Chapitre 14 Applications linéaires BCPST 24, 2025/2026

Dans tout ce chapitre, K désigne R ou C.

I Rappels sur les applications linéaires
1 Définition
DEFINITION
Soient (E,+,-) et (F,+,) deux K-ev. On consideére f : E — F.
On dit que f est une application linéaire de FE dans F' (ou morphisme) lorsque :
o Vu,v € E, f(utv)=f(u)+[f(v)
e Vue EVAeK, f(Au)=Af(u)

L’ensemble des applications linéaires de E dans F est noté Lk (F, F) ou simplement L(E, F).
Cas particuliers :
e Si f: E — F est linéaire et bijective, on dit que f est un isomorphisme.
e Si f: E — F est linéaire, on dit que f est un endomorphisme.
Leur ensemble est noté Lk (F) ou simplement L(E).
e Si f: E — F est linéaire et bijective, on dit que f est un automorphisme.
Leur ensemble est noté GLk (E) ou simplement GL(E).

e f e Lx(E,K) est appelée une forme linéaire. Leur ensemble se note aussi : Lk (F,K) = E*.

PROPOSITION  *x Caractérisation d’une application linéaire *x
‘ f: E — F est linéaire si et seulement si : Vu,v € E,VA € K, f(Au+v) = Af(u) + f(v).

PROPOSITION
Soit f € L(E,F). Alors : x f(0g) = 0p.

q q
* VA1, A\ €K, Yuy, - u, € B, f (Zm) =Y Nif(ui).
=1

i=1
Par contraposée : si f(0g) # O, alors f n’est pas linéaire.

DEFINITION

Soient F, F' deux K-ev. S’il existe un isomorphisme f : E — F', alors on dit que FE et F sont isomorphes.

2 Exemples
e Soit a € R. La fonction f: R — R définie par : Vo € R, f(z) = ax est linéaire : f € L(R).
: . E—E . "
e Soit k € K. L’application hy : ) est appelée homothétie de E de rapport k.
u — ku
h est un endomorphisme de E. Si k # 0, alors hy, est de plus un automorphisme de F : (hk) - h%.

R? - R?

o f: - est une application linéaire de R? dans R3.
(z,y) = (z + 2y, -z, 3y)
C°([a, b))

. ; / ; est linéaire sur C°([a, b)), le R-ev des fonctions continues sur [a, b)].

—

.d:{C (R) = C*(R) est linéaire : d € L(F) ou E = C*(R).

fef
+oo
e Soit E I'ensemble des suites réelles (u) de série convergente. Alors s : (u) — Z Uy, est linéaire.
n=0

e Soit E I'ensemble des VAR définies sur (2, 7, P) et admettant une espérance.
Alors 'espérance est une forme linéaire sur E.

3 Applications linéaires de K? dans K"

f: KP — K" est linéaire si et seulement si les coordonnées dans K™ de f(u) sont des combinaisons
linéaires des coordonnées dans K” de u.



4 Somme d’applications linéaires, produit par une constante

PROPOSITION
L(E,F) est stable par combinaisons linéaires.
(L(E,F),+,-) est un K-ev, s-ev de (F(E, F),+,).

On retient :

’ Si f et g sont linéaires, si A, u € K, alors Af + ug est linéaire.

5 Composition d’applications linéaires

PROPOSITION
e La composée d’applications linéaires est une application linéaire.

e Si f est un isomorphisme, alors f~! est une application linéaire.

COROLLAIRE
e La composée de deux isomorphismes est un isomorphisme.

e La réciproque d’un isomorphisme est un isomorphisme.

II Noyau et image d’une application linéaire

1 Images directes et réciproques d’un s-ev par une application linéaire

PROPOSITION
Soient E, F', deux K-ev, et f € L(E, F).

e Pour tout s-ev Fy de E, ’ensemble f(F1) est un s-ev de F'.

e Pour tout s-ev Fy de F, 'ensemble f~!(F}) est un s-ev de E.

On retient : | Les images directes et réciproques de s-ev par une application linéaire sont des s-ev.

2 Noyau et image d’une application linéaire
DEFINITION

Soient E, F, deux K-ev, et f € L(E, F).
e On appelle noyau de f, et on note Ker(f) 'ensemble des vecteurs de E d’image Op :

Ker(f) ={u€ B, f(u)=0r}=f""({0r})

e On appelle image de f, et on note Im(f) ’ensemble des images par f des vecteurs de E :
Im(f)={veF, uek, v=[f(u)}={f(u),ueE}=[f(E)

A retenir : | Déterminer le noyau d’une application linéaire f, c’est résoudre Iéquation f(u) = 0. ‘

Exercice 1 : Soit f: R[X] — R[X] définie par : VP € R[X], f(P) = XP —2P.
Montrer que f € L(R[X]), et déterminer le noyau et 'image de f.

PROPOSITION
Soient E, F, deux K-ev, et f € L(E, F).

e Ker f est un s-ev de F.

e Im f est un s-ev de F.

3 Injectivité et surjectivité des applications linéaires

PROPOSITION
Soient E, F deux K-ev, et f € L(E, F).

e [ est injective < Ker f = {0g}.
o f est surjective & Im f = F.
R? - R?

. Etudier I'injectivité et la surjectivité de f.
(Ji,y) = (—CE + y,2x - y)

Exercice 2 : soit f: {

IIT Action d’une application linéaire sur une base

1 Slogan

THEOREME
Soient F et F' deux espaces vectoriels. Soit 5 une base de E. Alors toute application de B dans
F' se prolonge de fagon unique en une application linéaire de F dans F'.



On retient :
‘ Une application linéaire est entierement déterminée par son action, par ailleurs arbitraire, sur une base.

COROLLAIRE
‘ Tout K-espace vectoriel de dimension finie n est isomorphe a K".
Exercice 3 :

Soit B = (e1,e2) la base canonique de R?. On consideére I'application linéaire f € L£(R? R?) telle que
fle1) = (2,5,0) et f(ez) = (—1,1,4). Déterminer f(u) pour tout u = (z,y) € R2

2 Rang d’une application linéaire
PROPRIETE
Soit f € L(E, F). Soit B une base de E. Alors :
e [ est injective si, et seulement si f(B) est une famille libre de F.
e [ est surjective si, et seulement si f(B) est une famille génératrice de F'.

e f est bijective si, et seulement si f(B) est une base de F.

COROLLAIRE

Soit f € L(E, F'). On suppose E de dimension finie. Alors :
e si f est injective, alors F est de dimension infinie, ou de dimension finie avec dim F < dim F.
e si f est surjective, alors F' est de dimension finie et dim E' > dim F.
e si f bijective, alors F' est de dimension finie et dim £ = dim F'.

Ezxemples : il n’existe aucune injection ni bijection de R* dans R?, mais il existe des surjections.

Il n’existe aucune surjection ni bijection de R? dans R®, mais il existe des injections.

Il existe une bijection de R™ dans RP si et seulement si n = p.

Si E et F sont isomorphes, alors E et F' sont de dimensions infinies, ou E et F sont de dimensions finies
et dim(FE) = dim(F).

DEFINITION

Soit f € L(E, F'). On suppose que Im(f) est un s-ev de F' de dimension finie.
Alors on appelle rang de f, et on note rg(f), la dimension du s-ev Im(f).
Si B est une base quelconque de E, alors rg(f) = rg (f(B)) = dim (Im f).

R3? — R?
Exercice 4 : Soit f : . Déterminer le rang de f.
(‘rayaz)H (m—y+z,—x+y—z)

3 Caractérisation des applications linéaires par leur rang

THEOREME xx Théoréme du rang *x
Soit f € L(E, F) ot E est un espace vectoriel de dimension finie.

Alors : dim (Ker f) 4+ dim (Im f) = dim E, ou encore : ’dim (Ker f) +rg(f) =dim E ‘

. . R? - R3 , . P
Exercice 5 : Soit f : . Déterminer Ker f et en déduire le rang de f.
(z,y) = (z +y,z —y,2x)
PROPOSITION
Soit f € L(E, F) avec E, F de dimensions finies p et n. Alors :
x1g(f) < m, et f estsurjective & rg(f) =n.
x1g(f) <p, et [ estinjective < rg(f) =p.
x [ est bijective < rg(f) =n =p.
En particulier, si dim ' = dim F alors : f injective < f surjective < f bijective.
R3 - R3
Exercice 6 : Montrer que f : est bijective.
(@,y,2) = Bz + 2,y + 22,2+ y + 2)
Attention : le résultat est faux pour les endomorphismes en dimension infinie.
Contre-exemple : on pose E = R[X] et on consideére d : P — P’.



IV Représentations matricielles
Dans tout ce paragraphe, F, F' et G sont des K-ev de dimensions finies.
1 Matrice d’une application linéaire
DEFINITION
Soit f € L(E, F). Soient B = (ey1,...,e,) une base de E et B’ = (e],...,e},) une base de F.

’r n

On appelle matrice de ’application linéaire f dans les bases B et B’ la matrice de la famille
f(B) dans la base B’. On la note Matg 5 (f).

Matg s/ (f) = Matg (f(e1),..., f(ep)) € My p(K)

ALl A2 ot Al

A2,1 Az ot Agp

Matg, s (f) = —=vVjie[Lpl, fle)) =M e+ -+ el

)\n,l An,2 An,p

Cas particuliers :
e Si f est un endomorphisme de E, on note Matg(f) au lieu de Matp (f). C’est une matrice carrée.
e Si f est une forme linéaire, alors la matrice de f est une matrice-ligne.

e Soit E un espace vectoriel de dimension n, et muni d’une base B. Alors Matz(Idg) = I,
R? - R3
Exercice 7 : Donner la matrice de f : dans les bases canoniques.
(@,y) = (z +y,2z —y,3y)
ProOPOSITION

‘ Soit f € L(E, F). Alors pour toutes bases B, B’ de E et F, on a : rg(f) = rg (Matg s (f)).
2 Image d’un vecteur par une application linéaire
PRrROPOSITION
Soient F, F' deux K-ev de bases respectives B et B'.

On considere f € L(E,F) et u € E. Alors : Matp/(f(u)) = Matg g/ (f) x Matp(u)
En notant A = Matg g/ (f), X = Matp(u) et Y = Matp/ (f(u)), alors : ¥ = AX

Remarque : Cette formule généralise la formule de linéarité en dimension 1 : y = ax.
R? - R3

(z,y) = (z +y,2z —y,3y)

1. Rappeler la matrice A de f dans les bases canoniques B et B’ de R? et R3.

Exercice 8 : Soit f : {

2. On pose u = (5,—2) € R?. Déterminer f(u) de deux manieres.

3 Application linéaire canoniquement associée a une matrice
DEFINITION
Soit A = (ai,j) € Mn’p(K)
On appelle application linéaire canoniquement associée a A l'application f4 € L(KP, K™)
définie par : , Y1 T
K? — K"
A . Ol\l . = A
(wlv"'axp)H(ylv"'ay’n) ’

Yn Ty

C’est I’application linéaire dont la matrice dans les bases canoniques de K? et K" est A.

. . P . Sy 1 4
Exercice 9 : exprimer 'application linéaire canoniquement associée & A = (O _32 1).

Remarque : Le rang d’une matrice correspond au rang de ’application linéaire qui lui est associée.
4 Opérations sur les matrices

a Somme, produit par un scalaire
Soient f,g € L(E,F), B,B’ des bases de E et F, soit A € K. Alors :

e Matp p (f + g) = Matg g (f) + Matp 5 (g)
° NIatB’B/()\f) = )\MatB,B’(f)



b Composée d’applications linéaires
Soient f € L(E,F), g € L(F,G), et B,B',B” des bases de E, F,G.
Alors : Matg g (g o f) = Matg g (g) x Matp s (f)

En particulier, si f est un endomorphisme de E et si k € N, alors : Matg(f*) = (Matg(f))*.
ou fF désigne la composée ki*™¢ de f par elle-méme.

A retenir : ‘ Une composée d’applications linéaires correspond a un produit matriciel. ‘

Ezemple : Soit A = Matg(f). Onpose g= fofof—2.fof+3Idg
Alors Matg(g) = A3 — 242 + 31,,, ot n désigne la dimension de E.
¢ Réciproque d’un isomorphisme
THEOREME
Soient E, F' des K-ev de dimensions finies et de bases B, 5’. On considere f € L(E, F).
Alors f est un isomorphisme si et seulement si Matp /() est inversible.

Dans ce cas, dim E = dim F et | Matg g(f~1) = (Matg g (f)) "

R? - R?
Exercice 10 : Soit f :
(z,y) = (3z — y, =5z + 2y)
1. Ecrire la matrice A de f dans la base canonique de R?2.
2. Expliquer pourquoi A est inversible, et déterminer A~!.
3. Soit (z,5) € R%. En déduire I'expression de f~1(x,y).
PRrROPOSITION
Soient A, B € M,,(K) telles que AB = I,, ou BA = 1I,,.
Alors A et B sont inversibles, et A~ = B.

5 Noyau, image d’une matrice
DEFINITION
Soit M € M,, ,(K) une matrice de taille n x p. On définit :

Ker(M) ={X e Mp1(K)|MX =0} I'ensemble des matrice-colonnes X telles que MX = 0.
Im(M)={MX, X € M,1(K)} lensemble des matrice-colonnes de la forme M X.

Remarque : sin = p et si Ker(M) # {0,1}, alors 0 € Sp(M) et Ker(M) = Ey(M).
En particulier : M € M,,(K) est inversible si et seulement si Ker(M) = {0,.1}.
Plus généralement, si A € Sp(M), alors E\(M) = Ker(M — \I,,).
6 Formules de changement de base
PROPOSITION
‘ Soient B et B’ deux bases de E. Alors Pg p = Matp g(Idg).

PROPOSITION % Changement de bases pour un vecteur *x
Soit E un K-ev de dimension finie n muni de deux bases B et B'. Soit P = Pg .

Soit u € E, X = Matp(u) et X' = Matg (u). Alors :

THEOREME +x+ Changement de bases pour un endomorphisme xx
Soit E un K-ev de dimension finie muni de deux bases B et B’. On note P = Pg 5.

Soit f € L(E). On note A = Matg(f) et A’ = Matg/(f). Alors : | A’ = P~1AP.

Remarque : on reconnait la définition de deux matrices semblables.

‘ Deux matrices semblables représentent le méme endomorphisme dans des bases différentes. ‘

Exercice 11 : Soit A = (

win wlot

1

f;) € M(R). On considere B = ((1,1), (~1,2)).

3

1. Donner I’expression de 'application linéaire f € £(R?) canoniquement associée a la matrice A.

2. Vérifier que B est une base de R?, écrire la matrice de passage P de la base canonique & la base B.
3. Déterminer P~ 1.

4. En déduire la matrice A’ de f dans la base B.



V Reéduction des endomorphismes

1 Eléments propres d’'un endomorphisme
DEFINITION

Soit f un endomorphisme d’'un K-ev E (de dimension quelconque).

Un vecteur propre de f est un vecteur v € E, non nul, tel que : f(u) = Au pour un certain A € K.

Une valeur propre de f est un scalaire A € K tel que : Ju € E, u # 0, f(u) = Au.

Le spectre de f est 'ensemble de ses valeurs propres. On le note : Sp(f).

Si A € Sp(f), l'espace propre associé & A est 'ensemble des vecteurs u € E tels que f(u) = Au.
VA € Sp(f), Ex(f) = {u € B| f(u) = Mu} = Ker(f — Alg)

PRrOPOSITION
Pour toute valeur propre A de f, I'espace propre Ex(f) est un s-ev de E, et dim(Ex\(f)) > 1.

Exercice 12 : o Soit d la dérivation de K[X] : VP € K[X], d(P) = P’. Déterminer le spectre de d.
e Soit % la dérivation de F = C*>°(R). Déterminer Sp ( d ) et étudier les espaces propres.

dz
PrOPOSITION
Soient uq,...,u, des vecteurs propres de f, associés a des valeurs propres Ai,...,\, deux-a-
deux distinctes. Alors (uq,...,u,) est une famille libre.
COROLLAIRE

Si E est de dimension finie n, et si f € L(E), alors f admet au plus n valeurs propres.
De plus, une juxtaposition de bases des sous espaces propres de f est une famille libre.
En conséquence, Z dim (EA(f)) < n.

A€ESp(f)

2 Diagonalisation d’un endomorphisme
DEFINITION

Soit f € L(E). Alors f est diagonalisable si et seulement si il existe une base de E
constituée de vecteurs propres de f.

PROPOSITION
Soit f € L(E) avec E de dimension finie. Soit B une base quelconque de E, et A = Matg(f).

Alors:  *  Sp(f) = Sp(4).
x  f est diagonalisable si et seulement si A est diagonalisable.

x  f est diagonalisable si et seulement si il existe une base B’ de E telle que
A" = Matg (f) est diagonale.
THEOREME x+x Diagonalisabilité d’un endomorphisme xx
Soit f € L(F) avec E de dimension finie n.
e f est diagonalisable si et seulement si : Z dim (E\(f)) = n.
AESP(f)

e Si f admet n valeurs propres distinctes, alors f est diagonalisable, et chaque espace propre
est de dimension 1.

Exercice 13 : Soit £ = R3[X] et f application définie par : VP € E, f(P) = (X?—-1)P" —(3X +1)P".

1. Montrer que f est un endomorphisme de E.
2. Déterminer les éléments propres de f.

3. L’endomorphisme f est-il diagonalisable ?



