
Chapitre 13 Variables aléatoires réelles à densité BCPST 2A, 2025/2026

I Généralités

1 Introduction
Dans ce chapitre, on développe des outils pour comprendre et manipuler des variables aléatoires réelles
(VAR) dont l’ensemble des valeurs prises (univers-image) est un intervalle réel, ou une union d’intervalles
réels. Par exemple, si on jette une fléchette sur une cible circulaire de centre O et de rayon r, on peut
modéliser la distance entre la fléchette et le centre de la cible (exprimée par exemple en centimètres)
comme une VAR X telle que X(Ω) = [0, r] (on suppose que toutes les flèchettes se plantent dans la
cible). Si les fléchettes tombent ”n’importe où” sur la cible (distribution uniforme), on veut modéliser X
de sorte que la probabilité que la fléchette se plante dans une partie de la cible est proportionnelle à l’aire
de cette partie. Mais alors pour tout x ∈ X(Ω), on aura P(X = x) = 0 car la partie de la cible constituée
des points situés à une distance x du centre est le cercle de centre O et de rayon x, qui est d’aire nulle...

Pour 0 6 a < b 6 r, on peut en revanche modéliser la probabilité que l’événement [a 6 X 6 b] est réalisé
par le rapport entre l’aire de la couronne délimitée par les rayons a et b, et l’aire de la cible tout entière :

P(a 6 X 6 b) =
πb2 − πa2

πr2
=
b2 − a2

r2

Si b est très proche de a, on pourra écrire b = a+ h avec h→ 0, et alors :

P(a 6 X 6 a+ h) =
(a+ h)2 − a2

r2
=

2ah+ h2

r2
∼
h→0

2ah

r2
= h× f(a) avec f(a) =

2a

r2
.

Cette fonction f suffit pour calculer P(a 6 X 6 b) pour tous a, b ∈ [0, r] (a 6 b) :

P(a 6 X 6 b) =

∫ b

a

f(t)dt =

∫ b

a

2t

r2
dt =

1

r2
[
t2
]b
a

=
b2 − a2

r2

Dans la suite, on appelera cette fonction une densité de la VAR X.

2 Densité de probabilité
Définition

Une fonction réelle f est une densité de probabilité si et seulement si :

∗ ∀x ∈ R, f(x) > 0.

∗ f est continue sur R sauf éventuellement en un nombre fini de points.

∗
∫
R

f converge et

∫ +∞

−∞
f = 1.

Exemple : la fonction f de l’exemple précédent est définie sur R par : f(t) =

{
0 si t < 0 ou t > r
2t
r2 si t ∈ [0, r]

Elle est donc positive sur R, continue sur R sauf en t = r, et

∫ +∞

−∞
f =

∫ r

0

2t

r2
dt =

2

r2
× r2

2
= 1.

Puisque f est nulle en dehors de l’intervalle [0, r], on dira que f est de support [0, r].

Ce support étant un segment,

∫
R

f n’est en fait pas une intégrale généralisée.

Exercice 1 : Montrer que la fonction g définie par g(t) =

{
e−t si t > 0

0 sinon
est une densité de probabilité.

Exercice 2 : Soit a ∈ R, et soit h la fonction définie par : ∀t ∈ R, h(t) =
a

1 + t2
.

À quelle condition h est-elle une densité de probabilité ?

3 VAR à densité
Définition

Soit X une VAR définie sur un univers Ω. On dit que X est à densité (ou possède une densité)
s’il existe une densité de probabilité f telle que :

∀x ∈ R, P(X 6 x) =

∫ x

−∞
f(t) dt

Dans ce cas, on dit que f est une densité (de probabilité) de X.

Remarque : si X est une VAR à densité, alors elle admet une infinité de densités de probabilité.
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Proposition
Soit X une VAR de densité f . Alors pour tous réels a 6 b :

∗ P(X = a) = 0

∗ P(a 6 X 6 b) = P(a < X < b) = P(a 6 X < b) = P(a < X 6 b) =

∫ b

a

f(t) dt

∗ P(X 6 b) = P(X < b) =

∫ b

−∞
f(t) dt

∗ P(X > a) = P(X > a) =

∫ +∞

a

f(t) dt = 1−
∫ a

−∞
f(t) dt

Attention ! a 6 b est crucial ici : si a > b, alors P(a 6 X 6 b) = 0 alors que

∫ b

a

f = −
∫ a

b

f .

Théorème ∗∗ Existence de VAR à densité (admis) ∗∗
Soit f une densité de probabilité. Alors il existe une VAR X à densité, dont f est une densité
de probabilité.

4 Fonction de répartition d’une VAR à densité

Définition

Soit X une VAR à densité, de densité f . Alors la fonction de répartition FX de X est définie par :

∀x ∈ R, FX(x) = P(X 6 x) =

∫ x

−∞
f(t) dt

Exerice 3 : Déterminer la fonction de répartition FX de la VAR X de densité : fX(t) = e−t 1R+
(t).

Représenter graphiquement fX et FX sur R.

Propriété Expression des probabilités à l’aide de la fonction de répartition

Soit X une VAR à densité, de fonction de répartition FX . Soient a < b des réels. Alors :

∗ P(X 6 b) = P(X < b) = FX(b)

∗ P(X > a) = P(X > a) = 1− FX(a)

∗ P(a 6 X 6 b) = P(a < X < b) = P(a 6 X < b) = P(a < X 6 b) = FX(b)− FX(a)

Théorème ∗∗ Caractérisation d’une VAR à densité (admis) ∗∗
Soit X une VAR de fonction de répartition FX .
Alors X est à densité si et seulement si FX est continue sur R, et de classe C1 sur R sauf
éventuellement en un nombre fini de points.

Dans ce cas, la fonction fX définie par fX(x) =

{
F ′X(x) si FX est dérivable en x

0 sinon

est une densité de probabilité de X.

Exerice 4 : Soit X une VAR aléatoire telle que : ∀x ∈ R, P(X 6 x) =

{
x2

x2+1 si x > 0

0 si x < 0

Montrer que X est une VAR à densité, et déterminer une densité de X.

5 Fonction quantile

On suppose que X est une VAR à densité, de densité fX non nulle sur un intervalle I, et nulle sur R \ I.
On a donc X(Ω) = I, et, en notant a, b les bornes de I, la fonction de répartition FX de X réalise une
bijection de ]a, b[ vers ]0, 1[.

Définition

La fonction QX : ]0, 1[−→]a, b[, bijection réciproque de FX |]a,b[ est appelée fonction quantile de X.

∀x ∈]a, b[, ∀u ∈]0, 1[, on a : FX(x) = u⇔ x = QX(u)

Si a, b sont réels (c’est-à-dire a 6= −∞, b 6= +∞), on pose de plus : QX(0) = a et/ou QX(1) = b.

La fonction quantile permet d’estimer les valeurs en-dessous desquelles, ou au-dessus desquelles on observe
un certain pourcentage de réalisations de X.
Par exemple, si QX(0, 1) = α, alors P(X 6 α) = 10% et α est appelé le premier décile de X.

si QX(0, 5) = β, alors P(X 6 β) = 50% et β est appelé la médiane de X.
si QX(0, 75) = γ, alors P(X > γ) = 25% et γ est appelé le troisième quartile de X.
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6 Cas où la densité est paire
Proposition

Soit X une VAR de densité fX , et de fonction de répartition FX .
Si fX est une fonction paire, alors : ∀x ∈ R, FX(−x) = 1− FX(x).

De plus, FX(0) =
1

2
et pour tout x > 0, P(0 6 X 6 x) = P(−x 6 X 6 0) = FX(x)− 1

2
.

Exemple : Soit X une VAR de densité : fX(t) =
1

π(1 + t2)
.

Alors la fonction de répartition de X est : FX(x) =

∫ x

−∞

dt

π(1 + t2)
=

1

π

(
Arctan(x) +

π

2

)
On a bien : FX(−x) =

1

π

(
Arctan(−x) +

π

2

)
= 1− FX(x) car Arctan est impaire.

II Fonctions d’une VAR à densité

1 Cas général

Soit X une VAR à densité. Soit g une fonction réelle définie sur X(Ω), on pose Y = g(X).
On suppose que Y est encore une VAR. Conformément au programme, deux cas sont à envisager :
Y est une VAR discrète, ou Y est une VAR à densité. Méthode d’étude :

1. on étudie l’univers-image Y (Ω) pour connâıtre le type de la VAR Y .

2. Si Y (Ω) est fini, ou infini dénombrable, alors Y est discrète, et on détermine P(Y = yk) pour tout
yk ∈ Y (Ω).

3. sinon, on détermine la fonction de répartition FY (x) = P(Y 6 x). On vérifie que FY est continue
sur R, et de classe C1 sauf éventuellement en un nombre fini de points. On peut alors affirmer que
Y est une VAR à densité, et on détermine une densité de Y en calculant fY (t) = F ′Y (t) lorsque FY
est dérivable en t, et en posant fY (t) = 0 sinon.

Dans ces 3 exercices, X est une VAR à densité, de densité fX(t) = 1 si t ∈ [0, 1], et fX(t) = 0 sinon.

Exercice 5 : On pose : Y1 = b3Xc. Étudier la VAR Y1.

Exercice 6 : On pose : Y2 = X2. Étudier la VAR Y2.

Exercice 7 : On pose : Y3 = X si X 6 1
2 et Y3 = 1 sinon. Étudier la VAR Y3.

2 Cas où g est une fonction affine

Soit X une VAR de densité fX . On pose : g(x) = ax+ b, avec a, b réels fixés, a 6= 0, et Y = g(X).

Alors Y est une VAR à densité, de densité fY (x) =
1

|a|
fX

(
x− b
a

)
.

3 Cas où g est une puissance entière

Soit X une VAR de densité fX . On pose : g(x) = xr, avec r ∈ N?, et Y = g(X).
Alors Y est une VAR à densité, de densité :

1er cas : si r est impair, fY (x) =
1

r
x

1
r−1fX

(
x

1
r

)
si x 6= 0, et 0 sinon.

2me cas : si r est pair, fY (x) = 0 si x 6 0 et fY (x) =
1

r
x

1
r−1

(
fX(x

1
r ) + fX(−x 1

r )
)

sinon.

III Moments d’une VAR à densité
1 Définition
Définition

Soit X une VAR à densité, de densité fX , et soit r ∈ N.

Alors X admet un moment d’ordre r si et seulement si

∫
R

tr fX(t) dt est absolument convergente.

Dans ce cas, le moment d’ordre r de X est : mr(X) =

∫ +∞

−∞
tr fX(t) dt
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Exercice 8 : On pose f(t) =
2

t3
si t > 1, et f(t) = 0 si t < 1.

1. Montrer que f est une densité de probabilité.

2. Soit X une VAR à densité, de densité f .

Étudier l’existence des moments d’ordre r ∈ N de X, et les calculer le cas échéant.

Proposition
Soit X une VAR à densité, admettant un moment d’odre r ∈ N.
Alors pour tout s ∈ J0, rK, X admet un moment d’ordre s.

2 Espérance
Définition

L’espérance (moyenne) d’une VAR à densité est, s’il existe, son moment d’ordre 1 :

X possède une espérance si et seulement si

∫
R

|t|fX(t) dt converge, et dans ce cas :

E(X) = m1(X) =

∫ +∞

−∞
t fX(t) dt

Exercice 9 : soit f définie par f(t) = 6t(1− t)1[0,1](t).
Montrer que f est la densité d’une VAR X, admettant une espérance. Calculer cette espérance.

Propriété ∗∗ Croissance et linéarité de l’espérance (admis)∗∗
• Si X,Y sont 2 VAR à densité admettant une espérance, et si X 6 Y , alors E(X) 6 E(Y ).

• en particulier, si X est une VAR à densité, positive, admettant une espérance, alors E(X) > 0.

• si X,Y sont 2 VAR à densité admettant une espérance, alors ∀a, b ∈ R, aX + bY admet une
espérance et : E(aX + bY ) = aE(X) + bE(Y )

• en particulier, si X admet une espérance, alors : ∀a, b ∈ R, E(aX + b) = aE(X) + b.

Définition

Soit X une VAR à densité admettant une espérance.
∗ si E(X) = 0, alors X est dite centrée.

∗ Y = X −E(X) est centrée. On l’appelle la VAR centrée associée à X.

3 Théorème de transfert
Théorème (admis)

Soit X une VAR à densité, de densité fX , et soit g une fonction réelle.
On pose Y = g(X) et on suppose que Y est une VAR à densité.

Alors Y admet une espérance si et seulement si

∫
R

g(t)fX(t) dt est absolument convergente.

Dans ce cas, E(Y ) =

∫ +∞

−∞
g(t) fX(t) dt

Exercice 10 : Soit X une VAR de densité : ∀t ∈ R, fX(t) =
1

π(t2 + 1)
. On pose Y = sin(X).

On admet que Y est une VAR à densité. Monter que Y admet une espérance, et que E(Y ) = 0.

4 Variance et écart-type
Définition

Soit X une VAR à densité possédant une espérance µ. Alors X possède une variance si
et seulement si X − µ possède un moment d’ordre 2.

Dans ce cas : V(X) = m2(X − µ) = E
(
(X − µ)2

)
=

∫ +∞

−∞
(t− µ)2 fX(t) dt

Propriété
Si X admet une variance, alors V(X) > 0, et V(X) = 0 si et seulement si X suit une loi
quasi-certaine (et donc dans ce cas X est une VAR discrète).

Définition

Si X admet une variance, on définit l’écart-type de X par : σ(X) =
√

V(X).
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Théorème ∗∗ de König-Huygens ∗∗
Soit X une VAR à densité. Alors X admet une variance si et seulement si elle admet un moment

d’ordre 2. Dans ce cas : V(X) = E(X2)−
(
E(X)

)2
.

Propriété
Si X admet une variance, alors : ∀a, b ∈ R, (aX + b) admet une variance et

V(aX + b) = a2V(X), donc σ(aX + b) = |a|σ(X).

Définition

Soit X une VAR à densité possédant une variance (donc une moyenne µ et un écart-type σ > 0).

∗ si σ = 1, alors X est dite réduite.

∗ X? =
X − µ
σ

est centrée et réduite. C’est la VAR centrée réduite associée à X.

Propriété
Soit X une VAR possédant une espérance µ et un écart-type σ > 0.

Alors : ∀x ∈ R, P(X 6 x) = P

(
X − µ
σ

6
x− µ
σ

)
= P

(
X? 6

x− µ
σ

)
.

IV Lois usuelles

1 Loi uniforme sur un segment [a, b]
Définition

Soient a < b des réels. Une VAR X suit une loi uniforme sur [a, b] si et seulement si :

∀c < d ∈ [a, b], P(c 6 X 6 d) =
d− c
b− aDans ce cas :

∗ une densité fX de X est : fX =
1

b− a
1[a,b].

∗ la fonction de répartition FX de X a pour expression : ∀x ∈ R, FX(x) =


0 si x < a

x− a
b− a

si x ∈ [a, b]

1 si x > b∗ on note : X ↪→ U([a, b]).

C’est la loi qu’on utilise pour modéliser le choix ”au hasard” d’un réel entre a et b.

Densité d’une VAR uniforme :

t

y = fX(t)

a b

1
b−a

Fonction de répartition :

x

y = FX(x)

a b

1

Simulation informatique :
La fonction rd.random() du module random permet de simuler une loi uniforme sur [0, 1].

La fonction (b-a)*rd.random() + a permet de simuler une loi uniforme sur [a, b].

Exercice 11 : Soit X ↪→ U
(
[a, b]

)
, et soit r ∈ N.

Montrer que X admet un moment d’ordre r, égal à : mr(X) =
1

r + 1
× br+1 − ar+1

b− a
.

Propriété
Soit X ↪→ U([a, b]). Alors X admet une espérance et une variance, et on a :

E(X) =
a+ b

2
et V(X) =

(b− a)2

12
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2 Loi exponentielle
Définition

Soit λ > 0. Une VAR X suit la loi exponentielle de paramètre λ si et et seulement une
densité de X est : fX(t) = λe−λt 1R+(t). On note alors : X ↪→ E(λ).
Dans ce cas, la fonction de répartition FX de X est : FX(x) =

(
1− e−λx

)
1R+

(x).

Densité d’une loi exponentielle :

t

y = fX(t)λ

ln 2
λ

λ
2

Fonction de répartition : y = FX(x)

x

1

0, 5

ln 2
λ

Exercice 12 : Soit X ↪→ E(λ), et soit r ∈ N.
Montrer que X admet un moment d’ordre r, égal à : mr(X) =

r!

λr
.

Propriété
Soit X ↪→ E(λ). Alors :

� X possède une espérance, et E(X) = 1
λ .

� X possède une variance, et V(X) = 1
λ2 .

Exemples : la durée de vie d’une particule radioactive suit une loi exponentielle de paramètre λ, appelé

dans ce cas la constante de désintégration. La médiane
ln(2)

λ
est la demi-vie (ou période radioactive).

Les lois exponentielles permettent aussi de modéliser les durées de vie de composants électroniques, ou
des temps d’attente (d’un appel téléphonique, d’un client dans un magasin...).

Simulation informatique :

La fonction -log(rd.random())/` permet de simuler une loi exponentielle de paramètre ` > 0.

Propriété ∗∗ Invariance temporelle ∗∗
Soit X ↪→ E(λ). Alors : ∀s, t > 0, P[X>s](X > s+ t) = P(X > t).

3 Loi normale centrée réduite (standard)
Définition

Une VAR X suit la loi normale centrée réduite si et et seulement une densité de X est :

∀t ∈ R, ϕ(t) =
1√
2π

e−
t2

2 . On note alors : X ↪→ N (0, 1).

La loi normale centrée réduite est très utilisée en probabilités. Elle permet de modéliser de nombreux
phénomènes. On verra dans un chapitre futur qu’elle donne une bonne approximation (sous certaines
hypothèses) de toute somme de VAR indépendantes et de même loi.

Exercice 13 : Soit X ↪→ N (0, 1), et soit r ∈ N.
Montrer que X admet un moment d’ordre r, et que :

• si r est pair (r = 2s), alors mr(X) =
r!

2ss!
• si r est impair, alors mr(X) = 0.

Propriété
Soit X ↪→ N (0, 1). Alors :

� La fonction de répartition X est notée : Φ(x) =

∫ x

−∞

1√
2π

e−
t2

2 dt =

∫ x

−∞
ϕ(t) dt.

� X possède une espérance, et E(X) = 0.

� X possède une variance, et V(X) = 1.
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Densité de la loi normale standard :

t

y = ϕ(t)

1√
2π
≈ 0, 4

−2 −1 1 2

Fonction de répartition :

x

y = Φ(x)

0, 5

1

−2 −1 1 2

La fonction Φ n’a pas d’expression utilisant les fonctions usuelles. On peut montrer que :

∀x ∈ R, Φ(x) =
1

2
+

1√
2π

+∞∑
n=0

(−1)n x2n+1

(2n+ 1)2n n!
cette série étant convergente pour tout x ∈ R.

Le calcul des sommes partielles de cette série donne alors des valeurs approchées de Φ(x).
En pratique, on utilise des tables de valeurs de Φ, ou des moyens informatiques :

from scipy.stats import norm

norm.pdf(x) # renvoie ϕ(x)
norm.cdf(x) # renvoie Φ(x)
norm.ppf(x) # renvoie Φ−1(x)

4 Lois normales (lois de Laplace-Gauss, ou distributions gaussiennes)
Définition

Soient µ, σ des réels avec σ > 0. Une VAR X suit la loi normale de moyenne µ et d’écart-type σ

si et et seulement une densité de X est : fX(t) =
1

σ
√

2π
e−

(t−µ)2

2σ2 =
1

σ
× ϕ

(
t− µ
σ

)
.

On note alors : X ↪→ N (µ, σ2), et on dit que X est une VAR gaussienne.

Propriété
Soit X ↪→ N (µ, σ2). Alors :

� La fonction de répartition FX vaut : FX(x) = Φ

(
x− µ
σ

)
=

1

σ
√

2π

∫ x

−∞
e−

1
2 (
t−µ
σ )2 dt.

� X? ↪→ N (0, 1).

� X possède espérance et variance, et E(X) = µ, V(X) = σ2.

� ∀a, b ∈ R, a 6= 0, la VAR aX + b suit une loi normale.

En particulier, si X ↪→ N (0, 1), alors aX + b ↪→ N (b, a2).

Simulation informatique :

La fonction rd.gauss(m,s) permet de simuler une loi normale de moyenne µ = m et d’écart-type σ = s.

Exercice 14 : • Soit X ↪→ N (4, 4). Donner une valeur approchée de P(X 6 6).
• Soit X ↪→ N (3, 2). Déterminer le réel x tel que P(X 6 x) = 50%.
• Soit X ↪→ N (5, 4). Donner une valeur approchée de P(2 < X < 8).
• Soit X ↪→ N (1, 4). Estimer a ∈ R tel que P(1− a < X 6 1 + a) = 0, 9.

V Somme de VAR à densité indépendantes

1 Compléments sur l’indépendance de VAR

Dans les énoncés suivants, ”indépendantes” signifiera toujours ”mutuellement indépendantes”.

Proposition

Si (Xi)i∈I est une famille de VAR indépendantes, alors toute sous-famille l’est aussi.

Théorème ∗∗ Lemme des coalitions ∗∗
Soit (X1, . . . , Xn, Xn+1, . . . , Xp) une famille de VAR indépendantes.

� Soient f : Rn −→ R et g : Rp−n −→ R.

Alors, les VAR f(X1, . . . , Xn) et g(Xn+1, . . . , Xp) sont indépendantes.

� Soient f1, . . . , fp des fonctions de R dans R.

Alors, les VAR f1(X1), . . . , fp(Xp) sont indépendantes.
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Exercice 15 : Soient X,Y deux VAR indépendantes telles que : X ↪→ E(λ) et Y ↪→ E(µ).
On pose Z = min(X,Y ). Montrer que : Z ↪→ E(λ+ µ).

2 Produit de convolution
Définition

Soient f et g deux densités de probabilités. Alors le produit de convolution de f et g,

noté f ? g, est la fonction définie par : ∀x ∈ R, f ? g(x) =

∫ +∞

−∞
f(t)g(x− t) dt

Remarque : la formule du produit de convolution est toujours rappelée dans les énoncés.

Propriété

Le produit de convolution est commutatif : f ? g = g ? f

3 Densité d’une somme de VAR indépendantes
Proposition

Soient X,Y des VAR à densité, indépendantes, de densités respectives f et g.
Alors Z = X + Y est une VAR à densité, et une densité de Z est f ? g.

Exercice 16 : Soient X,Y ↪→ U
(
[0, 1]

)
, indépendantes. Déterminer une densité de Z = X + Y .

Exercice 17 : Soient X ↪→ E(λ) et Y ↪→ E(µ), indépendantes. Déterminer une densité de Z = X + Y .

4 Somme de VAR gaussiennes indépendantes

Propriété
Soient X1, . . . , Xn des VAR indépendantes telles que : ∀k ∈ J1, nK, Xk ↪→ N

(
µk, σ

2
k

)
On pose Z =

n∑
k=1

Xk. Alors : Z ↪→ N

(
n∑
k=1

µk,

n∑
k=1

σ2
k

)
.
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