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Corrigé du DM5

Sous-espace vectoriel des solutions d’une équation différentielle

On note E = C∞(R,R) l’espace vectoriel des applications de R dans R indéfiniment dérivables.

Soient (E) ∶ y(3) − 3y′ + 2y = 0E et S l’ensemble des fonctions de E vérifiant (E).
1. S est un sous-espace vectoriel de E

● par définition de S, on a : S ⊂ E.

● la fonction nulle 0E vérifie (E) donc 0E ∈ S : S est non vide.

● Soient f, g ∈ S et soient λ,µ ∈ R. On pose h = λf + µg. Montrons que h ∈ S :

Par linéarité de la dérivée, on a : h′ = λf ′ + µg′ et h(3) = λf (3) + µg(3) donc :

h(3) − 3h′ + 2h = λf (3) + µg(3) − 3(λf ′ + µg′) + 2(λf + µg)
= λ(f (3) − 3f ′ + 2f) + µ(g(3) − 3g′ + 2g)
= λ × 0E + µ × 0E = 0E car f, g ∈ S

donc h ∈ S. Conclusion : S est un sous-espace vectoriel de E.

2. Une solution non nulle de (E)
∀x ∈ R, f0(x) = e−2x donc f ′0(x) = −2e−2x et f

(3)
0 (x) = −8e−2x. On calcule :

f
(3)
0 (x) − 3f ′0(x) + 2f0(x) = −8e−2x + 6e−2x + 2e−2x = 0 donc f0 ∈ S.

3. EDLH2 vérifiée par une fonction auxiliaire

a) ∀x ∈ R, z(x) = y0(x)e2x donc :

z′(x) = y′0(x)e2x + 2y0(x)e2x

z′′(x) = y′′0 (x)e2x + 4y′0(x)e2x + 4y0(x)e2x

z(3)(x) = y(3)0 (x)e2x + 6y′′0 (x)e2x + 12y′0(x)e2x + 8y0(x)e2x

b) On calcule alors : ∀x ∈ R, z(3)(x) − 6z′′(x) + 9z′(x)
= y(3)0 (x)e2x+6y′′0 (x)e2x+12y′0(x)e2x+8y0(x)e2x−6(y′′0 (x)e2x+4y′0(x)e2x+4y0(x)e2x)+9(y′0(x)e2x+2y0(x)e2x)

= e2x [y(3)0 − 3y′0(x) + 2y0(x)] = 0 car y0 ∈ S.

Conclusion : z′ vérifie l’équation (E ′) ∶ y′′ − 6y′ + 9y = 0E

4. S′ est un sous-espace vectoriel de E

L’équation caractéristique de (E ′) est : r2 − 6r + 9 = 0, soit : (r − 3)2 = 0

D’après le cours, S′ = {xz→ (Ax +B)e3x, (A,B) ∈ R2}
On pose : ∀x ∈ R, g1(x) = xe3x et g2(x) = e3x.

On peut donc écrire : S′ = {Ag1 +Bg2, (A,B) ∈ R2} = Vect(g1, g2).
S′ est donc le sous-espace vectoriel de E engendré par la famille (g1, g2).

5. Trois fonctions suffisent à engendrer S

a) ∫ g1 = ∫ xe3x dx = xe
3x

3
− ∫

e3x

3
dx par intégration par parties

= xe
3x

3
− e

3x

9
+C1 où C1 est une constante.

∫ g2 = ∫ e3x dx = e
3x

3
+C2 où C2 est une constante.

b) On a z′ ∈ S′ donc z′ = Ag1 +Bg2 pour des constantes A et B.

En intégrant : z(x) = A(xe
3x

3
− e

3x

9
+C1) +B (e

3x

3
+C2)

z(x) = νxe3x + µe3x + λ en posant ν = A
3
, µ = −A

9
+ B

3
et λ = AC1 +BC2.
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c) Pour tout réel x, on a : y0(x) = f0(x)z(x) = e−2x(νxe3x + µe3x + λ)

donc ∀x ∈ R, y0(x) = λe−2x + µex + νxex pour les constantes λ,µ, ν définies en 5b)

On a montré, en définissant les fonctions f1, f2 comme à la question 6), que S ⊂ Vect(f0, f1, f2)

6. La famille (f0, f1, f2) est libre

Soit af0 + bf1 + cf2 = 0E une combinaison linéaire nulle de f0, f1, f2.

a) Pour x = 0, on obtient : af0(0) + bf1(0) + cf2(0) = 0 donc a + b = 0.

Pour x = ln 2, on obtient : af0(ln 2) + bf1(ln 2) + cf2(ln 2) = 0 donc
a

4
+ 2b + 2c ln 2 = 0.

Pour x = − ln 2, on obtient : af0(− ln 2) + bf1(− ln 2) + cf2(− ln 2) = 0 donc 4a + b
2
− c ln 2

2
= 0.

On résout le système obtenu sous forme matricielle :
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Ce système possède 3 pivots : il est carré de taille 3 et de rang 3 donc de Cramer.

Il possède une unique solution. Puisqu’il est homogène, (0,0,0) est solution.

C’est donc la seule solution : a = b = c = 0.

Ainsi, la seule combinaison linéaire nulle de f0, f1, f2 est la combinaison linéaire triviale.

Conclusion : La famille (f0, f1, f2) est libre.

b) Pour x ≠ 0, on a :
g(x)
f2(x)

= ae
−3x

x
+ b

x
+ c donc par opérations, lim

x→+∞

g(x)
f2(x)

= c

Mais g = 0E donc lim
x→+∞

g(x)
f2(x)

= 0. Par unicité de la limite : c = 0.

De même,
g(x)
f0(x)

= a + be3x + cxe3x. Par croissances comparées, xe3x →
−∞

0 donc lim
x→−∞

g(x)
f0(x)

= a.

Mais g = 0E donc lim
x→−∞

g(x)
f0(x)

= 0. Par unicité de la limite : a = 0.

Il reste : g(x) = bf1(x) = bex = 0 pour tout réel x, donc b = 0.

Conclusion : a = b = c = 0 et la famille (f0, f1, f2) est libre.

7. Base et dimension de S

On vérifie comme à la question 2) que f1 et f2 vérifient (E). On a donc Vect(f0, f1, f2) ⊂ S,

et on a montré question 5) l’inclusion réciproque, donc S = Vect(f0, f1, f2).
(f0, f1, f2) est génératrice de S, et est libre (question 6).

Conclusion : (f0, f1, f2) est une base de S, et dim(S) = 3.

Remarque : on peut montrer que l’ensemble-solution d’une EDLH d’ordre n est un sous-espace
vectoriel de E de dimension n.

8. Coordonnées de yT dans la base (f0, f1, f2)
Soit y ∈ S et T ∈ R. On note B la base (f0, f1, f2) de S.

Soient (a, b, c) les coordonnées de y dans la base B ∶ y = af0 + bf1 + cf2.

Alors ∀x ∈ R, yT (x) = y(x − T ) = af0(x − T ) + bf1(x − T ) + cf2(x − T )
= ae−2(x−T ) + bex−T + c(x − T )ex−T

= ae2T e−2x + be−T ex + ce−Txex − cTe−T ex

= ae2T e−2x + (b − cT )e−T ex + ce−Txex

= ae2T f0(x) + (b − cT )e−T f1(x) + ce−T f2(x)
ainsi, yT = ae2T f0 + (b − cT )e−T f1 + ce−T f2 est une combinaison linéaire de f0, f1, f2 :

∀T ∈ R, yT ∈ S et les coordonnées de yT dans la base B sont (ae2T , (b − cT )e−T , ce−T )
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