Chapitre 15 Produit scalaire dans R" BCPST 24, 2025/2026

I Rappels de géométrie plane ou de ’espace

1 Vecteurs de R? ou de R?

Soit u = (z,y) ou u = (z,y, 2) un vecteur du plan P ou de 'espace &. x
La matrice de u relativement & la base canonique de R? ou de R? est donc : U = ( ) oulU =

DEFINITION

Deux vecteurs u et v du plan ou de I’espace sont colinéaires si et seulement si :
FJAeER, u=Avouv=Au.

PROPOSITION
u, v colinéaires < la famille (u,v) n’est pas libre (elle est liée)
< rg(u,v) <1
& det(u,v) =xy’ — 2’y =0 pour des vecteurs du plan
Say —ry=yz —y'z=2z1'—2Zx =0 pour des vecteurs de 'espace
Exercice 1 : Soit a € R. On considere les vecteurs u = (5a, 3) et v = (10,3a) dans R2.

Déterminer tous les réels a pour lesquels (u,v) est une base de R2.
DEFINITION

Le produit-scalaire de deux vecteurs u, v du plan ou de ’espace est le réel défini par :

(u,v) =(u|v)=(u|v)=u-v=zx'+yy ou zx' +yy + 22

La norme de u est : |[u| = \/(u,u) = /22 +y2 ou /z2+y2 + 22.

Un vecteur de norme 1 est dit normé.

Remarque : on note parfois u? = (u,u) le carré scalaire de u.
Exercice 2 : Montrer que : Yu,v € R? ou R3, [[u+v|]? + [[u — v||* = 2 (|[u][* + [|v]?).
ProposITION

| Vu,v € R? ou R3, (u,v) = [Ju|| x ||v]| x cos(u;v)

DEFINITION

Deux vecteurs du plan ou de I’espace sont dits orthogonaux lorsque leur produit scalaire est nul.
ulv & (u,v)y=0

Une famille de vecteurs du plan ou de I'espace est dite orthogonale si les vecteurs de cette famille

sont 2 a 2 orthogonaux. Si de plus ils sont normés, alors on dit que la famille est orthonormale.

Ezemple : les bases canoniques de R? ou de R? sont des bases orthonormales.

2 Droites du plan P

a) Droite donnée par un point et un vecteur-directeur
Soit D la droite passant par un point A(zg,y0) € P et de vecteur-directeur u = (a,b) € R2.

— —
Alors M(x,y) € D < AM et u sont colinéaires < det (AM, u) =0
< b(x —xg) —aly —yo) =0 : on a trouvé une équation cartésienne de D.
Réciproquement : soit D une droite d’équation cartésienne ax + by +c =0, a,b,c € R et (a,b) # (0,0).
Alors D admet pour vecteur-directeur le vecteur u = (—b, a).
De plus : M(x,y) € D < AM et u sont colinéaires < IA € R, AM = \u = (Aa, \b)
T =9+ Aa

Y (A € R) : c’est une représentation paramétrique de D.
Y=Y

b) Droite donnée par deux points distincts
Soit D la droite passant par les points A(zg,yo) et B(z1,y1) € P.

On applique la méthode précédente en utilisant le vecteur-directeur u = E = (z1 — o, Y1 — Yo)-

¢) Droite donnée par un point et un vecteur-normal
Soit D la droite passant par un point A(zg,0) € P et de vecteur-normal n = (a,b) € R2.
Alors M(z,y) € D < AM et n sont orthogonaux < (AM,u) =0

< a(x —xp) + by —yo) =0 : c’est une équation cartésienne de D.

Réciproquement : soit D une droite d’équation cartésienne ax + by +c¢ =0, a,b,c € R et (a,b) # (0,0).
Alors D admet pour vecteur-normal le vecteur n = (a, b).



Exercice 3 : Soit D la droite du plan P d’équation cartésienne : 2z 4+ 3y + 7 = 0.
On counsidere le point A(—1,2), le vecteur u = (3,2) et la droite A passant par A et dirigée par w.

1. Déterminer une équation cartésienne de la droite D’ passant par A et perpendiculaire & D.

2. Déterminer l'intersection entre D et A.

3 Cercles du plan P
a) Cercle donné par son centre et son rayon
Soit C le cercle de centre Q(xg,yo0) et de rayon R € RY.

e
Alors M (z,y) € C < QM = R & ||[QM]]? = R?
& (z—20)?+(y—1yo)? = R?* ce qui donne I'équation cartésienne du cercle C.

b) Cercle donné par un diameéetre
Soit C le cercle de diametre [AB] ou A(x1,y1) et B(za,y2) sont deux points distincts du plan.

Alors M(z,y) € C & AM et BM sont orthogonaux
& (AM.BM) =0 & (¢~ 2)(z — v2) + (y ~ 32)(y — 92) =0
c) Représentation paramétrique d’un cercle 9 9
Soit C un cercle d’équation : (x — x¢)? + (y — v0)? = R?> & (w — ,ro) + (y — xO) =1.

R R

On pose T cos(#), on a y—t _ sin(f) et C : T=rot RC.OS(H) (#eR)
R R y = yo + Rsin(6)

d) Eléments caractéristiques d’un cercle
Soit E = {M(x,y) eEP, 22 +y’+ax+by+c= O} ol a, b, c sont trois réels donnés.

2 b\ 2 2 2
alorsE:(x—i—g) —|—(y+> =d oﬁd:a——i———c. Sid<0,alors E=@.

2 2 4 4
. a b
Sid >0, alors E est le cercle de centre €2 (—2, —2> et de rayon R = V/d.

Exercice 4 :

1. Déterminer une équation du cercle C de diametre [AB], ot A(3,1) et B(7,—1).
Préciser son centre et son rayon.

2. Déterminer I’ensemble E = {M(x, y)EP | 22 +y?> —8xr —6y+10= 0}, puis préciser C N E.
3. Soit D la droite d’équation : z 4+ 3y — 4 = 0. Déterminer C N D.

4 Plans de ’espace &
a) Plan donné par un point et deux vecteur-directeurs non colinéaires
Soit P le plan passant par A(zg, Yo, 20) € € et dirigé par u = (a,b,¢),v = (a’, ¥, ), u,v non colinéaires.
Alors M(x,y,z) € P < AM est une combinaison linéaire de uw et v < IN\, u € R, AM = M+ pv

T =9+ Aa + pa’

Sey=yo+b+pb (A\peR)

z2=2z9+ A+ uc
On a trouvé un systéme d’équations paramétriques du plan P.
On peut y lire directement les coordonées de 2 vecteurs directeurs de P, et d’un point A € P.

b) Plan donné par trois points non alignés
Rappel : trois points non alignés A, B, C de l'espace définissent un plan, noté (ABC).

On trouve des équations paramétriques de (ABC') par la méthode précédente, avec u = E et v = ﬁ

¢) Plan donné par un point et un vecteur-normal
Soit P le plan passant par un point A(zg,yo,20) € € et de vecteur-normal n(a, b, c¢).
Alors M(x,y,z) € P < AM et n sont orthogonaux < <m7 ny =0
< a(x — o) + by — yo) + ¢(z — z9) =0 : c’est une équation cartésienne de P.
Réciproquement :
Soit P un plan d’équation cartésienne ax + by +cz+d =0, a,b,¢,d € R et (a,b,c) # (0,0,0).
Alors n = (a, b, ¢) est un vecteur-normal au plan P. Tout vecteur non nul et orthogonal & n dirige P.



5 Droites dans ’espace &
a) Droite donnée par un point et un vecteur-directeur
Soit D la droite passant par un point A(z,yo, z0) € € et de vecteur-directeur u = (a,b, c) € R?.

— S
Alors : M(x,y,2) € D < AM et u sont colinéaires < IX € R, AM = \u = (Aa, \b, \¢)
T =x0+ Aa
S3INeER, Sy=yg+ Ao :c’est une représentation paramétrique de D.
z=2z9+ A
Si D = (AB) avec A, B deux points distincts de 'espace, on utilise le vecteur v = AB.
b) Intersection de plans dans ’espace
Deux plans P; et Py de I'espace sont :
* ou bien paralleles (strictement ou confondus),
x ou bien sécants, et leur intersection est alors une droite.
Soient Py :ax +by+cz+d=0et Py:d'x+by+ 2+ d =0 deux plans de 'espace.
Alors P; et Py sont paralleles si et seulement si ils ont des vecteurs normaux colinéaires :
P1 et Py sont paralleles <= n1 = (a,b,c) et ny = (a’, b, ') sont colinéaires

Si Py et Py ne sont pas paralleles, on pose D = P; N Ps.
Alors D admet un systéme d’équations cartésiennes :

M b d=20
M(x,y,z) € D& €7 & ooy t+ez+
M € Py dr+by+dz+d =0

Si Py et P, sont donnés I'un par une équation cartésienne, et I’autre par une représentation paramétrique :
T =z + A+ pa’
Priax+by+cz+d=0 et Pa:<y=yo+AB+pus8 (LueR)

z=20+ Ay +
Alors n = (a,b,c) est normal & Py, u = (o, 8,7) et v = (o/, #',7') dirigent Po,
On exprime 4 en fonction de A grace a : a(zg + A+ pa’) + b(yo + A8+ pB ) +c(zo+ Ay +py)+d =0
On remplace u dans la représentation paramétrique de Ps pour obtenir un paramétrage de D.

Exercice 5 :

On considere dans I’espace les points A(1,1,0), B(2,1,—1) et C(3,2,1). Soit n = (1,1,2) € R3.
1. Montrer que les points A, B, C ne sont pas alignés. On pose P le plan (ABC).
2. Déterminer une équation cartésienne de P;.
3. Soit Py le plan passant par A et de vecteur-normal n. Montrer que P; et Py sont sécants.

4. Soit D = P; N'Py. Déterminer une représentation paramétrique de D.

II Produit scalaire dans R"
1 Définition
DEFINITION

Soient u = (x1,...,2,) et v = (y1,...,Yyn) deux vecteurs de R™.

Alors le produit-scalaire de u et v est le réel défini par : (u,v) = Z Tl
i=1

Ecriture matricielle dans la base canonique :

Soient U = Matc(u) et V = Mat¢(v), ou C désigne la base canonique de R™.
Y1

Alors UT = (J;l xn) et V.= i | donc:|(u,v) = UTv.

DEFINITION Yn

Soit u = (x1,...,%,) € R™. La norme euclidienne de u est le réel : ||u|| = \/(u,u) =

Un vecteur de norme 1 est dit normé, ou unitaire.

Exercice 6 : Dans R*, on pose u = (1,2,3,4) et v = (1,—1,1,—1). Calculer (u,v), ||ul| et [|v]|.



2 Propriétés
PROPRIETE
* le produit scalaire est bilinéaire :
Yuy,ug,v € R™, VA € R, (Aui + ug,v) = Aug,v) + (uz,v)
Yu,v1,v9 € R™, VA € R, (u, Avy + v2) = Mu,v1) + (u,va)
* le produit scalaire est symétrique : Vu,v € R", (u,v) = (v,u)
* le produit scalaire est positif : Yu € R”, (u,u) > 0.

* le produit scalaire est défini : Vu € R", (u,u) =0< u=0.
PROPOSITION  *x Inégalité de Cauchy-Schwarz xx
| Vu,v € R™, [(u,v)| < |[|ul| x [[v]| avec égalité si et seulement si u et v sont colinéaires.

PROPRIETE
* YueR", |Jull=0<u=0

« YueR" YAER, |||l = A x ||ull

x Yu,v € R™, [Ju+v|| < |Jul| + ||v]] (inégalité triangulaire).
et [lu+v|| = ||ul| +||v|| & IN € Ry, u = Av ou v = Au (u, v colinéaires et de méme sens).
3 Orthogonalité
DEFINITION

Deux vecteurs de R™ sont orthogonaux lorsque leur produit scalaire est nul : u L v < (u,v) = 0.
Deux matrice-colonnes M, N € M, 1(R) sont dites orthogonales ssi M7 N = 0.

Une famille de vecteurs de R™ est dite orthogonale si les vecteurs de cette famille sont 2 a 2
orthogonaux. Si de plus ils sont normés, alors on dit que la famille est orthonormale.

Ezemple : la base canonique de R"™ est une famille orthonormale.
Méthode : on obtient une famille orthonormale & partir d’une famille orthogonale en multipliant tout
vecteur de cette famille par 'inverse de sa norme.

PROPOSITION

‘ Toute famille orthogonale de R™ ne contenant pas le vecteur nul est libre.
THEOREME *x Théoréme de Pythagore *x

| Soient u, v orthogonaux dans R™. Alors : ||u + v|[* = ||u|? + ||v][?

4 Bases orthonormales
DEFINITION

Une base de R™ qui est aussi une famille orthonormale est appelée base orthonormale de R". I

ProOPOSITION ** Caractérisation des bases orthonormales xx*

lsii=j

Osii#j

Remarque : on utilise aussi cette caractérisation pour des bases orthonormales de sous-espaces vectoriels
de R™, de dimension p. Il faut alors s’assurer que card(B) = p.

Soit B = (u1,...,uy) une famille de R™, de cardinal n.
Alors B est une base orthonormale de R < Vi € [1,n], (u;,u;j) = {

THEOREME (admis)
‘ Tout sous-espace vectoriel non nul de R™ admet une base orthonormale.
Exercice 7 : Dans R*, on pose u = (1,1,1,1), v = (0,1,0,1), w = (0,0,1,0) et F = Vect(u,v,w).

1. Montrer que B = (u,v,w) est une base de F'. Voot Vet
2. Construire une base orthonormale (a, b, ¢) de F telle que : ect(a) = Vect(u)
Vect(a, b) = Vect(u,v)
ProOPOSITION

Le produit scalaire et donc la norme se calculent de la méme fagon dans toutes les bases
orthonormales de R” : soient u,v € R"™, soit B une base orthonormale de R™.
On pose U = Matg(u), V = Matg(v).

n 1 Y1
Alors:(u,v>:UTV:Zz,;y,; ouU=|: [etV=

=1
T Yn

COROLLAIRE

‘ La matrice de passage entre 2 bases orthonormales de R™ vérifie : PT P = I,, (ie : P~ = PT).



THEOREME x* Théoréme spectral (version complete) s

Soit A une matrice symétrique & coefficients réels : A € S,,(R).
1) On suppose que A, u sont deux valeurs propres distinctes de A.
Soient X € Ey et Y € E,,. Alors X et Y sont orthogonales : X7'Y = 0.

2) A est diagonalisable, et il existe une base orthonormale de M,, 1(R) constituée
de vecteurs propres.
III Projections orthogonales

1 Orthogonal d’un s-ev de R”
DEFINITION

Soit A une partie de R"™. On appelle orthogonal de A, et on note A+, le sous-espace vectoriel
de R™ constitué des vecteurs qui sont orthogonaux a tout vecteur de A.
At ={ueR" | Ywe A, ulv}

ProrosITION
Soit F' un sous-espace vectoriel de R™. Alors :

1. FNFL = {Og-}.
2. Vu e R", 3! (up,upr) € F X Ft | u=up +ups
Exercice 8 : Soit F' le sous-espace vectoriel de R* défini par : F = {(x, y,2,t) ER* |y —t= ()}.
Déterminer F*. Soit u = (1, 1,0,0). Trouver v € F, w € F tels que : u = v+ w.

2 Projection orthogonale sur un s-ev de R”
DEFINITION

Soit F' un sous-espace vectoriel de R™. On appelle projection orthogonale sur F' 'endomorphisme
p, de R™ défini par : Yu € R", u = up + up1 et on pose : p,.(u) = up.

Ezemples : pg, = ldr~ et p,, = 0cmrn)
PROPRIETE
Soit F' un sous-espace de R" et p,. la projection orthogonale sur F. Alors :
1. p.op. =D,

2. Im(p,)=F
3. Ker(p,) =F+
COROLLAIRE

| Soit F un sous-espace vectoriel de R". Alors : dim(F) + dim(F*t) = n.

PROPRIETE x+ Expression de la projection orthogonale #x
Soit F' un sous-espace vectoriel de R™ non nul, de base B = (f1,..., fr).

1. si B est orthogonale, alors : Yu € R", p,.(u) = Z <<J1:7 ]J2>>
i—1 79 J1

fi

R
2. si B est orthonormale, alors : Yu € R”, p,.(u) = Z (u, fi) fi

i=1

Exercice 9 : Soit F le sous-espace vectoriel de R* défini par : F = {(1:, y,2,t) ERY | y—t= O}.
1. Déterminer le projeté orthogonal de u = (1,1,0,0) sur F.
2. Déterminer la matrice M de la projection orthogonale p,. dans la base canonique de R*.

3 Distances dans R"
DEFINITION

On appelle distance euclidienne (ou simplement : distance) entre deux vecteurs de R”
la norme euclidienne de leur différence : Vu,v € R™, d(u,v) = |ju — ||

Exercice 10 : Calculer dans R* la distance entre u = (1,1,0,0) et v = (0,1,0, 1).
PROPRIETE
Soient u,v,w € R™. Alors : x d(u,v) = d(v,u)
xd(u,v) =0 u=0v
* d(u, w) < d(u,v) +d(v, w)



DEFINITION
Soit A C R™ non vide, et soit u € R™. La distance de u & A est : d(u, A) = inf {d(u,a), a € A}.

PROPOSITION
Soit F' un sous-espace vectoriel de R™, et soit u € R™. Alors : d(u, F') = ||u — p, (u)]|.
De plus, si v € F et si d(u,v) = d(u, F), alors v = p,.(u).

Exercice 11 : Soit F le sous-espace vectoriel de R* défini par : F = {(x,y, 2t)eERY | y—t= 0}.
On pose v = (1,1,0,0). Déterminer d(u, F).
4 Application : ajustement affine par la méthode des moindres carrés

On dispose d'un relevé {(x1,y1), ..., (Zn,yn)} de n points du plan, par exemple issus de données expérimentales.
On cherche une relation affine liant les abscisses x; aux ordonnées y; de ces points : y; = ax;+b (a,b € R).

Si les points M;(z;,y;) ne sont pas tous alignés, on n’obtiendra pas une relation exacte.

On cherche alors la "meilleure” relation affine, au sens ou la somme des carrés des distances entre les
points M; et les points de la droite A : y = ax + b de mémes abscisses est minimale.

On cherche donc & minimiser : S = Z (yi — (az; + b))z‘
i=1
On pose dans R™ : u = (z1,...,2,), v=(1,...,1) et w=(y1,---,Yn)-

Alors S = ||w — (au + bv)||? et {au + bv, a,b € R} = Vect(u,v) = F.
u, v ne sont pas colinéaires (car sinon les x; sont tous égaux et les points M; sont alignés), donc dim(F') = 2.

La somme S est minimale lorsque au + bv = p, (w).
On cherche donc une base orthogonale de F', par exemple (v, vp) avec vg € F', non nul, tel que (vg, v) = 0.

On pose vg = au + Bv. Alors (vg, u) = alu,v) + B{v,v) = alu,v) + nB =0 donc S = —%(u, v)

{u, v)

Exercice 12 : appliquer cette méthode aux points (1,2), (2,8), (3,12), (4,14).

et en choisissant av = 1, on obtient : vg = u — v. On peut enfin calculer p, (w) et trouver a et b.

5 Projection dans le plan P

Soit M (g, yo) un point du plan, et D : ax + by + ¢ = 0 une droite connue par une équation cartésienne.
Le projeté orthogonal H de M sur D est I'intersection de D avec 'unique droite perpendiculaire a D
et passant par M. La distance entre M et la droite D est donnée par : d(M,D) = M H.

Soient u = O—J\>/[, n = (a, b) vecteur-normal & D. Alors : Mﬁ est colinéaire a n : IA € R, Mﬁ = \n.
axy + byo + ¢

Puis H € D donne : a(zg + aX) + b(yo + bA) + ¢ = 0 dont on déduit que : A = — pER

lazo + byo + ¢|
va? + b2

6 Projection dans ’espace £

On adonc : MH = || x [|n]| =

Soit M (zg, Yo, 20) un point de l'espace, et P : ax + by + ¢z + d = 0 un plan connu par une équation
cartésienne. Le projeté orthogonal H de M sur P est l'intersection de P avec 'unique droite perpen-
diculaire a P et passant par M. La distance entre M et le plan P est donnée par : d(M,P) = M H.

HeP
n et M ﬁ sont colinéaires

axg+ by +czo+d
a? + b2 + 2

Soit n = (a, b, ¢) un vecteur-normal & P. On trouve les coordonnées de H en exprimant : {

MH = n donc H € P < a(xo + aX) + b(yo + bA) + c(z0 + ¢A\) +d = 0 donc A = —
lazo + byo + c20 + d
VETRTE
Exercice 13 : Déterminer la distance entre le point M(1,2,3) et leplan P:z+y+ 2+ 3 =0.
Préciser les coordonnées du projeté orthogonal de M sur P.

Enfin, d(M,P) = MH = |\| x ||n|| donc MH =



