance est un indicateur de dispersion de la variable aléatoire autour de son espérance.

Proposition ∗∗ Formule de König Huygens ∗∗
Soit X une VAR. Alors X admet une variance si et seulement si elle admet un moment

d’ordre 2. On a dans ce cas : V(X) = E
(
X2
)
−E(X)2

Proposition

Si X admet une variance, alors : ∀a, b ∈ R, V(aX + b) = a2V(X)

Proposition
Soit X admettant une variance. Alors : V(X) > 0, et V(X) = 0 si et seulement si X est
presque sûrement constante : ∃a ∈ R |P(X = a) = 1.

Définition

Soit X une VAR admettant une variance.
On appelle écart-type de X et on note σ(X) le réel : σ(X) =

√
V(X).

Si E(X) = 0 et σ(X) = 1, alors on dit que X est centrée réduite.

Proposition
Soit X une VAR admettant une variance non nulle. On pose X? =

X −E(X)

σ(X)
.

Alors X? est centrée réduite. X? est la VAR centrée réduite associée à X.
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V Moments usuels à connâıtre

1 Loi certaine : Si X suit une loi certaine de valeur a, alors E(X) = a et V(X) = 0.

2 Loi uniforme sur J1, nK : Si X ↪→ U
(
J1, nK

)
, alors E(X) =

n+ 1

2
.

3 Loi de Bernoulli : Si X ↪→ B(p), alors E(X) = p et V(X) = p(1− p).

4 Loi binomiale : Si X ↪→ B(n, p), alors E(X) = np et V(X) = np(1− p).

5 Loi géométrique : Si X ↪→ G(p), alors E(X) =
1

p
et V(X) =

1− p
p2

.

6 Loi de Poisson : Si X ↪→ P(λ), alors E(X) = λ et V(X) = λ.

VI Simulations informatiques
On utilise le module random pour simuler des VAR : import random as rd

1 Loi certaine de valeur a

def certaine(a) :

return a

2 Loi uniforme sur Ja, bK
def uniforme(a,b) :

return rd.randint(a,b)

3 Loi uniforme sur A = {x1, . . . , xn}
A est modelisé par une liste.
def uniforme(A) :

return rd.choice(A)

4 Loi de Bernoulli

def Bernoulli(p) :

return int(rd.random() < p)

5 Loi binomiale
def binomiale(n,p) :

S = 0

for in range(n) :

S += rd.random() < p

return S

def binomiale(n,p) :

return sum( [ rd.random() < p for in range(n) ] )

6 Loi géométrique

def geometrique(p) :

rang = 1

while rd.random() > p :

rang += 1

return rang

.

7 Loi de Poisson
import numpy as np

def poisson(mu) :

k, p = 0, np.exp(-mu)

F = p

r = rd.random()

while F < r :

k += 1

p *= mu / k

F += p

return k
8 Lois quelconques

Situation 1 : deux listes données représentent
la loi de probabilité d’une VAR X :

V = [x1, ...,xn] est la liste des valeurs
X(Ω) = {x1, . . . , xn}

P = [p1, ..., pn] est la liste correspondante
des probabilités : ∀k ∈ J0, nK, P(X = xk) = pk.

def simuleX(V,P) :

S, k, r = P[0], 0, rd.random()

while S < r :

k += 1

S += P[k]

return V[k]

Situation 2 : X(Ω) = N ou N?, et P(X = k) est
donnée par une formule : P(X = k) = f(k) :

def simuleX(f) :

S, k, r = f(0), 0, rd.random()

while S < r :

k += 1

S += f(k)

return k
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