Chapitre 18 Fonctions de deux variables BCPST 24, 2025/2026

I Fonction réelle de deux variables réelles
1 Cadre de ’étude

On étudie dans ce chapitre des fonctions réelles de deux variables réelles, c’est-a-dire des fonctions
JD—R

(z,y) = f(z,y)

x et y sont donc des nombres réels, et I'image par f du couple (z,y) est un réel z = f(x,y).

, ott D est une partie de R2.

Ezemple : la loi des gaz parfaits (PV = nRT) donne (pour une quantité de gaz n fixée) : T = B
c’est-a-dire que la température T" est une fonction des variables P et V : T' = f(P,V).

On se limite dans ce chapitre a des fonctions de 2 variables. On peut cependant généraliser facilement
tous les énoncés qui suivent a des fonctions de 3 variables ou plus.

L’ensemble de définition d’une fonction f de 2 variables z,y est 'ensemble Dy des couples (z,y) € R?
tels que f(x,y) existe. On se limite ici & des pavés de R2.

2 Pavés de R?
DEFINITION
On appelle pavé de R? toute partie P C R? définie par : P=1 x J = {(z,y), v €[,y € J}
ou I, J sont deux intervalles réels non vides, et non réduits a un point.
On parle de pavé ouvert si les intervalles I et J sont des intervalles ouverts.

Ezemples : R? =R x R, R x [0, +00], [0,1] x [-1,1], ]0,1[xR sont des pavés de R?.
[ (z,y) = In(x) — /T —y est définie sur le pavé R x| — oo, 1].

3 Nappe d’une fonction de 2 variables
DEFINITION
La représentation graphique d’une fonction f : Dy — R de deux variables est la partie de R?

définie par :
Uy={(z,y,2) eR’ | (x,y) € Dy, z = f(z,y)}

On l'appelle nappe (ou surface) représentative de f.

Ezemple : Nappe de (z,y) — y? cos x, définie sur R? :

B
AR
R

4 Distance et limites dans R?
DEFINITION
La distance entre deux couples (z,y) et (2/,y’) est la distance euclidienne entre les vecteurs
u=(z,y) et v=(2',y):
d((z,y), (@',y") = d(u,v) = |lu—v]| = V(& =) + (y - y/)?

La norme du couple (z,y) est celle du vecteur u : ||(z,y)|| = |[u|| = V22 + y*> = d((z,y), (0,0)).




DEFINITION

Soit (zo,y0) € R2 On dit que (z,y) tend vers (zg,yo) dans R? lorsque la distance
d((z,y), (z0,y0)) tend vers 0 dans R

Soit £ € R. On dit que la fonction f a pour limite ¢, converge ou tend vers £ en (xg,yo) si
et seulement si f(z,y) tend vers £ quand (x,y) tend vers (xg,yo) :

lim f={¢& Ve>0,3a>0, V(z,y) € Dy, d((x,y),(xo,yo)) <a=|flz,y) - <e

(z0,90)

Exercice 1 : Etudier les limites en (0,0) des fonctions f(z,y) = ﬁxify? et g(z,y) = IQL—i—yﬁ
5 Continuité
DEFINITION

Soit Dy un pavé ouvert de R?, et soit f: Dy — R.

e On dit que f est continue en (x,y¢) € Dy lorsque : lim flz,y) = f(zo,y0)-

(z,y)—(z0,y0)
e On dit que f est continue sur Dy lorsque f est continue en tout point de Dy.

Remarque : On prouve la continuité de fonctions de deux variables en invoquant les regles d’opérations
pour les fonctions d’une variable. Par exemple, toute fonction polynomiale de deux variables (comme :
f(x,y) = 223 — 3wy +5y?) est définie et continue sur R%. En pratique, on ne demandera jamais de prouver
la continuité d’une fonction de deux variables.

6 Fonctions partielles
DEFINITION

Soit f: Dy — R, ou Dy = I x J est un pavé de R?, et soit (zo,y0) € Dy.

I—-R
z = f(x,90)
J—=R
y = f(z0,y)

On appelle premiére fonction partielle de f associée a (xg,yo) la fonction f; : {

On appelle deuxiéme fonction partielle de f associée a (z,yo) la fonction f3 : {

On retient que f; ne fait varier que la premiere variable, fs ne fait varier que la deuxiéme variable.

Les représentations graphiques des fonctions partielles s’obtiennent par intersection de la nappe I'y et
des plans d’équations y = yg, ou z = xg.

Exercice 2 : Soit f(z,y) = 2z In(1 + y?) définie sur R?. Expliciter les fonctions partielles de f associées
a (wo,y0) € R?. Que dire des intersections de la nappe I's avec les plans verticaux d’équations y = yo ?

7 Courbes de niveau
DEFINITION

Soit f: Dy — R ol Dy est un pavé de R?, représentée par une nappe Iy.
On appelle courbe de niveau de f (ou lignes de niveau) toute intersection de I'y avec un plan
horizontal d’équation z = zg.

Ezemples : Courbes de niveau pour zy = 0,1 ou 2 Exemple de courbe de niveau
de la fonction (z,y) — z2 + 9% — 1. en cartographie :
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II Dérivées partielles
1 Définition
Soit f : Dy — R une fonction de deux variables définie sur un pavé ouvert Dy = I x J de R2.

On suppose ici que, pour tout (x,y) € Dy, les fonctions partielles fi et f> associées a (x,y) sont dérivables,
respectivement sur I et sur J.

DEFINITION
o Df — R
e La premiére dérivée partielle de f est la fonction = : -+ hoy) — flx
p P f 9\ (2.y) s lim L) = S (@0)
h—0 h
e La seconde dérivée partielle de [ est la fonction — : flx,y+h) — f(z,y)
Ay | (x,y) — }lLir%
=

Autrement dit, si (x,y) est un point de Dy, alors g(x, y) = fi(x), et g(a@y) = f5(y).

ox dy
Pour déterminer des dérivées partielles, on dérive I’expression selon une variable, en considérant

les autres variables comme des constantes.

Exercice 3 : Déterminer les dérivées partielles des fonctions suivantes :
. x4+ eY
x f 1 (x,y) — 23+ 20y + 4 >x<g:(:v,y)%>$27_i_1

2 Fonction de classe C!

DEFINITION
Soit f : Dy — R une fonction définie sur un pavé ouvert de R
. 0 0 .
On dit que f est de classe C' sur Dy lorsque ses dérivées partielles a—f et —f existent
4 Y

et sont continues sur Dy.

Attention ! Il ne suffit pas que les fonctions partielles f; et fo soient de classe C! sur I ou sur J.
xy )

Ny si (z,y) # (0,0), et f(0,0) =0.

1) Expliciter les fonctions partielles fi et fa, et montrer qu’elles sont de classe C°.

2) Rappeler le résultat trouvé a lexercice 1. Qu’en déduire ?

Exercice 4 : Soit f(z,y) =

3 Regles opératoires

Toutes les régles opératoires concernant la continuité et la dérivabilité des fonctions réelles
d’une variable réelle s’appliquent aux fonctions de plusieurs variables réelles.

ProPoOSITION
Soient f, g deux fonctions définies sur un pavé ouvert D de R2. Soit A € R.

% Si f,g € CO(D), alors f+ g, \f, f x g, S (si g ne s’annule pas) sont continues sur D.
g

x Si f et g admettent des dérivées partielles sur D, alors f + g, Af, f x g, ! (si g ne s’annule
g
pas) admettent des dérivées partielles sur D et :

of+g) _0f B9 OO _\0f 0(fg) 8f+f% aé;(;):;(ggi_ gi>

ox " Oz Ox dr  Ox ox :g%

et on dispose de formules similaires pour 0
Y

x Si f,g € CY(D), alors f +g, \f, f x g, S (si g ne s’annule pas) sont de classe C! sur D.
g

* Toutes les fonctions usuelles sont de classe C' sur des pavés ouverts ol elles sont définies,
sauf la fonction partie entiere, et les fonctions valeur absolue et racines n°™¢ en des points ou
elles s’annulent.




4 Dérivée d’une composée
PROPRIETE

Soit f : Dy — R une fonction de classe C! sur un pavé ouvert de R?, et soit g : R — R une
fonction de classe C'. Alors go f : Dy — R est de classe C!, et :

d(go 0 d(go 0
(%zf) (z,y) = afi(x,y) xg'of(x,y) et (gayf) (z,y) = %(w,y) xg'o f(z,y)
Exercice 5 : On pose f(z,y) = 1 —T—yex et g(t) = sin(2t).

d(gof)

Déterminer (z,y) et 3 (z,y) * en utilisant la formule ci-dessus,
Y

dgof)
., Oz % par un calcul direct.

PROPRIETE

Soit f : Dy — R une fonction de classe C! sur le pavé ouvert Dy = I x J. Soient u,v deux
fonctions dérivables sur une partie K de R et a valeurs respectivement dans I et dans J.
Alors la fonction g : t — f(u(t),v(t)) est définie et dérivable sur K, de dérivée :

Vte K, ¢'(t) =u'(t) x %(u(t),v(t)) +0'(t) x g—g(u(t),v(t))

Exercice 6 : On pose f(z,y) = 2° + 2xy + 4y, u(t) = e’ et v(t) = sin(t).
Déterminer la dérivée de g : ¢ — f(u(t),v(t)) * en utilisant la formule ci-dessus,

. * par un calcul direct.
PROPRIETE

Soit f: Dy =1 x J — R une fonction de classe C! sur le pavé ouvert Dy.

On suppose que ¢ et 1 sont des fonctions de classe C! définies sur un pavé ouvert D’ de R?2,
et a valeurs respectivement dans I et dans J.

Alors F : (z,y) € D' +— f(p(z,y),¥(z,y)) est de classe C' sur D', et on a :

oF dp af o of

%(:c,y) = %(x,y) X %(‘P(zvy)ﬂ/}(xay)) + ox (I7y) X aiy(@(xay%w(xay)) et
G220 = 5 0) x 5 () vl ) + G (w0) X G (plan), (o)

) ,, OF 9o Of oY of OF 09p 9of ov Of
N I I T O Y9
otation abrégée %~ I X a5 + o X a0 et ay 3y X 90 " ay X a0
Exercice 7 : On pose f(z,y) = 2% +y?, p(x,y) = zsin(y) et ¥(z,y) = In(z + y).
Déterminer la dérivée de F(z,y) = f(¢(x,y),%(z,y)) * en utilisant la formule ci-dessus,
% par un calcul direct.

5 Le gradient
DEFINITION

Soit f: Dy — R une fonction de classe C! sur le pavé ouvert Dy. Soit (x,y) € Dy.

On appelle gradient de f en (z,y) le couple (gf(x,y), (;f(x,y)>
€T Y

—
Il s’agit donc d’un vecteur de R?, noté grad f(z,y) ou Vf(x,y).

Exercice 8 : Soit f(z,y) = ze~¥ . Déterminer le gradient de f en (1,2).

6 Approximation d’une fonction de classe C!

PROPRIETE
Soit f: Dy — R de classe C! sur le pavé ouvert Dy. Alors pour tout (z,y) € Dy, on a :
of of
h k = hx = kx — h, k
f@+hy+k) 500 Flay) +hox o (@,y) +k 9y (z,y) + o(h, k)

h,k
ot o(h, k) désigne une fonction négligeable devant (h, k), ie : telle que  lim llo(h, BT _ 0.

()= 0.0) [[(h,K)||
Remarque : C’est un développement limité & lordre 1 de la fonction f en (z,y).

Ecriture & ’aide du gradient : | f(z + h,y + k) = f(z,y) + (grad f(z,y), (h,k)) + o(h, k)

Exercice 9 : Soit f : (z,y) — 23 + 22y + 4 définie sur R%.
Montrer que : f(l +h,2+ k:) o 94+ Th+ 2k * en utilisant la formule ci-dessus,

k=0 * par un calcul direct.



III Applications
1 Plan tangent a une surface
Soit f: I x J — R de classe C!, et soit (z,y) € I x J tel que grad f(z,y) # (0,0).

X % (l‘, y)
Alors le plan tangent a I'y en M y est le plan passant par M et de vecteur normal %(% y
fz,y) '
Exercice 10 : Déterminer ’équation du plan tangent & la nappe représentative de la fonction f
1
définie par f: (z,y) — T2 au point M 1 * en utilisant un vecteur normal,
Y f(1,1) % en utilisant I’approximation d’ordre 1 de f.

2 Courbes de niveau

Soit f: I x J — R de classe C, et soit zo € R. On note I, = {(z,y,20) € R®, f(z,y) = 20} la courbe
de niveau d’altitude zg de I'y.

On admet que, dans le plan horizontal d’équation z = zp, la courbe de niveau I',, possede une équation
paramétrique de la forme (x(¢),y(t)) ou t — x(t) et t — y(t) sont des fonctions dérivables.

—
Alors en tout point M (z,y, z0) de T, le vecteur (2/(¢), 3/ (t)) est tangent & T, , et le vecteur grad f(z(t), y(t))
est orthogonal a I',,. ——y

3 Extréma locaux =
Soit f: Dy =1 x J — R définie sur un pavé ouvert de R2.

DEFINITION

On dit que f admet en (x¢, yo) € Dy un maximum (resp : minimum) local s’il existe un voisinage
ouvert V de (zo,yo) tel que :
V(I,y) eV ﬂ’Dfa f(xay) g f(‘TanO)

(resp o f(zyy) = f(IO,?JO))~

THEOREME
Si f € CY(Dy) et admet un extremum local en un point (zo,yo) intérieur & Dy, alors :

0 0
Fi(ﬂfoayo) = afz(fﬂoayo) =0

Les dérivées partielles de f s’amLIer;t donc en tOll)t extremum local situé a l'intérieur de I’ensemble de
définition de f. Autrement dit : grad f(zg,y0) = 0.

La réciproque est cependant fausse : il se peut que grad f(zo,yo) = 6> sans que f n’admette d’extremum
local en (xg, yo), et méme si le point (z,yo) est intérieur & Dy.

DEFINITION

H _>
Un point (29, yo) en lequel grad f(zo,y0) = 0 est appelé un point critique de f.

Pour déterminer les éventuels extrema de f, on commence par rechercher les points critiques, qu’on étudie
ensuite séparément.

Exercice 11 : Etudier les extréma locaux de flo,y) =a* +y* — 2% + 42

4 Ajustement affine des moindres carrés

Soit (z,y) une série statistique bivariée : x = (z1,...,z,) et y = (y1,...,yn) € R™.

Par exemple, les valeurs x;, y; sont issues d’une expérience dans laquelle on essaie de mettre en évidence
une relation linéaire entre les grandeurs x; et y;. Soit (Mz(ﬂc“yl))l €[in] le nuage de points associé a
(z,y). On cherche une droite D : y = ax + b passant ”"au plus prés” de chacun des points du nuage, par
la méthode des moindre carrés : c¢’est la droite pour laquelle la somme des carrés des distances entre les
points du nuage et les points de D de méme abscisse est minimale.



PROPRIETE
Pour toute série statistique bivariée (z,y), il existe une unique droite répondant au probleme.
Si V(z) = 0, c’est une droite verticale. Sinon, cette droite dite des moindres carrés a pour
Cov(z,y)

équation réduite : y = ax + b, avec a =
V(z)

, et elle passe par le point moyen du nuage,
soit : b=y — ax.
Cette droite réalise un ajustement linéaire (en réalité affine) de y selon . On parle de régression linéaire.

Si le coefficient de corrélation linéaire r,,, est faible, on peut chercher une meilleure corrélation entre f(x)
et g(y) ou f, g sont des fonctions simples :

* Ajustement exponentiel : g(y) = Iny conduit a : Iny = ax + b donc y = Ae®®;

* Ajustement logarithmique : f(z) = Inz conduit & : y = alnz + b;

* Ajustement selon une puissance : f(z) =Inz et g(y) = Iny conduit & : Iny = alnx + b donc y = Az®.

IV Dérivées d’ordre supérieur
1 Définition

Lorsque c’est possible, on définit les dérivées partielles de f d’ordre supérieur par :

Dérivées d’ordre 2 :

Pr_ o (of\ #f_ o (of\ o4 _o(or\ of _ o (0f
0z2 Oz \ox ) Oy? Oy \9dy) Oxdy Ox \dy) Oydx Oy \ox)

Dérivées d’ordre 3 :

U i AN A 0 A S R A R Of _ 0 (of
0x3  Ox \ 022 ) oyd3 oy \oy2 ) Oxdy2  Ox \0oy?) Oydzdy Oy \dxdy)’

Exercice 12 : Donner les dérivées partielles non nulles de la fonction (z,y) — 2 + 3xy + 5y°.

2 Fonctions de classe C*
DEFINITION

Soit f : Dy — R une fonction de deux variables, soit £ € IN*.

On dit que f est de classe C* sur Dy lorsque toutes les dérivées partielles de f d’ordre k
existent et sont continues sur Dy.

3 Théoréme de Schwarz

THEOREME * + Théoréme de Schwarz * *

O*f
0xdy Oyox

Si f est de classe C* sur D ¢, alors les dérivées partielles d’ordre & commutent.

9% f

Si f est de classe C? sur Dy, alors V(z,y) € Dy,

(z,y) =

(z,9).

4 Approximation d’ordre 2
THEOREME x* Approximation d’ordre 2 d’une fonction de classe C? *x
Soit f : Dy — R une fonction de classe C2, et soit (x,y) € Dy un point intérieur a Dy. Alors :

B of of
flx+hy+k) (h,k):(o 0 flz,y) + h%(x, y) + ka*(x, Y)
0% f

<h2 2f( y) + 2hk
D> dxdy

2
Gten)) +o It bIP)

Exercice 13 : Déterminer une approximation polynomiale au point (0,1) & 'ordre 2 de la fonction f
définie sur R? par : f(z,y) = e”(1 4+ 9°).
Préciser I'équation du plan tangent a la nappe représentative de f, et indiquer
les positions relatives.

(z,y) + k*




