
Chapitre 12 Intégrales généralisées (impropres) BCPST 2A, 2025/2026

I Généralisation de la notion d’intégrale sur un segment

1 Intégrale sur un intervalle I
Soit I un intervalle réel, et soit f une fonction continue ou continue par morceaux sur I.
Si I est un segment (I = [a, b] avec a, b ∈ R, a 6 b), on sait déjà définir l’intégrale de f entre a et b.
Rappel : si f est continue sur [a, b], alors elle admet une primitive F sur [a, b] et on pose :∫

[a,b]

f =

∫ b

a

f(t) dt = F (b)− F (a)

Dans ce chapitre, on généralise cette définition à des intervalles I qui ne sont pas des segments :
I = [a, b[, ]a, b], ]a, b[, [a,+∞[, ]a,+∞[, ]−∞, b], ]−∞, b[, ]−∞,+∞[.

Dans tout ce chapitre, a désigne un réel ou −∞, et b désigne un réel ou +∞.

Définition

Soit f une fonction continue sur un intervalle réel I.

Si I n’est pas un segment, alors

∫
I

f est une intégrale généralisée (ou impropre).

On peut régler un cas simple :
Définition

Soit I un intervalle de bornes a, b ∈ R, et soit f une fonction continue sur I.
Si I n’est pas un segment, et si f est prolongeable par continuité aux bornes de I

en une fonction f̃ , alors on pose :

∫
I

f =

∫ b

a

f̃(t) dt.

On dira alors que l’intégrale de f sur I est faussement généralisée.

Exercice 1 : Calculer

∫ 1

0

t. ln(t) dt

2 Définition
a Intégrale sur [a, b[ ou [a,+∞[

Définition

Soient I = [a, b[, f une fonction continue sur I, et F une primitive de f sur I.

On dit que l’intégrale généralisée

∫
I

f converge, ou existe si et seulement si F possède une limite

finie en b. On définit alors :

∫ b

a

f(t) dt = lim
x→b

∫ x

a

f(t) dt = lim
x→b

F (x)− F (a).

Dans le cas contraire, on dit que

∫
I

f diverge.

Exercice 2 : Étudier l’existence (la convergence) et calculer le cas échéant les intégrales :

∗ I1 =

∫
[0,1[

1√
1− t

dt ∗ I2 =

∫
[1,+∞[

dt

t
∗ I3 =

∫
R+

e−t dt

b Intégrale sur ]a, b] ou ]−∞, b]
Définition

Soient I =]a, b], f une fonction continue sur I, et F une primitive de f sur I.

On dit que l’intégrale généralisée

∫
I

f converge, ou existe si et seulement si F possède une limite

finie en a. On définit alors :

∫ b

a

f(t) dt = lim
x→a

∫ b

x

f(t) dt = F (b)− lim
x→a

F (x).

Dans le cas contraire, on dit que

∫
I

f diverge.

Exercice 3 : Étudier l’existence (la convergence) et calculer le cas échéant les intégrales :

∗ I4 =

∫
]0,1]

dt

t
∗ I5 =

∫
]0,1]

ln(t) dt ∗ I6 =

∫
]−∞,−1]

dt

t2
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c Intégrale sur ]a, b[ ou ]−∞, b[ ou ]a,+∞[ ou ]−∞,+∞[

Définition

Soient I =]a, b[, f une fonction continue sur I, et F une primitive de f sur I.

On dit que l’intégrale généralisée

∫
I

f converge, ou existe si et seulement si il existe c ∈ I tel que∫
]a,c]

f et

∫
[c,b[

f convergent. On pose alors :

∫ b

a

f =

∫ c

a

f +

∫ b

c

f .

Dans le cas contraire, on dit que

∫
I

f diverge.

Exercice 4 : Étudier l’existence et calculer le cas échéant les intégrales :

∗ I7 =

∫
R?

+

dt

t
∗ I8 =

∫
R?

+

dt

t2
∗ I9 =

∫
R

dt

1 + t2

Méthode : si

∫ b

a

f est impropre en a et en b, on choisit c tel que a < c < b et on étudie séparément la

convergence de

∫ c

a

f et celle de

∫ b

c

f .

d Intégrale d’une fonction continue sur un segment sauf en un nombre fini de points

Définition

Soit I = [a, b] un segment et f continue sur I sauf en c1, . . . , cn ∈ I.
On suppose a 6 c1 6 . . . 6 cn 6 b, et on pose c0 = a et cn+1 = b.

Alors

∫
I

f converge si et seulement si toutes les intégrales

∫ ck+1

ck

f convergent, pour k ∈ J0, nK.

On pose alors :

∫ b

a

f =

n∑
k=0

∫ ck+1

ck

f . Dans le cas contraire, on dit que

∫
I

f diverge.

Exercice 5 : Étudier l’existence et calculer le cas échéant les intégrales :

∗ I10 =

∫
[−1,1]

ln
(
|t|
)

dt ∗ I11 =

∫
[0,2]

dt√
|t− 1|

∗ I12 =

∫
[−2π,2π]

tan(t) dt

II Propriétés des intégrales impropres
1 Linéarité
Proposition

Soient f, g continues sur l’intervalle I de bornes a et b.

Soient λ, µ ∈ R. Si

∫
I

f et

∫
I

g convergent, alors

∫
I

(λf + µg) converge,

et dans ce cas :

∫ b

a

(λf + µg) = λ

∫ b

a

f + µ

∫ b

a

g.

2 Relation de Chasles
Proposition

Soit f continue sur l’intervalle I de bornes a et b.

Soit c tel que : a < c < b. Alors

∫
I

f converge si et seulement si

∫ c

a

f et

∫ b

c

f convergent.

On a dans ce cas :

∫ c

a

f +

∫ b

c

f =

∫ b

a

f .
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3 Positivité, croissance
Proposition

Soient a < b et f, g continues sur l’intervalle I de bornes a et b.

∗ si

∫
I

f converge et si f > 0 sur I, alors :

∫ b

a

f > 0.

∗ si

∫
I

f et

∫
I

g convergent et si f 6 g sur I, alors :

∫ b

a

f 6
∫ b

a

g.

∗ si

∫
I

f converge, si f > 0 sur I et si ∃c ∈ I, f(c) > 0, alors :

∫ b

a

f > 0.

Remarque : ce dernier résultat est appelé stricte positivité des intégrales généralisées.

Il s’énonce de façon équivalente : si

∫
I

f converge et est nulle, si f > 0 sur I, alors f est nulle sur I.

III Théorèmes de convergence
1 Théorème de comparaison

Théorème ∗∗ Théorème de comparaison pour les fonctions positives ∗∗
Soient f et g deux fonctions continues telles que 0 6 f 6 g sur l’intervalle I de bornes a < b.

∗ si

∫
I

g converge, alors

∫
I

f converge et on a : 0 6
∫ b

a

f 6
∫ b

a

g.

∗ si

∫
I

f diverge, alors

∫
I

g diverge aussi.

Exercice 6 : Étudier l’existence des intégrales :

∗ I13 =

∫
[1,+∞[

dt

1 + t3
∗ I14 =

∫
]0,1]

et

t
dt ∗ I15 =

∫
R+

(et − 2)e−t
2

dt

2 Théorème d’équivalence

Théorème ∗∗ Théorème d’équivalence pour les fonctions positives ∗∗
Soient f et g continues et positives sur l’intervalle I de bornes a et b, et soit c tel que a < c < b.

∗ Cas où b /∈ I : si f(t) ∼
t→b

g(t), alors

∫ b

c

f et

∫ b

c

g sont de même nature.

∗ Cas où a /∈ I : si f(t) ∼
t→a

g(t), alors

∫ c

a

f et

∫ c

a

g sont de même nature.

Exercice 7 : Étudier l’existence des intégrales :

∗ I16 =

∫
R+

2t− 1

t3 + t+ 1
dt ∗ I17 =

∫
R−

(t+ 1)et

2t− 1
dt ∗ I18 =

∫
]0,1[

ln(t)

1− t
dt

3 Intégrales généralisées absolument convergentes
Définition

Soit I un intervalle de bornes a, b, et f continue sur I.

On dit que

∫
I

f est absolument convergente si

∫
I

|f | converge.

Proposition

Si

∫
I

f est absolument convergente, alors elle est convergente, et on a :

∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣ 6
∫ b

a

|f |

Attention : la réciproque de cette proposition est fausse. Il existe des intégrales généralisées convergentes
qui ne sont pas absolument convergentes.

Exercice 8 : Étudier l’existence des intégrales :

∗ I19 =

∫
[1,+∞[

sin(t)

t2
dt ∗ I20 =

∫
]0,1]

sin( 1
t )√
t

dt ∗ I21 =

∫
R

cos2(t) + cos(t)

1 + t2
dt
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IV Techniques de calcul
1 Application de la définition

Si on connâıt une primitive F de f sur I, on étudie ses limites aux bornes de I pour savoir si

∫
I

f converge.

2 Intégration par parties

Théorème ∗∗ Intégration par parties (IPP) pour une intégrale généralisée ∗∗
Soient u, v deux fonctions de classe C1 sur l’intervalle I de bornes a et b. Soit c ∈]a, b[.

∗ Cas où b /∈ I : si uv possède une limite finie en b, et si

∫ b

c

uv′ converge, alors

∫ b

c

u′v converge

et :

∫ b

c

u′v = lim
x→b

u(x)v(x)− u(c)v(c)−
∫ b

c

uv′

∗ Cas où a /∈ I : si uv possède une limite finie en a, et si

∫ c

a

uv′ converge, alors

∫ c

a

u′v converge

et :

∫ c

a

u′v = u(c)v(c)− lim
x→a

u(x)v(x)−
∫ c

a

uv′

Exercice 9 : Étudier l’existence, et calculer le cas échéant les intégrales :

∗ I22 =

∫
R+

te−t dt ∗ In =

∫
[1,+∞[

ln(t)

tn
dt (n ∈ N)

3 Changement de variables

Théorème ∗∗ Changement de variable pour une intégrale généralisée ∗∗
Soient ϕ une fonction de classe C1 sur un intervalle J de bornes α et β, strictement monotone
de J vers I = ϕ(J). On sait que I est un intervalle de bornes a, b avec a = lim

α
ϕ et b = lim

β
ϕ.

Soit f continue sur I. Alors

∫
I

f converge si et seulement si

∫
J

ϕ′ × f ◦ ϕ converge.

Dans ce cas, on a :

∫ b

a

f(t)dt =

∫ β

α

ϕ′(x)f
(
ϕ(x)

)
dx.

Exercice 10 : Calculer ∗ I23 =

∫ 1

0

ln(t)√
1− t

dt ∗ I24 =

∫ +∞

0

e−
√
t dt

Propriété
Soit b ∈ R?

+ ∪ {+∞}, et soit I =]− b, b[. Soit f une fonction continue sur I.

Si f est paire ou impaire, alors

∫ b

0

f et

∫ 0

−b
f sont de même nature. En cas de convergence :

∗ si f est paire, alors

∫ b

−b
f = 2×

∫ b

0

f . ∗ si f est impaire, alors

∫ b

−b
f = 0.

Exemples :

∫ +∞

−∞

dt

1 + t2
= 2

∫ +∞

0

dt

1 + t2
= 2× π

2
= π et

∫ +∞

−∞
e−t

2

dt = 2×
∫ +∞

0

e−t
2

dt

Exercice 11 : Calculer ∗ I25 =

∫ 1

−1

dt

1− t2
∗ I26 =

∫ 1

−1

t
√

1− |t|
cos(πt2 )

dt

V Intégrales impropres célèbres
1 Intégrale de Gauss
Propriété

L’intégrale de Gauss

∫
R

e−
t2

2 dt converge et vaut :

∫ +∞

−∞
e−

t2

2 dt =
√

2π.

2 Intégrales de Riemann
Propriété ∗!!!∗ Hors-programme ∗!!!∗

Soit α ∈ R. Une intégrale de Riemann est de la forme :

∫ +∞

1

dt

tα
,

∫ 1

0

dt

tα
ou

∫ +∞

0

dt

tα
.

∗
∫ +∞

1

dt

tα
converge si et seulement si α > 1, et vaut alors

1

α− 1
.

∗
∫ 1

0

dt

tα
converge si et seulement si α < 1, et vaut alors

1

1− α
.

∗
∫ +∞

0

dt

tα
diverge pour tout α ∈ R.

Exercice 12 : Démontrer ces résultats.
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