Diagonalisation DM7

A rendre le lundi 12 janvier 2026 Corrigé

1. a) Comme Aest de taille 2 x 2, Aest inversible si et seulement si son déterminant (1— a)(1—
b) — ab est non nul, c’est-a-dire si et seulementsia+ b # 1.

b) Soit A € R, A est valeur propre de A si et seulement si A — A/, est non inversible. Comme
précédemment on calcule le déterminant et il vient o(A) = {1,1 — (a+ b)}

c) Par positivité de a et b, a+ b = 0 si et seulement si a = b = 0. Dong, si (a,b) # 0, A
possede deux valeurs propres distinctes, donc est diagonalisable, avec des sev propres de

dimension 1. Sinon A = |, est diagonale. Donc A est diagonalisable pour tout couple (a, b)
dans [0, 1]%

2. Faiten TP, s’y reporter.

3. a) Par définition de matrice diagonalisable, ce qui est le cas de A, et d’aprés 2., A est sem-
s 1 0 . .
blable a D = ( 0 1—a—b ), ce qui prouve le résultat.

b) La méthode est toujours la méme :

Résolution du probleme diagonal. On peut remarquer que la matrice D définie dans
la question précédente peut s’écrire d’apreés les regles du calcul matriciel :

D-1-Th+(1—a—bM, ob n1=(; g) et n2=<8 ‘1))

Un calcul direct donne MMM, = M, = 0, et M3 = M, 113 = ,.

Résolution du probleme initial On sandwiche toutes les relations précédentes par R
et R™', la matrice R étant définie en 3.a):

RDR™'

R<1 My+(1—a— b)I‘I2> R
= RMR'"+(1—a— b)RM,R™"  en développant.

On pose alors P = RIM;R™", Q = RM,R™". Comme RR™' = R™'R = I,, d’apreés les
relations entre 1; et [1,, on a bien P = P, Q> = Qet PQ = QP = 0.

c) Méme méthode encore. Comme D" = 1I1; + (1 — a— b)"I1,, en re-sandwichant par Ret R,
ona:

A"=RD'"R'=P+(1—a— bh)"Q.

d) Comme |[(1—a+ b)| < 1les coefficients de (1 — a— b)"Q tendent (géométriquement) vers
0 car ceux de Q sont des constantes indépendantes de n. Ainsi, pour n grand, la matrice
A" vaut environ P.

e) Si0 < r < 1,r"décroit géométriquement vers 0, et ce, d’autant moins vite que r est proche
de 1. En pratique, on peut fixer un seuil de n = 10, qu’on «pénalise» si r = |1—a+b| est trop
proche de 1, par exemple: n = 10+ EJ, ou € = 1—r. Ensuite, on remarque que [, +[1, = &,
donc en sandwichant par Ret R™': P+ Q = I, ce qui permet d’avoir facilement Q = I, — P
connnaissant P :

def matPQ(a,b):
r = np.abs(1l-(a+b))
eps = 1-r
n =10 + int(1l/eps)
P = puissanceA(a,b,n)
return P, np.eye(2)-P
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a)

i)
ii)

Puisque M" = A, et que M commute avec M", A commute bien avec M.

Soit X un vecteur propre de A, alors X # 0, et AX = AX, ou A € o (A). Utilisons le fait
que AM = MA, AMX = MAX. Or AX = AX, donc AMX = AMX. Ceci prouve que MX
est dans le sev propre &4(A\). Or &4(A\) = Vect(X), car il est de dimension 1 puisque
a+ b # 0. Donc MX est colinéaire a X : c’est la définition (puisque X # 0) de X est
vecteur propre de M. On en déduit que R™'"MR est aussi diagonale.

b) Comme dans la question 3. b), on considére I'équation N” = D ou I'inconnue est une
matrice carrée N, et D la matrice définie en 3. a). Un calcul classique fait en cours montre

c)

que :
M-ps ] NT=D t tion précédent t N est di l
= N = R-1MR €t la question précédente montre que N est diagonale.
1
Une solution N évidente a ce systéeme est N = (0 (1— aO_ b)1/”>’ matrice bien définie

car 1 —a— b > 0. D’aprés I’équivalence, M = RNR™" vérifie M" = A.

i)

3 1
Ici a = 3 et b = g ona bien (a, b) # (0,0), la matrice A posséde deux sous-espaces

propres de dimension 1 et est diagonalisable par 1. c). Ses valeurs propres sont 1 et
1/2. On cherche ensuite une matrice R comme en 3. a). Les équations matricielles
AX = AX des sous-espaces propres de A sont des équations droite, tout vecteur direc-
teur définit une base de chaque espace propre: AX =X & (A— L) X =0& —3x+y =

1 1 1
0. Posons X; = ( 3 ) et & (A) = vect(X;). De méme : AX = EX & <A — EI2> X =

0 & x+y=0,etX;, = constitue une base de &/, (A) = vect(X;). D’ou

-1

. . . 1 1 1/1 1
une matrice R diagonalisant A: R = et R7! = - . avec les
3 -1 4\ 3 —1
formules de Cramer.
o . ; ; x" 0 X" =
D’apres c. et ses notations , M" = A< N"= D < =D& . Les

O yn yn

N[ ==

. . a 0 R . R
solutions N sont donc les matrices de la forme 0 ou « est une racine n-éme

B

(réelle) de 1et 5 une racine n-iéme réelle de 1/2. Finalement les matrices M cherchées
sont les M = R"'NR. si n = 3, la fonction cube est une bijection de R dans lui-méme.

Il'y a donc une unique racine cubique a tout réel, et une seule matrice N solution,

3 1
1+— 1—

1 3 35
d’ol une unique matrice M: M= RNR™' = n \/? \1/5
3(1——) 3+—
1
Pour n = 2, les réels 1 et 1/2 ont chacun deux racines carrées : a = £1, § = +—,

V2

ce qui donne 4 couples (o, 3) admissibles et 4 matrices N possibles. Pour ces couples,
on calcule M = RNR™ " et on conclut que les solutions de (E,) sont les quatre matrices
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