
Chapitre 14 Applications linéaires BCPST 2A, 2025/2026

Dans tout ce chapitre, K désigne R ou C.

I Rappels sur les applications linéaires

1 Définition
Définition

Soient (E,+, ·) et (F,+, ·) deux K-ev. On considère f : E → F .
On dit que f est une application linéaire de E dans F (ou morphisme) lorsque :

� ∀u, v ∈ E, f(u+ v) = f(u) + f(v)

� ∀u ∈ E,∀λ ∈ K, f(λu) = λf(u)

L’ensemble des applications linéaires de E dans F est noté LK(E,F ) ou simplement L(E,F ).

Cas particuliers :

� Si f : E → F est linéaire et bijective, on dit que f est un isomorphisme.

� Si f : E → E est linéaire, on dit que f est un endomorphisme.

Leur ensemble est noté LK(E) ou simplement L(E).

� Si f : E → E est linéaire et bijective, on dit que f est un automorphisme.

Leur ensemble est noté GLK(E) ou simplement GL(E).

� f ∈ LK(E,K) est appelée une forme linéaire. Leur ensemble se note aussi : LK(E,K) = E?.

Proposition ∗∗ Caractérisation d’une application linéaire ∗∗
f : E −→ F est linéaire si et seulement si : ∀u, v ∈ E,∀λ ∈ K, f(λu+ v) = λf(u) + f(v).

Proposition
Soit f ∈ L(E,F ). Alors : ∗ f(0E) = 0F .

∗ ∀λ1, · · · , λq ∈ K, ∀u1, · · · , uq ∈ E, f

(
q∑
i=1

λiui

)
=

q∑
i=1

λif(ui).

Par contraposée : si f(0E) 6= 0F , alors f n’est pas linéaire.

Définition

Soient E,F deux K-ev. S’il existe un isomorphisme f : E → F , alors on dit que E et F sont isomorphes.

2 Exemples
� Soit a ∈ R. La fonction f : R→ R définie par : ∀x ∈ R, f(x) = ax est linéaire : f ∈ L(R).

� Soit k ∈ K. L’application hk :

{
E → E

u 7→ ku
est appelée homothétie de E de rapport k.

hk est un endomorphisme de E. Si k 6= 0, alors hk est de plus un automorphisme de E :
(
hk
)−1

= h 1
k

.

� f :

{
R2 → R3

(x, y) 7→ (x+ 2y,−x, 3y)
est une application linéaire de R2 dans R3.

�

∫
:


C0
(
[a, b]

)
→ R

f 7→
∫ b

a

f
est linéaire sur C0

(
[a, b]

)
, le R-ev des fonctions continues sur [a, b].

� d :

{
C∞(R)→ C∞(R)

f 7→ f ′
est linéaire : d ∈ L(E) où E = C∞(R).

� Soit E l’ensemble des suites réelles (u) de série convergente. Alors s : (u) 7→
+∞∑
n=0

un est linéaire.

� Soit E l’ensemble des VAR définies sur (Ω, T ,P) et admettant une espérance.

Alors l’espérance est une forme linéaire sur E.

3 Applications linéaires de Kp dans Kn

f : Kp −→ Kn est linéaire si et seulement si les coordonnées dans Kn de f(u) sont des combinaisons
linéaires des coordonnées dans Kp de u.
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4 Somme d’applications linéaires, produit par une constante

Proposition
L(E,F ) est stable par combinaisons linéaires.
(L(E,F ),+, ·) est un K-ev, s-ev de (F(E,F ),+, ·).

On retient : Si f et g sont linéaires, si λ, µ ∈ K, alors λf + µg est linéaire.

5 Composition d’applications linéaires

Proposition
� La composée d’applications linéaires est une application linéaire.

� Si f est un isomorphisme, alors f−1 est une application linéaire.

Corollaire
� La composée de deux isomorphismes est un isomorphisme.

� La réciproque d’un isomorphisme est un isomorphisme.

II Noyau et image d’une application linéaire

1 Images directes et réciproques d’un s-ev par une application linéaire

Proposition
Soient E,F , deux K-ev, et f ∈ L(E,F ).

� Pour tout s-ev E1 de E, l’ensemble f(E1) est un s-ev de F .

� Pour tout s-ev F1 de F , l’ensemble f−1(F1) est un s-ev de E.

On retient : Les images directes et réciproques de s-ev par une application linéaire sont des s-ev.

2 Noyau et image d’une application linéaire
Définition

Soient E,F , deux K-ev, et f ∈ L(E,F ).

� On appelle noyau de f , et on note Ker(f) l’ensemble des vecteurs de E d’image 0F :

Ker(f) = {u ∈ E, f(u) = 0F } = f−1
(
{0F }

)
� On appelle image de f , et on note Im(f) l’ensemble des images par f des vecteurs de E :

Im(f) = {v ∈ F, ∃u ∈ E, v = f(u)} = {f(u), u ∈ E} = f(E)

À retenir : Déterminer le noyau d’une application linéaire f , c’est résoudre l’équation f(u) = 0.

Exercice 1 : Soit f : R[X]→ R[X] définie par : ∀P ∈ R[X], f(P ) = XP ′ − 2P .

Montrer que f ∈ L(R[X]), et déterminer le noyau et l’image de f .

Proposition
Soient E,F , deux K-ev, et f ∈ L(E,F ).

� Ker f est un s-ev de E.

� Im f est un s-ev de F .

3 Injectivité et surjectivité des applications linéaires

Proposition
Soient E,F deux K-ev, et f ∈ L(E,F ).

� f est injective ⇔ Ker f = {0E}.
� f est surjective ⇔ Im f = F .

Exercice 2 : soit f :

{
R2 → R2

(x, y) 7→ (−x+ y, 2x− y)
. Étudier l’injectivité et la surjectivité de f .

III Action d’une application linéaire sur une base

1 Slogan
Théorème

Soient E et F deux espaces vectoriels. Soit B une base de E. Alors toute application de B dans
F se prolonge de façon unique en une application linéaire de E dans F .
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On retient :
Une application linéaire est entièrement déterminée par son action, par ailleurs arbitraire, sur une base.

Corollaire

Tout K-espace vectoriel de dimension finie n est isomorphe à Kn.

Exercice 3 :
Soit B = (e1, e2) la base canonique de R2. On considère l’application linéaire f ∈ L(R2,R3) telle que
f(e1) = (2, 5, 0) et f(e2) = (−1, 1, 4). Déterminer f(u) pour tout u = (x, y) ∈ R2.

2 Rang d’une application linéaire
Propriété

Soit f ∈ L(E,F ). Soit B une base de E. Alors :

� f est injective si, et seulement si f(B) est une famille libre de F .

� f est surjective si, et seulement si f(B) est une famille génératrice de F .

� f est bijective si, et seulement si f(B) est une base de F .

Corollaire
Soit f ∈ L(E,F ). On suppose E de dimension finie. Alors :
• si f est injective, alors F est de dimension infinie, ou de dimension finie avec dimE 6 dimF .
• si f est surjective, alors F est de dimension finie et dimE > dimF .
• si f bijective, alors F est de dimension finie et dimE = dimF .

Exemples : il n’existe aucune injection ni bijection de R4 dans R3, mais il existe des surjections.
Il n’existe aucune surjection ni bijection de R2 dans R5, mais il existe des injections.
Il existe une bijection de Rn dans Rp si et seulement si n = p.
Si E et F sont isomorphes, alors E et F sont de dimensions infinies, ou E et F sont de dimensions finies
et dim(E) = dim(F ).

Définition

Soit f ∈ L(E,F ). On suppose que Im(f) est un s-ev de F de dimension finie.
Alors on appelle rang de f , et on note rg(f), la dimension du s-ev Im(f).
Si B est une base quelconque de E, alors rg(f) = rg (f(B)) = dim (Im f).

Exercice 4 : Soit f :

{
R3 → R2

(x, y, z) 7→ (x− y + z,−x+ y − z)
. Déterminer le rang de f .

3 Caractérisation des applications linéaires par leur rang

Théorème ∗∗ Théorème du rang ∗∗
Soit f ∈ L(E,F ) où E est un espace vectoriel de dimension finie.

Alors : dim (Ker f) + dim (Im f) = dimE, ou encore : dim (Ker f) + rg(f) = dimE .

Exercice 5 : Soit f :

{
R2 → R3

(x, y) 7→ (x+ y, x− y, 2x)
. Déterminer Ker f et en déduire le rang de f .

Proposition
Soit f ∈ L(E,F ) avec E,F de dimensions finies p et n. Alors :

∗ rg(f) 6 n, et f est surjective ⇔ rg(f) = n.
∗ rg(f) 6 p, et f est injective ⇔ rg(f) = p.
∗ f est bijective ⇔ rg(f) = n = p.

En particulier, si dimE = dimF alors : f injective ⇔ f surjective ⇔ f bijective.

Exercice 6 : Montrer que f :

{
R3 → R3

(x, y, z) 7→ (3x+ z, y + 2z, x+ y + z)
est bijective.

Attention : le résultat est faux pour les endomorphismes en dimension infinie.
Contre-exemple : on pose E = R[X] et on considère d : P 7→ P ′.
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IV Représentations matricielles
Dans tout ce paragraphe, E,F et G sont des K-ev de dimensions finies.

1 Matrice d’une application linéaire
Définition

Soit f ∈ L(E,F ). Soient B = (e1, . . . , ep) une base de E et B′ = (e′1, . . . , e
′
n) une base de F .

On appelle matrice de l’application linéaire f dans les bases B et B′ la matrice de la famille
f(B) dans la base B′. On la note MatB,B′(f).

MatB,B′(f) = MatB′(f(e1), . . . , f(ep)) ∈Mn,p(K)

MatB,B′(f) =


λ1,1 λ1,2 · · · λ1,p

λ2,1 λ2,2 · · · λ2,p

...
...

...
λn,1 λn,2 · · · λn,p

 ⇐⇒ ∀j ∈ J1, pK, f(ej) = λ1,j .e
′
1 + · · ·+ λn,j .e

′
n

Cas particuliers :

� Si f est un endomorphisme de E, on note MatB(f) au lieu de MatB,B(f). C’est une matrice carrée.

� Si f est une forme linéaire, alors la matrice de f est une matrice-ligne.

� Soit E un espace vectoriel de dimension n, et muni d’une base B. Alors MatB(IdE) = In

Exercice 7 : Donner la matrice de f :

{
R2 → R3

(x, y) 7→ (x+ y, 2x− y, 3y)
dans les bases canoniques.

Proposition

Soit f ∈ L(E,F ). Alors pour toutes bases B,B′ de E et F , on a : rg(f) = rg
(
MatB,B′(f)

)
.

2 Image d’un vecteur par une application linéaire
Proposition

Soient E,F deux K-ev de bases respectives B et B′.
On considère f ∈ L(E,F ) et u ∈ E. Alors : MatB′(f(u)) = MatB,B′(f)×MatB(u)
En notant A = MatB,B′(f), X = MatB(u) et Y = MatB′(f(u)), alors : Y = AX

Remarque : Cette formule généralise la formule de linéarité en dimension 1 : y = ax.

Exercice 8 : Soit f :

{
R2 → R3

(x, y) 7→ (x+ y, 2x− y, 3y)
.

1. Rappeler la matrice A de f dans les bases canoniques B et B′ de R2 et R3.

2. On pose u = (5,−2) ∈ R2. Déterminer f(u) de deux manières.

3 Application linéaire canoniquement associée à une matrice

Définition

Soit A = (ai,j) ∈Mn,p(K).
On appelle application linéaire canoniquement associée à A l’application fA ∈ L(Kp,Kn)
définie par :

fA :

{
Kp → Kn

(x1, . . . , xp) 7→ (y1, . . . , yn)
où

y1

...
yn

 = A

x1

...
xp


C’est l’application linéaire dont la matrice dans les bases canoniques de Kp et Kn est A.

Exercice 9 : exprimer l’application linéaire canoniquement associée à A =

(
1 3 4
0 −2 1

)
.

Remarque : Le rang d’une matrice correspond au rang de l’application linéaire qui lui est associée.

4 Opérations sur les matrices

a Somme, produit par un scalaire

Soient f, g ∈ L(E,F ), B,B′ des bases de E et F , soit λ ∈ K. Alors :

� MatB,B′(f + g) = MatB,B′(f) + MatB,B′(g)

� MatB,B′(λf) = λMatB,B′(f)
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b Composée d’applications linéaires

Soient f ∈ L(E,F ), g ∈ L(F,G), et B,B′,B′′ des bases de E,F,G.
Alors : MatB,B′′(g ◦ f) = MatB′,B′′(g)×MatB,B′(f)

En particulier, si f est un endomorphisme de E et si k ∈ N, alors : MatB(fk) = (MatB(f))
k
.

où fk désigne la composée kième de f par elle-même.

A retenir : Une composée d’applications linéaires correspond à un produit matriciel.

Exemple : Soit A = MatB(f). On pose g = f ◦ f ◦ f − 2.f ◦ f + 3.IdE
Alors MatB(g) = A3 − 2A2 + 3In, où n désigne la dimension de E.

c Réciproque d’un isomorphisme

Théorème
Soient E,F des K-ev de dimensions finies et de bases B,B′. On considère f ∈ L(E,F ).
Alors f est un isomorphisme si et seulement si MatB,B′(f) est inversible.

Dans ce cas, dimE = dimF et MatB′,B(f−1) = (MatB,B′(f))
−1

Exercice 10 : Soit f :

{
R2 → R2

(x, y) 7→ (3x− y,−5x+ 2y)

1. Écrire la matrice A de f dans la base canonique de R2.

2. Expliquer pourquoi A est inversible, et déterminer A−1.

3. Soit (x, y) ∈ R2. En déduire l’expression de f−1(x, y).

Proposition
Soient A,B ∈Mn(K) telles que AB = In ou BA = In.
Alors A et B sont inversibles, et A−1 = B.

5 Noyau, image d’une matrice
Définition

Soit M ∈Mn,p(K) une matrice de taille n× p. On définit :
Ker(M) = {X ∈Mp,1(K) |MX = 0} l’ensemble des matrice-colonnes X telles que MX = 0.
Im(M) = {MX, X ∈Mp,1(K)} l’ensemble des matrice-colonnes de la forme MX.

Remarque : si n = p et si Ker(M) 6= {0n,1}, alors 0 ∈ Sp(M) et Ker(M) = E0(M).
En particulier : M ∈Mn(K) est inversible si et seulement si Ker(M) = {0n,1}.
Plus généralement, si λ ∈ Sp(M), alors Eλ(M) = Ker(M − λIn).

6 Formules de changement de base

Proposition

Soient B et B′ deux bases de E. Alors PB,B′ = MatB′,B(IdE).

Proposition ∗∗ Changement de bases pour un vecteur ∗∗
Soit E un K-ev de dimension finie n muni de deux bases B et B′. Soit P = PB,B′ .

Soit u ∈ E, X = MatB(u) et X ′ = MatB′(u). Alors : X = PX ′.

Théorème ∗∗ Changement de bases pour un endomorphisme ∗∗
Soit E un K-ev de dimension finie muni de deux bases B et B′. On note P = PB,B′ .

Soit f ∈ L(E). On note A = MatB(f) et A′ = MatB′(f). Alors : A′ = P−1AP .

Remarque : on reconnâıt la définition de deux matrices semblables.

Deux matrices semblables représentent le même endomorphisme dans des bases différentes.

Exercice 11 : Soit A =

(
5
3

1
3

2
3

4
3

)
∈M2(R). On considère B =

(
(1, 1), (−1, 2)

)
.

1. Donner l’expression de l’application linéaire f ∈ L(R2) canoniquement associée à la matrice A.

2. Vérifier que B est une base de R2, écrire la matrice de passage P de la base canonique à la base B.

3. Déterminer P−1.

4. En déduire la matrice A′ de f dans la base B.
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V Réduction des endomorphismes

1 Éléments propres d’un endomorphisme
Définition

Soit f un endomorphisme d’un K-ev E (de dimension quelconque).
Un vecteur propre de f est un vecteur u ∈ E, non nul, tel que : f(u) = λu pour un certain λ ∈ K.
Une valeur propre de f est un scalaire λ ∈ K tel que : ∃u ∈ E, u 6= 0, f(u) = λu.
Le spectre de f est l’ensemble de ses valeurs propres. On le note : Sp(f).
Si λ ∈ Sp(f), l’espace propre associé à λ est l’ensemble des vecteurs u ∈ E tels que f(u) = λu.

∀λ ∈ Sp(f), Eλ(f) = {u ∈ E | f(u) = λu} = Ker(f − λIE)

Proposition

Pour toute valeur propre λ de f , l’espace propre Eλ(f) est un s-ev de E, et dim(Eλ(f)) > 1.

Exercice 12 : • Soit d la dérivation de K[X] : ∀P ∈ K[X], d(P ) = P ′. Déterminer le spectre de d.

• Soit d
dx la dérivation de E = C∞(R). Déterminer Sp

(
d

dx

)
et étudier les espaces propres.

Proposition
Soient u1, . . . , un des vecteurs propres de f , associés à des valeurs propres λ1, . . . , λn deux-à-
deux distinctes. Alors (u1, . . . , un) est une famille libre.

Corollaire
Si E est de dimension finie n, et si f ∈ L(E), alors f admet au plus n valeurs propres.
De plus, une juxtaposition de bases des sous espaces propres de f est une famille libre.

En conséquence,
∑

λ∈Sp(f)

dim
(
Eλ(f)

)
6 n.

2 Diagonalisation d’un endomorphisme
Définition

Soit f ∈ L(E). Alors f est diagonalisable si et seulement si il existe une base de E
constituée de vecteurs propres de f .

Proposition
Soit f ∈ L(E) avec E de dimension finie. Soit B une base quelconque de E, et A = MatB(f).

Alors : ∗ Sp(f) = Sp(A).

∗ f est diagonalisable si et seulement si A est diagonalisable.

∗ f est diagonalisable si et seulement si il existe une base B′ de E telle que
A′ = MatB′(f) est diagonale.

Théorème ∗∗ Diagonalisabilité d’un endomorphisme ∗∗
Soit f ∈ L(E) avec E de dimension finie n.

• f est diagonalisable si et seulement si :
∑

λ∈Sp(f)

dim
(
Eλ(f)

)
= n.

• Si f admet n valeurs propres distinctes, alors f est diagonalisable, et chaque espace propre
est de dimension 1.

Exercice 13 : Soit E = R3[X] et f l’application définie par : ∀P ∈ E, f(P ) = (X2−1)P ′′− (3X+ 1)P ′.

1. Montrer que f est un endomorphisme de E.

2. Déterminer les éléments propres de f .

3. L’endomorphisme f est-il diagonalisable ?
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