
Chapitre 18 Fonctions de deux variables BCPST 2A, 2025/2026

I Fonction réelle de deux variables réelles
1 Cadre de l’étude
On étudie dans ce chapitre des fonctions réelles de deux variables réelles, c’est-à-dire des fonctions

f :

{
D → R

(x, y) 7→ f(x, y)
, où D est une partie de R2.

x et y sont donc des nombres réels, et l’image par f du couple (x, y) est un réel z = f(x, y).

Exemple : la loi des gaz parfaits (PV = nRT ) donne (pour une quantité de gaz n fixée) : T =
PV

nR
c’est-à-dire que la température T est une fonction des variables P et V : T = f(P, V ).
On se limite dans ce chapitre à des fonctions de 2 variables. On peut cependant généraliser facilement
tous les énoncés qui suivent à des fonctions de 3 variables ou plus.
L’ensemble de définition d’une fonction f de 2 variables x, y est l’ensemble Df des couples (x, y) ∈ R2

tels que f(x, y) existe. On se limite ici à des pavés de R2.

2 Pavés de R2

Définition

On appelle pavé de R2 toute partie P ⊂ R2 définie par : P = I × J = {(x, y), x ∈ I, y ∈ J}
où I, J sont deux intervalles réels non vides, et non réduits à un point.
On parle de pavé ouvert si les intervalles I et J sont des intervalles ouverts.

Exemples : R2 = R×R, R× [0,+∞[, [0, 1]× [−1, 1], ]0, 1[×R sont des pavés de R2.

f : (x, y) 7→ ln(x)−
√

1− y est définie sur le pavé R?
+× ]−∞, 1].

3 Nappe d’une fonction de 2 variables
Définition

La représentation graphique d’une fonction f : Df −→ R de deux variables est la partie de R3

définie par :
Γf =

{
(x, y, z) ∈ R3 | (x, y) ∈ Df , z = f(x, y)

}
On l’appelle nappe (ou surface) représentative de f .

Exemple : Nappe de (x, y) 7→ y2 cosx, définie sur R2 :

x

y

z

4 Distance et limites dans R2

Définition

La distance entre deux couples (x, y) et (x′, y′) est la distance euclidienne entre les vecteurs
u = (x, y) et v = (x′, y′) :

d
(
(x, y), (x′, y′)

)
= d(u, v) = ||u− v|| =

√
(x− x′)2 + (y − y′)2

La norme du couple (x, y) est celle du vecteur u : ||(x, y)|| = ||u|| =
√
x2 + y2 = d

(
(x, y), (0, 0)

)
.
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Définition

Soit (x0, y0) ∈ R2. On dit que (x, y) tend vers (x0, y0) dans R2 lorsque la distance
d
(
(x, y), (x0, y0)

)
tend vers 0 dans R+.

Soit ` ∈ R. On dit que la fonction f a pour limite `, converge ou tend vers ` en (x0, y0) si
et seulement si f(x, y) tend vers ` quand (x, y) tend vers (x0, y0) :

lim
(x0,y0)

f = ` ⇔ ∀ε > 0, ∃α > 0, ∀(x, y) ∈ Df , d
(
(x, y), (x0, y0)

)
< α⇒ |f(x, y)− `| < ε

Exercice 1 : Étudier les limites en (0, 0) des fonctions f(x, y) =
xy

x2 + y2
et g(x, y) =

x2y

x2 + y2
.

5 Continuité
Définition

Soit Df un pavé ouvert de R2, et soit f : Df → R.

• On dit que f est continue en (x0, y0) ∈ Df lorsque : lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0).

• On dit que f est continue sur Df lorsque f est continue en tout point de Df .

Remarque : On prouve la continuité de fonctions de deux variables en invoquant les règles d’opérations
pour les fonctions d’une variable. Par exemple, toute fonction polynomiale de deux variables (comme :
f(x, y) = 2x3−3xy+5y2) est définie et continue sur R2. En pratique, on ne demandera jamais de prouver
la continuité d’une fonction de deux variables.

6 Fonctions partielles
Définition

Soit f : Df → R, où Df = I × J est un pavé de R2, et soit (x0, y0) ∈ Df .

On appelle première fonction partielle de f associée à (x0, y0) la fonction f1 :

{
I → R

x 7→ f(x, y0)

On appelle deuxième fonction partielle de f associée à (x0, y0) la fonction f2 :

{
J → R

y 7→ f(x0, y)

On retient que f1 ne fait varier que la première variable, f2 ne fait varier que la deuxième variable.

Les représentations graphiques des fonctions partielles s’obtiennent par intersection de la nappe Γf et
des plans d’équations y = y0, ou x = x0.

Exercice 2 : Soit f(x, y) = 2x ln(1 + y2) définie sur R2. Expliciter les fonctions partielles de f associées
à (x0, y0) ∈ R2. Que dire des intersections de la nappe Γf avec les plans verticaux d’équations y = y0 ?

7 Courbes de niveau
Définition

Soit f : Df → R où Df est un pavé de R2, représentée par une nappe Γf .
On appelle courbe de niveau de f (ou lignes de niveau) toute intersection de Γf avec un plan
horizontal d’équation z = z0.

Exemples : Courbes de niveau pour z0 = 0, 1 ou 2 Exemple de courbe de niveau
de la fonction (x, y) 7→ x2 + y2 − 1. en cartographie :

x

y

z
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II Dérivées partielles
1 Définition
Soit f : Df → R une fonction de deux variables définie sur un pavé ouvert Df = I × J de R2.
On suppose ici que, pour tout (x, y) ∈ Df , les fonctions partielles f1 et f2 associées à (x, y) sont dérivables,
respectivement sur I et sur J .

Définition

• La première dérivée partielle de f est la fonction
∂f

∂x
:

Df → R

(x, y) 7→ lim
h→0

f(x+ h, y)− f(x, y)

h

• La seconde dérivée partielle de f est la fonction
∂f

∂y
:

Df → R

(x, y) 7→ lim
h→0

f(x, y + h)− f(x, y)

h

Autrement dit, si (x, y) est un point de Df , alors
∂f

∂x
(x, y) = f ′1(x), et

∂f

∂y
(x, y) = f ′2(y).

Pour déterminer des dérivées partielles, on dérive l’expression selon une variable, en considérant
les autres variables comme des constantes.

Exercice 3 : Déterminer les dérivées partielles des fonctions suivantes :

∗ f : (x, y) 7→ x3 + 2xy + 4 ∗ g : (x, y) 7→ x+ ey

x2 + 1

2 Fonction de classe C1
Définition

Soit f : Df → R une fonction définie sur un pavé ouvert de R2.

On dit que f est de classe C1 sur Df lorsque ses dérivées partielles
∂f

∂x
et
∂f

∂y
existent

et sont continues sur Df .

Attention ! Il ne suffit pas que les fonctions partielles f1 et f2 soient de classe C1 sur I ou sur J .

Exercice 4 : Soit f(x, y) =
xy

x2 + y2
si (x, y) 6= (0, 0), et f(0, 0) = 0.

1) Expliciter les fonctions partielles f1 et f2, et montrer qu’elles sont de classe C∞.
2) Rappeler le résultat trouvé à l’exercice 1. Qu’en déduire ?

3 Règles opératoires

Toutes les règles opératoires concernant la continuité et la dérivabilité des fonctions réelles
d’une variable réelle s’appliquent aux fonctions de plusieurs variables réelles.

Proposition
Soient f, g deux fonctions définies sur un pavé ouvert D de R2. Soit λ ∈ R.

∗ Si f, g ∈ C0(D), alors f + g, λf, f × g, f
g

(si g ne s’annule pas) sont continues sur D.

∗ Si f et g admettent des dérivées partielles sur D, alors f + g, λf, f × g, f
g

(si g ne s’annule

pas) admettent des dérivées partielles sur D et :

∂(f + g)

∂x
=
∂f

∂x
+
∂g

∂x

∂(λf)

∂x
= λ

∂f

∂x

∂(fg)

∂x
= g

∂f

∂x
+f

∂g

∂x

∂

∂x

(
f

g

)
=

1

g2

(
g
∂f

∂x
− f ∂g

∂x

)
et on dispose de formules similaires pour

∂

∂y
.

∗ Si f, g ∈ C1(D), alors f + g, λf, f × g, f
g

(si g ne s’annule pas) sont de classe C1 sur D.

∗ Toutes les fonctions usuelles sont de classe C1 sur des pavés ouverts où elles sont définies,
sauf la fonction partie entière, et les fonctions valeur absolue et racines nème en des points où
elles s’annulent.
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4 Dérivée d’une composée

Propriété
Soit f : Df → R une fonction de classe C1 sur un pavé ouvert de R2, et soit g : R → R une
fonction de classe C1. Alors g ◦ f : Df → R est de classe C1, et :

∂(g ◦ f)

∂x
(x, y) =

∂f

∂x
(x, y)× g′ ◦ f(x, y) et

∂(g ◦ f)

∂y
(x, y) =

∂f

∂y
(x, y)× g′ ◦ f(x, y)

Exercice 5 : On pose f(x, y) =
xy

1 + ex
et g(t) = sin(2t).

Déterminer
∂(g ◦ f)

∂x
(x, y) et

∂(g ◦ f)

∂y
(x, y) ∗ en utilisant la formule ci-dessus,

∗ par un calcul direct.
Propriété

Soit f : Df → R une fonction de classe C1 sur le pavé ouvert Df = I × J . Soient u, v deux
fonctions dérivables sur une partie K de R et à valeurs respectivement dans I et dans J .
Alors la fonction g : t 7→ f

(
u(t), v(t)

)
est définie et dérivable sur K, de dérivée :

∀t ∈ K, g′(t) = u′(t)× ∂f

∂x

(
u(t), v(t)

)
+ v′(t)× ∂f

∂y

(
u(t), v(t)

)
Exercice 6 : On pose f(x, y) = x3 + 2xy + 4y, u(t) = et et v(t) = sin(t).

Déterminer la dérivée de g : t 7→ f
(
u(t), v(t)

)
∗ en utilisant la formule ci-dessus,
∗ par un calcul direct.

Propriété
Soit f : Df = I × J → R une fonction de classe C1 sur le pavé ouvert Df .
On suppose que ϕ et ψ sont des fonctions de classe C1 définies sur un pavé ouvert D′ de R2,
et à valeurs respectivement dans I et dans J .
Alors F : (x, y) ∈ D′ 7−→ f

(
ϕ(x, y), ψ(x, y)

)
est de classe C1 sur D′, et on a :

∂F

∂x
(x, y) =

∂ϕ

∂x
(x, y)× ∂f

∂x

(
ϕ(x, y), ψ(x, y)

)
+
∂ψ

∂x
(x, y)× ∂f

∂y

(
ϕ(x, y), ψ(x, y)

)
et

∂F

∂y
(x, y) =

∂ϕ

∂y
(x, y)× ∂f

∂x

(
ϕ(x, y), ψ(x, y)

)
+
∂ψ

∂y
(x, y)× ∂f

∂y

(
ϕ(x, y), ψ(x, y)

)
Notation abrégée :

∂F

∂x
=
∂ϕ

∂x
× ∂f

∂ϕ
+
∂ψ

∂x
× ∂f

∂ψ
et

∂F

∂y
=
∂ϕ

∂y
× ∂f

∂ϕ
+
∂ψ

∂y
× ∂f

∂ψ

Exercice 7 : On pose f(x, y) = x2 + y2, ϕ(x, y) = x sin(y) et ψ(x, y) = ln(x+ y).
Déterminer la dérivée de F (x, y) = f

(
ϕ(x, y), ψ(x, y)

)
∗ en utilisant la formule ci-dessus,
∗ par un calcul direct.

5 Le gradient
Définition

Soit f : Df → R une fonction de classe C1 sur le pavé ouvert Df . Soit (x, y) ∈ Df .

On appelle gradient de f en (x, y) le couple

(
∂f

∂x
(x, y) ,

∂f

∂y
(x, y)

)
.

Il s’agit donc d’un vecteur de R2, noté
−−−→
grad f(x, y) ou ∇f(x, y).

Exercice 8 : Soit f(x, y) = xe−y
2

. Déterminer le gradient de f en (1, 2).

6 Approximation d’une fonction de classe C1
Propriété

Soit f : Df → R de classe C1 sur le pavé ouvert Df . Alors pour tout (x, y) ∈ Df , on a :

f(x+ h, y + k) =
(h,k)→(0,0)

f(x, y) + h× ∂f

∂x
(x, y) + k × ∂f

∂y
(x, y) + o(h, k)

où o(h, k) désigne une fonction négligeable devant (h, k), ie : telle que lim
(h,k)→(0,0)

||o(h, k)||
||(h, k)||

= 0.

Remarque : C’est un développement limité à l’ordre 1 de la fonction f en (x, y).

Écriture à l’aide du gradient : f(x+ h, y + k) ≈ f(x, y) + 〈
−−−→
grad f(x, y), (h, k) 〉+ o(h, k)

Exercice 9 : Soit f : (x, y) 7→ x3 + 2xy + 4 définie sur R2.
Montrer que : f

(
1 + h, 2 + k

)
≈

h→0
k→0

9 + 7h+ 2k ∗ en utilisant la formule ci-dessus,

∗ par un calcul direct.
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III Applications
1 Plan tangent à une surface
Soit f : I × J → R de classe C1, et soit (x, y) ∈ I × J tel que

−−−→
grad f(x, y) 6= (0, 0).

Alors le plan tangent à Γf en M

 x
y

f(x, y)

 est le plan passant par M et de vecteur normal


∂f
∂x (x, y)
∂f
∂y (x, y)

−1

.

Exercice 10 : Déterminer l’équation du plan tangent à la nappe représentative de la fonction f

définie par f : (x, y) 7→ 2x

1 + y2
au point M

 1
1

f(1, 1)

 ∗ en utilisant un vecteur normal,
∗ en utilisant l’approximation d’ordre 1 de f .

2 Courbes de niveau

Soit f : I × J → R de classe C1, et soit z0 ∈ R. On note Γz0 =
{

(x, y, z0) ∈ R3, f(x, y) = z0

}
la courbe

de niveau d’altitude z0 de Γf .

On admet que, dans le plan horizontal d’équation z = z0, la courbe de niveau Γz0 possède une équation
paramétrique de la forme (x(t), y(t)) où t 7→ x(t) et t 7→ y(t) sont des fonctions dérivables.

Alors en tout pointM(x, y, z0) de Γz0 , le vecteur (x′(t), y′(t)) est tangent à Γz0 , et le vecteur
−−−→
grad f(x(t), y(t))

est orthogonal à Γz0 .

3 Extréma locaux
Soit f : Df = I × J → R définie sur un pavé ouvert de R2.

Définition

On dit que f admet en (x0, y0) ∈ Df un maximum (resp : minimum) local s’il existe un voisinage
ouvert V de (x0, y0) tel que :

∀(x, y) ∈ V ∩ Df , f(x, y) 6 f(x0, y0)
(
resp : f(x, y) > f(x0, y0)

)
.

Théorème
Si f ∈ C1(Df ) et admet un extremum local en un point (x0, y0) intérieur à Df , alors :

∂f

∂x
(x0, y0) =

∂f

∂y
(x0, y0) = 0

Les dérivées partielles de f s’annulent donc en tout extremum local situé à l’intérieur de l’ensemble de

définition de f . Autrement dit :
−−−→
grad f(x0, y0) =

−→
0 .

La réciproque est cependant fausse : il se peut que
−−−→
grad f(x0, y0) =

−→
0 sans que f n’admette d’extremum

local en (x0, y0), et même si le point (x0, y0) est intérieur à Df .

Définition

Un point (x0, y0) en lequel
−−−→
grad f(x0, y0) =

−→
0 est appelé un point critique de f .

Pour déterminer les éventuels extrema de f , on commence par rechercher les points critiques, qu’on étudie
ensuite séparément.

Exercice 11 : Étudier les extréma locaux de f(x, y) = x4 + y4 − x2 + y2.

4 Ajustement affine des moindres carrés
Soit (x, y) une série statistique bivariée : x = (x1, . . . , xn) et y = (y1, . . . , yn) ∈ Rn.
Par exemple, les valeurs xi, yi sont issues d’une expérience dans laquelle on essaie de mettre en évidence
une relation linéaire entre les grandeurs xi et yi. Soit

(
Mi(xi, yi)

)
i∈J1,nK le nuage de points associé à

(x, y). On cherche une droite D : y = ax+ b passant ”au plus près” de chacun des points du nuage, par
la méthode des moindre carrés : c’est la droite pour laquelle la somme des carrés des distances entre les
points du nuage et les points de D de même abscisse est minimale.
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Propriété
Pour toute série statistique bivariée (x, y), il existe une unique droite répondant au problème.
Si V(x) = 0, c’est une droite verticale. Sinon, cette droite dite des moindres carrés a pour

équation réduite : y = ax+ b, avec a =
Cov(x, y)

V(x)
, et elle passe par le point moyen du nuage,

soit : b = y − ax.

Cette droite réalise un ajustement linéaire (en réalité affine) de y selon x. On parle de régression linéaire.

Si le coefficient de corrélation linéaire rxy est faible, on peut chercher une meilleure corrélation entre f(x)
et g(y) où f, g sont des fonctions simples :
∗ Ajustement exponentiel : g(y) = ln y conduit à : ln y = ax+ b donc y = λeax ;
∗ Ajustement logarithmique : f(x) = lnx conduit à : y = a lnx+ b ;
∗ Ajustement selon une puissance : f(x) = lnx et g(y) = ln y conduit à : ln y = a lnx+ b donc y = λxa.

IV Dérivées d’ordre supérieur
1 Définition
Lorsque c’est possible, on définit les dérivées partielles de f d’ordre supérieur par :

Dérivées d’ordre 2 :

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
,

∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
,

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
,

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
.

Dérivées d’ordre 3 :

∂3f

∂x3
=

∂

∂x

(
∂2f

∂x2

)
,

∂3f

∂y3
=

∂

∂y

(
∂2f

∂y2

)
,

∂3f

∂x∂y2
=

∂

∂x

(
∂2f

∂y2

)
,

∂3f

∂y∂x∂y
=

∂

∂y

(
∂2f

∂x∂y

)
, ...

Exercice 12 : Donner les dérivées partielles non nulles de la fonction (x, y) 7→ x3 + 3xy + 5y2.

2 Fonctions de classe Ck
Définition

Soit f : Df → R une fonction de deux variables, soit k ∈ N?.
On dit que f est de classe Ck sur Df lorsque toutes les dérivées partielles de f d’ordre k
existent et sont continues sur Df .

3 Théorème de Schwarz
Théorème ∗ ∗ Théorème de Schwarz ∗ ∗

Si f est de classe C2 sur Df , alors ∀(x, y) ∈ Df ,
∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y).

Si f est de classe Ck sur Df , alors les dérivées partielles d’ordre k commutent.

4 Approximation d’ordre 2

Théorème ∗∗ Approximation d’ordre 2 d’une fonction de classe C2 ∗∗
Soit f : Df → R une fonction de classe C2, et soit (x, y) ∈ Df un point intérieur à Df . Alors :

f(x+ h, y + k) =
(h,k)→(0,0)

f(x, y) + h
∂f

∂x
(x, y) + k

∂f

∂y
(x, y)

+
1

2

(
h2 ∂

2f

∂x2
(x, y) + 2hk

∂2f

∂x∂y
(x, y) + k2 ∂

2f

∂y2
(x, y)

)
+ o

(
||(h, k)||2

)
.

Exercice 13 : Déterminer une approximation polynomiale au point (0, 1) à l’ordre 2 de la fonction f
définie sur R2 par : f(x, y) = ex(1 + y2).

Préciser l’équation du plan tangent à la nappe représentative de f , et indiquer
les positions relatives.
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