
Chapitre 15 Produit scalaire dans Rn BCPST 2A, 2025/2026

I Rappels de géométrie plane ou de l’espace

1 Vecteurs de R2 ou de R3

Soit u = (x, y) ou u = (x, y, z) un vecteur du plan P ou de l’espace E .

La matrice de u relativement à la base canonique de R2 ou de R3 est donc : U =

(
x
y

)
ou U =

xy
z

.

Définition

Deux vecteurs u et v du plan ou de l’espace sont colinéaires si et seulement si :
∃λ ∈ R, u = λv ou v = λu.

Proposition
u, v colinéaires ⇔ la famille (u, v) n’est pas libre (elle est liée)

⇔ rg(u, v) 6 1
⇔ det(u, v) = xy′ − x′y = 0 pour des vecteurs du plan
⇔ xy′ − x′y = yz′ − y′z = zx′ − z′x = 0 pour des vecteurs de l’espace

Exercice 1 : Soit a ∈ R. On considère les vecteurs u = (5a, 3) et v = (10, 3a) dans R2.
Déterminer tous les réels a pour lesquels (u, v) est une base de R2.

Définition

Le produit-scalaire de deux vecteurs u, v du plan ou de l’espace est le réel défini par :

〈u, v〉 = 〈u | v〉 = (u | v) = u · v = xx′ + yy′ ou xx′ + yy′ + zz′

La norme de u est : ||u|| =
√
〈u, u〉 =

√
x2 + y2 ou

√
x2 + y2 + z2.

Un vecteur de norme 1 est dit normé.

Remarque : on note parfois u2 = 〈u, u〉 le carré scalaire de u.

Exercice 2 : Montrer que : ∀u, v ∈ R2 ou R3, ||u+ v||2 + ||u− v||2 = 2
(
||u||2 + ||v||2

)
.

Proposition

∀u, v ∈ R2 ou R3, 〈u, v〉 = ||u|| × ||v|| × cos(û, v)

Définition

Deux vecteurs du plan ou de l’espace sont dits orthogonaux lorsque leur produit scalaire est nul.

u⊥ v ⇔ 〈u, v〉 = 0
Une famille de vecteurs du plan ou de l’espace est dite orthogonale si les vecteurs de cette famille
sont 2 à 2 orthogonaux. Si de plus ils sont normés, alors on dit que la famille est orthonormale.

Exemple : les bases canoniques de R2 ou de R3 sont des bases orthonormales.

2 Droites du plan P
a) Droite donnée par un point et un vecteur-directeur
Soit D la droite passant par un point A(x0, y0) ∈ P et de vecteur-directeur u = (a, b) ∈ R2.

Alors M(x, y) ∈ D ⇔
−−→
AM et u sont colinéaires ⇔ det

(−−→
AM,u

)
= 0

⇔ b(x− x0)− a(y − y0) = 0 : on a trouvé une équation cartésienne de D.

Réciproquement : soit D une droite d’équation cartésienne ax+ by + c = 0 , a, b, c ∈ R et (a, b) 6= (0, 0).
Alors D admet pour vecteur-directeur le vecteur u = (−b, a).

De plus : M(x, y) ∈ D ⇔
−−→
AM et u sont colinéaires ⇔ ∃λ ∈ R,

−−→
AM = λu = (λa, λb)

⇔

{
x = x0 + λa

y = y0 + λb
(λ ∈ R) : c’est une représentation paramétrique de D.

b) Droite donnée par deux points distincts
Soit D la droite passant par les points A(x0, y0) et B(x1, y1) ∈ P.

On applique la méthode précédente en utilisant le vecteur-directeur u =
−−→
AB = (x1 − x0, y1 − y0).

c) Droite donnée par un point et un vecteur-normal
Soit D la droite passant par un point A(x0, y0) ∈ P et de vecteur-normal n = (a, b) ∈ R2.

Alors M(x, y) ∈ D ⇔
−−→
AM et n sont orthogonaux ⇔ 〈

−−→
AM,u〉 = 0

⇔ a(x− x0) + b(y − y0) = 0 : c’est une équation cartésienne de D.

Réciproquement : soit D une droite d’équation cartésienne ax+ by + c = 0 , a, b, c ∈ R et (a, b) 6= (0, 0).
Alors D admet pour vecteur-normal le vecteur n = (a, b).
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Exercice 3 : Soit D la droite du plan P d’équation cartésienne : 2x+ 3y + 7 = 0.
On considère le point A(−1, 2), le vecteur u = (3, 2) et la droite ∆ passant par A et dirigée par u.

1. Déterminer une équation cartésienne de la droite D′ passant par A et perpendiculaire à D.

2. Déterminer l’intersection entre D et ∆.

3 Cercles du plan P
a) Cercle donné par son centre et son rayon
Soit C le cercle de centre Ω(x0, y0) et de rayon R ∈ R?

+.

Alors M(x, y) ∈ C ⇔ ΩM = R⇔ ||
−−→
ΩM ||2 = R2

⇔ (x− x0)2 + (y − y0)2 = R2 ce qui donne l’équation cartésienne du cercle C.
b) Cercle donné par un diamètre
Soit C le cercle de diamètre [AB] où A(x1, y1) et B(x2, y2) sont deux points distincts du plan.

Alors M(x, y) ∈ C ⇔
−−→
AM et

−→
BM sont orthogonaux

⇔ 〈
−−→
AM,

−−→
BM〉 = 0⇔ (x− x1)(x− x2) + (y − y1)(y − y2) = 0

c) Représentation paramétrique d’un cercle

Soit C un cercle d’équation : (x− x0)2 + (y − y0)2 = R2 ⇔
(
x− x0
R

)2

+

(
y − x0
R

)2

= 1.

On pose
x− x0
R

= cos(θ), on a
y − y0
R

= sin(θ) et C :

{
x = x0 +R cos(θ)

y = y0 +R sin(θ)
(θ ∈ R)

d) Éléments caractéristiques d’un cercle
Soit E =

{
M(x, y) ∈ P , x2 + y2 + ax+ by + c = 0

}
où a, b, c sont trois réels donnés.

alors E :
(
x+

a

2

)2
+

(
y +

b

2

)2

= d où d =
a2

4
+
b2

4
− c. Si d < 0, alors E = ∅.

Si d > 0, alors E est le cercle de centre Ω

(
−a

2
,− b

2

)
et de rayon R =

√
d.

Exercice 4 :

1. Déterminer une équation du cercle C de diamètre [AB], où A(3, 1) et B(7,−1).

Préciser son centre et son rayon.

2. Déterminer l’ensemble E =
{
M(x, y) ∈ P | x2 + y2 − 8x− 6y + 10 = 0

}
, puis préciser C ∩ E.

3. Soit D la droite d’équation : x+ 3y − 4 = 0. Déterminer C ∩ D.

4 Plans de l’espace E
a) Plan donné par un point et deux vecteur-directeurs non colinéaires
Soit P le plan passant par A(x0, y0, z0) ∈ E et dirigé par u = (a, b, c), v = (a′, b′, c′), u, v non colinéaires.

Alors M(x, y, z) ∈ P ⇔
−−→
AM est une combinaison linéaire de u et v ⇔ ∃λ, µ ∈ R,

−−→
AM = λu+ µv

⇔


x = x0 + λa+ µa′

y = y0 + λb+ µb′

z = z0 + λc+ µc′
(λ, µ ∈ R)

On a trouvé un système d’équations paramétriques du plan P.
On peut y lire directement les coordonées de 2 vecteurs directeurs de P, et d’un point A ∈ P.

b) Plan donné par trois points non alignés
Rappel : trois points non alignés A,B,C de l’espace définissent un plan, noté (ABC).

On trouve des équations paramétriques de (ABC) par la méthode précédente, avec u =
−−→
AB et v =

−→
AC.

c) Plan donné par un point et un vecteur-normal
Soit P le plan passant par un point A(x0, y0, z0) ∈ E et de vecteur-normal n(a, b, c).

Alors M(x, y, z) ∈ P ⇔
−−→
AM et n sont orthogonaux ⇔ 〈

−−→
AM,n〉 = 0

⇔ a(x− x0) + b(y − y0) + c(z − z0) = 0 : c’est une équation cartésienne de P.
Réciproquement :
Soit P un plan d’équation cartésienne ax+ by + cz + d = 0 , a, b, c, d ∈ R et (a, b, c) 6= (0, 0, 0).
Alors n = (a, b, c) est un vecteur-normal au plan P. Tout vecteur non nul et orthogonal à n dirige P.
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5 Droites dans l’espace E
a) Droite donnée par un point et un vecteur-directeur
Soit D la droite passant par un point A(x0, y0, z0) ∈ E et de vecteur-directeur u = (a, b, c) ∈ R3.

Alors : M(x, y, z) ∈ D ⇔
−−→
AM et u sont colinéaires ⇔ ∃λ ∈ R,

−−→
AM = λu = (λa, λb, λc)

⇔ ∃λ ∈ R,


x = x0 + λa

y = y0 + λb

z = z0 + λc

: c’est une représentation paramétrique de D.

Si D = (AB) avec A,B deux points distincts de l’espace, on utilise le vecteur u =
−−→
AB.

b) Intersection de plans dans l’espace
Deux plans P1 et P2 de l’espace sont :

∗ ou bien parallèles (strictement ou confondus),
∗ ou bien sécants, et leur intersection est alors une droite.

Soient P1 : ax+ by + cz + d = 0 et P2 : a′x+ b′y + c′z + d′ = 0 deux plans de l’espace.
Alors P1 et P2 sont parallèles si et seulement si ils ont des vecteurs normaux colinéaires :

P1 et P2 sont parallèles ⇐⇒ n1 = (a, b, c) et n2 = (a′, b′, c′) sont colinéaires

Si P1 et P2 ne sont pas parallèles, on pose D = P1 ∩ P2.
Alors D admet un système d’équations cartésiennes :

M(x, y, z) ∈ D ⇔

{
M ∈ P1

M ∈ P2

⇔

{
ax+ by + cz + d = 0

a′x+ b′y + c′z + d′ = 0

Si P1 et P2 sont donnés l’un par une équation cartésienne, et l’autre par une représentation paramétrique :

P1 : ax+ by + cz + d = 0 et P2 :


x = x0 + λα+ µα′

y = y0 + λβ + µβ′

z = z0 + λγ + µγ′
(λ, µ ∈ R)

Alors n = (a, b, c) est normal à P1, u = (α, β, γ) et v = (α′, β′, γ′) dirigent P2,
On exprime µ en fonction de λ grâce à : a(x0 + λα+ µα′) + b(y0 + λβ + µβ′) + c(z0 + λγ + µγ′) + d = 0
On remplace µ dans la représentation paramétrique de P2 pour obtenir un paramétrage de D.

Exercice 5 :
On considère dans l’espace les points A(1, 1, 0), B(2, 1,−1) et C(3, 2, 1). Soit n = (1, 1, 2) ∈ R3.

1. Montrer que les points A,B,C ne sont pas alignés. On pose P1 le plan (ABC).

2. Déterminer une équation cartésienne de P1.

3. Soit P2 le plan passant par A et de vecteur-normal n. Montrer que P1 et P2 sont sécants.

4. Soit D = P1 ∩ P2. Déterminer une représentation paramétrique de D.

II Produit scalaire dans Rn

1 Définition
Définition

Soient u = (x1, . . . , xn) et v = (y1, . . . , yn) deux vecteurs de Rn.

Alors le produit-scalaire de u et v est le réel défini par : 〈u, v〉 =

n∑
i=1

xiyi.

Écriture matricielle dans la base canonique :
Soient U = MatC(u) et V = MatC(v), où C désigne la base canonique de Rn.

Alors UT =
(
x1 . . . xn

)
et V =

y1...
yn

 donc : 〈u, v〉 = UT V .

Définition

Soit u = (x1, . . . , xn) ∈ Rn. La norme euclidienne de u est le réel : ||u|| =
√
〈u, u〉 =

√√√√ n∑
i=1

x2i .

Un vecteur de norme 1 est dit normé, ou unitaire.

Exercice 6 : Dans R4, on pose u = (1, 2, 3, 4) et v = (1,−1, 1,−1). Calculer 〈u, v〉, ||u|| et ||v||.
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2 Propriétés
Propriété
∗ le produit scalaire est bilinéaire :

∀u1, u2, v ∈ Rn, ∀λ ∈ R, 〈λu1 + u2, v〉 = λ〈u1, v〉+ 〈u2, v〉
∀u, v1, v2 ∈ Rn, ∀λ ∈ R, 〈u, λv1 + v2〉 = λ〈u, v1〉+ 〈u, v2〉

∗ le produit scalaire est symétrique : ∀u, v ∈ Rn, 〈u, v〉 = 〈v, u〉
∗ le produit scalaire est positif : ∀u ∈ Rn, 〈u, u〉 > 0.

∗ le produit scalaire est défini : ∀u ∈ Rn, 〈u, u〉 = 0⇔ u = 0.

Proposition ∗∗ Inégalité de Cauchy-Schwarz ∗∗
∀u, v ∈ Rn, |〈u, v〉| 6 ||u|| × ||v|| avec égalité si et seulement si u et v sont colinéaires.

Propriété
∗ ∀u ∈ Rn, ||u|| = 0⇔ u = 0

∗ ∀u ∈ Rn, ∀λ ∈ R, ||λu|| = |λ| × ||u||
∗ ∀u, v ∈ Rn, ||u+ v|| 6 ||u||+ ||v|| (inégalité triangulaire).

et ||u+ v|| = ||u||+ ||v|| ⇔ ∃λ ∈ R+, u = λv ou v = λu (u, v colinéaires et de même sens).

3 Orthogonalité
Définition

Deux vecteurs de Rn sont orthogonaux lorsque leur produit scalaire est nul : u⊥ v ⇔ 〈u, v〉 = 0.
Deux matrice-colonnes M,N ∈Mn,1(R) sont dites orthogonales ssi MT N = 0.
Une famille de vecteurs de Rn est dite orthogonale si les vecteurs de cette famille sont 2 à 2
orthogonaux. Si de plus ils sont normés, alors on dit que la famille est orthonormale.

Exemple : la base canonique de Rn est une famille orthonormale.
Méthode : on obtient une famille orthonormale à partir d’une famille orthogonale en multipliant tout
vecteur de cette famille par l’inverse de sa norme.

Proposition

Toute famille orthogonale de Rn ne contenant pas le vecteur nul est libre.

Théorème ∗∗ Théorème de Pythagore ∗∗
Soient u, v orthogonaux dans Rn. Alors : ||u+ v||2 = ||u||2 + ||v||2

4 Bases orthonormales
Définition

Une base de Rn qui est aussi une famille orthonormale est appelée base orthonormale de Rn.

Proposition ∗∗ Caractérisation des bases orthonormales ∗∗
Soit B = (u1, . . . , un) une famille de Rn, de cardinal n.

Alors B est une base orthonormale de Rn ⇔ ∀i ∈ J1, nK, 〈ui, uj〉 =

{
1 si i = j

0 si i 6= j

Remarque : on utilise aussi cette caractérisation pour des bases orthonormales de sous-espaces vectoriels
de Rn, de dimension p. Il faut alors s’assurer que card(B) = p.

Théorème (admis)

Tout sous-espace vectoriel non nul de Rn admet une base orthonormale.

Exercice 7 : Dans R4, on pose u = (1, 1, 1, 1), v = (0, 1, 0, 1), w = (0, 0, 1, 0) et F = Vect(u, v, w).

1. Montrer que B = (u, v, w) est une base de F .

2. Construire une base orthonormale (a, b, c) de F telle que :

{
Vect(a) = Vect(u)

Vect(a, b) = Vect(u, v)
Proposition

Le produit scalaire et donc la norme se calculent de la même façon dans toutes les bases
orthonormales de Rn : soient u, v ∈ Rn, soit B une base orthonormale de Rn.
On pose U = MatB(u), V = MatB(v).

Alors : 〈u, v〉 = UT V =

n∑
i=1

xiyi où U =

x1...
xn

 et V =

y1...
yn


Corollaire

La matrice de passage entre 2 bases orthonormales de Rn vérifie : PT P = In (ie : P−1 = PT ).
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Théorème ∗∗ Théorème spectral (version complète) ∗∗
Soit A une matrice symétrique à coefficients réels : A ∈ Sn(R).
1) On suppose que λ, µ sont deux valeurs propres distinctes de A.

Soient X ∈ Eλ et Y ∈ Eµ. Alors X et Y sont orthogonales : XT Y = 0.

2) A est diagonalisable, et il existe une base orthonormale de Mn,1(R) constituée
de vecteurs propres.

III Projections orthogonales
1 Orthogonal d’un s-ev de Rn

Définition

Soit A une partie de Rn. On appelle orthogonal de A, et on note A⊥, le sous-espace vectoriel
de Rn constitué des vecteurs qui sont orthogonaux à tout vecteur de A.

A⊥ = {u ∈ Rn | ∀v ∈ A, u⊥ v}

Proposition
Soit F un sous-espace vectoriel de Rn. Alors :

1. F ∩ F⊥ = {0Rn}.
2. ∀u ∈ Rn, ∃ ! (uF , uF⊥) ∈ F × F⊥ | u = uF + uF⊥

Exercice 8 : Soit F le sous-espace vectoriel de R4 défini par : F =
{

(x, y, z, t) ∈ R4 | y − t = 0
}

.

Déterminer F⊥. Soit u = (1, 1, 0, 0). Trouver v ∈ F, w ∈ F⊥ tels que : u = v + w.

2 Projection orthogonale sur un s-ev de Rn

Définition

Soit F un sous-espace vectoriel de Rn. On appelle projection orthogonale sur F l’endomorphisme
p

F
de Rn défini par : ∀u ∈ Rn, u = uF + uF⊥ et on pose : p

F
(u) = uF .

Exemples : p
Rn = IdRn et p{0} = 0L(Rn)

Propriété
Soit F un sous-espace de Rn et p

F
la projection orthogonale sur F . Alors :

1. p
F
◦ p

F
= p

F

2. Im(p
F

) = F

3. Ker(p
F

) = F⊥

Corollaire

Soit F un sous-espace vectoriel de Rn. Alors : dim(F ) + dim(F⊥) = n.

Propriété ∗∗ Expression de la projection orthogonale ∗∗
Soit F un sous-espace vectoriel de Rn non nul, de base B = (f1, . . . , fr).

1. si B est orthogonale, alors : ∀u ∈ Rn, p
F

(u) =

r∑
i=1

〈u, fi〉
〈fi, fi〉

fi

2. si B est orthonormale, alors : ∀u ∈ Rn, p
F

(u) =

r∑
i=1

〈u, fi〉 fi

Exercice 9 : Soit F le sous-espace vectoriel de R4 défini par : F =
{

(x, y, z, t) ∈ R4 | y − t = 0
}

.

1. Déterminer le projeté orthogonal de u = (1, 1, 0, 0) sur F .

2. Déterminer la matrice M de la projection orthogonale p
F

dans la base canonique de R4.

3 Distances dans Rn

Définition

On appelle distance euclidienne (ou simplement : distance) entre deux vecteurs de Rn

la norme euclidienne de leur différence : ∀u, v ∈ Rn, d(u, v) = ||u− v||

Exercice 10 : Calculer dans R4 la distance entre u = (1, 1, 0, 0) et v = (0, 1, 0, 1).

Propriété
Soient u, v, w ∈ Rn. Alors : ∗ d(u, v) = d(v, u)

∗ d(u, v) = 0⇔ u = v
∗ d(u,w) 6 d(u, v) + d(v, w)
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Définition

Soit A ⊂ Rn non vide, et soit u ∈ Rn. La distance de u à A est : d(u,A) = inf {d(u, a), a ∈ A}.

Proposition
Soit F un sous-espace vectoriel de Rn, et soit u ∈ Rn. Alors : d(u, F ) = ||u− p

F
(u)||.

De plus, si v ∈ F et si d(u, v) = d(u, F ), alors v = p
F

(u).

Exercice 11 : Soit F le sous-espace vectoriel de R4 défini par : F =
{

(x, y, z, t) ∈ R4 | y − t = 0
}

.
On pose u = (1, 1, 0, 0). Déterminer d(u, F ).

4 Application : ajustement affine par la méthode des moindres carrés

On dispose d’un relevé {(x1, y1), . . . , (xn, yn)} de n points du plan, par exemple issus de données expérimentales.
On cherche une relation affine liant les abscisses xi aux ordonnées yi de ces points : yi = axi+b (a, b ∈ R).
Si les points Mi(xi, yi) ne sont pas tous alignés, on n’obtiendra pas une relation exacte.
On cherche alors la ”meilleure” relation affine, au sens où la somme des carrés des distances entre les
points Mi et les points de la droite ∆ : y = ax+ b de mêmes abscisses est minimale.

On cherche donc à minimiser : S =

n∑
i=1

(
yi − (axi + b)

)2
.

On pose dans Rn : u = (x1, . . . , xn), v = (1, . . . , 1) et w = (y1, . . . , yn).

Alors S = ||w − (au+ bv)||2 et {au+ bv, a, b ∈ R} = Vect(u, v) = F .

u, v ne sont pas colinéaires (car sinon les xi sont tous égaux et les pointsMi sont alignés), donc dim(F ) = 2.

La somme S est minimale lorsque au+ bv = p
F

(w).
On cherche donc une base orthogonale de F , par exemple (v, v0) avec v0 ∈ F , non nul, tel que 〈v0, v〉 = 0.

On pose v0 = αu+ βv. Alors 〈v0, u〉 = α〈u, v〉+ β〈v, v〉 = α〈u, v〉+ nβ = 0 donc β = −α
n
〈u, v〉

et en choisissant α = 1, on obtient : v0 = u− 〈u, v〉
n

v. On peut enfin calculer p
F

(w) et trouver a et b.

Exercice 12 : appliquer cette méthode aux points (1, 2), (2, 8), (3, 12), (4, 14).

5 Projection dans le plan P
Soit M(x0, y0) un point du plan, et D : ax+ by + c = 0 une droite connue par une équation cartésienne.
Le projeté orthogonal H de M sur D est l’intersection de D avec l’unique droite perpendiculaire à D
et passant par M . La distance entre M et la droite D est donnée par : d(M,D) = MH.

Soient u =
−−→
OM , n = (a, b) vecteur-normal à D. Alors :

−−→
MH est colinéaire à n : ∃λ ∈ R,

−−→
MH = λn.

Puis H ∈ D donne : a(x0 + aλ) + b(y0 + bλ) + c = 0 dont on déduit que : λ = −ax0 + by0 + c

a2 + b2

On a donc : MH = |λ| × ||n|| = |ax0 + by0 + c|√
a2 + b2

6 Projection dans l’espace E
Soit M(x0, y0, z0) un point de l’espace, et P : ax + by + cz + d = 0 un plan connu par une équation
cartésienne. Le projeté orthogonal H de M sur P est l’intersection de P avec l’unique droite perpen-
diculaire à P et passant par M . La distance entre M et le plan P est donnée par : d(M,P) = MH.

Soit n = (a, b, c) un vecteur-normal à P. On trouve les coordonnées deH en exprimant :

{
H ∈ P
n et
−−→
MH sont colinéaires

−−→
MH = λn donc H ∈ P ⇔ a(x0 + aλ) + b(y0 + bλ) + c(z0 + cλ) + d = 0 donc λ = −ax0 + by0 + cz0 + d

a2 + b2 + c2

Enfin, d(M,P) = MH = |λ| × ||n|| donc MH =
|ax0 + by0 + cz0 + d|√

a2 + b2 + c2
.

Exercice 13 : Déterminer la distance entre le point M(1, 2, 3) et le plan P : x+ y + z + 3 = 0.
Préciser les coordonnées du projeté orthogonal de M sur P.
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