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1. a) Comme A est de taille 2×2, A est inversible si et seulement si son déterminant (1−a)(1−
b)− ab est non nul, c’est-à-dire si et seulement si a + b 6= 1.

b) Soit λ ∈ R, λ est valeur propre de A si et seulement si A− λI2 est non inversible. Comme
précédemment on calcule le déterminant et il vient σ(A) = {1, 1− (a + b)}

c) Par positivité de a et b, a + b = 0 si et seulement si a = b = 0. Donc, si (a, b) 6= 0, A
possède deux valeurs propres distinctes, donc est diagonalisable, avec des sev propres de
dimension 1. Sinon A = I2 est diagonale. Donc A est diagonalisable pour tout couple (a, b)
dans [0, 1]2.

2. Fait en TP, s’y reporter.

3. a) Par définition de matrice diagonalisable, ce qui est le cas de A, et d’après 2., A est sem-

blable à D =
(

1 0
0 1− a− b

)
, ce qui prouve le résultat.

b) La méthode est toujours la même :
Résolution du problème diagonal. On peut remarquer que la matrice D définie dans

la question précédente peut s’écrire d’après les règles du calcul matriciel :

D = 1 · Π1 + (1− a− b)Π2 où Π1 =
(
1 0
0 0

)
et Π2 =

(
0 0
0 1

)
.

Un calcul direct donne Π1Π2 = Π2Π1 = 0, et Π2
1 = Π1, Π2

2 = Π2.

Résolution du problème initial On sandwiche toutes les relations précédentes par R
et R−1, la matrice R étant définie en 3.a) :

RDR−1 = R
(
1 · Π1 + (1− a− b)Π2

)
R−1

= RΠ1R−1 + (1− a− b)RΠ2R−1 en développant.

On pose alors P = RΠ1R−1, Q = RΠ2R−1. Comme RR−1 = R−1R = I2, d’après les
relations entre Π1 et Π2, on a bien P2 = P ,Q2 = Q et PQ = QP = 0.

c) Même méthode encore. Comme Dn = 1Π1 + (1−a−b)nΠ2, en re-sandwichant par R et R−1,
on a :

An = RDnR−1 = P + (1− a− b)nQ.

d) Comme |(1− a + b)| < 1 les coe�icients de (1− a− b)nQ tendent (géométriquement) vers
0 car ceux de Q sont des constantes indépendantes de n. Ainsi, pour n grand, la matrice
An vaut environ P .

e) Si 0 < r < 1, rn décroît géométriquement vers 0, et ce, d’autant moins vite que r est proche
de 1. En pratique, on peut fixer un seuil de n = 10, qu’on «pénalise» si r = |1−a+b| est trop
proche de 1, par exemple : n = 10+

⌊
1
ε

⌋
, où ε = 1−r . Ensuite, on remarque que Π1+Π2 = I2,

donc en sandwichant par R et R−1 : P +Q = I2, ce qui permet d’avoir facilement Q = I2−P
connnaissant P :

1 def matPQ(a,b):

2 r = np.abs(1-(a+b))

3 eps = 1-r

4 n = 10 + int(1/eps)

5 P = puissanceA(a,b,n)

6 return P, np.eye(2)-P
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4. a) i) Puisque Mn = A, et que M commute avec Mn, A commute bien avec M.
ii) Soit X un vecteur propre de A, alors X 6= 0, et AX = λX , où λ ∈ σ (A). Utilisons le fait

que AM = MA, AMX = MAX . Or AX = λX , donc AMX = λMX . Ceci prouve que MX
est dans le sev propre EA(λ). Or EA(λ) = Vect(X ), car il est de dimension 1 puisque
a + b 6= 0. Donc MX est colinéaire à X : c’est la définition (puisque X 6= 0) de X est
vecteur propre de M. On en déduit que R−1MR est aussi diagonale.

b) Comme dans la question 3. b), on considère l’équation Nn = D où l’inconnue est une
matrice carrée N , et D la matrice définie en 3. a). Un calcul classique fait en cours montre
que :

Mn = A⇔
{

Nn = D
N = R−1MR

, et la question précédente montre que N est diagonale.

Une solution N évidente à ce système est N =
(
1 0
0 (1− a− b)1/n

)
, matrice bien définie

car 1− a− b ≥ 0. D’après l’équivalence, M = RNR−1 vérifie Mn = A.

c) i) Ici a =
3
8

et b =
1
8
, on a bien (a, b) 6= (0, 0), la matrice A possède deux sous-espaces

propres de dimension 1 et est diagonalisable par 1. c). Ses valeurs propres sont 1 et
1/2. On cherche ensuite une matrice R comme en 3. a). Les équations matricielles
AX = λX des sous-espaces propres de A sont des équations droite, tout vecteur direc-
teur définit une base de chaque espace propre :AX = X ⇔ (A− I2)X = 0⇔ −3x+y =

0. Posons X1 =
(

1
3

)
et E1 (A) = vect(X1) . De même : AX =

1
2
X ⇔

(
A− 1

2
I2

)
X =

0 ⇔ x + y = 0, et X2 =
(

1
−1

)
constitue une base de E1/2 (A) = vect(X2) . D’où

une matrice R diagonalisant A : R =
(

1 1
3 −1

)
et R−1 =

1
4

(
1 1
3 −1

)
. avec les

formules de Cramer.

ii) D’après c. et ses notations , Mn = A⇔ Nn = D ⇔
(
xn 0
0 yn

)
= D ⇔

{
xn = 1

yn =
1
2

. Les

solutions N sont donc les matrices de la forme
(
α 0
0 β

)
où α est une racine n-ème

(réelle) de 1 et β une racine n-ième réelle de 1/2. Finalement les matrices M cherchées
sont les M = R−1NR. si n = 3, la fonction cube est une bijection de R dans lui-même.
Il y a donc une unique racine cubique à tout réel, et une seule matrice N solution,

d’où une unique matrice M : M = RNR−1 =
1
4

 1 +
3
3
√
2

1− 1
3
√
2

3
(
1− 1

3
√
2

)
3 +

1
3
√
2

.

Pour n = 2, les réels 1 et 1/2 ont chacun deux racines carrées : α = ±1, β = ± 1
3
√
2

,

ce qui donne 4 couples (α, β) admissibles et 4 matrices N possibles. Pour ces couples,
on calcule M = RNR−1 et on conclut que les solutions de (E2) sont les quatre matrices

1
4

 ±1 + 3
±1√
2
±1− ±1√

2
±3− 3

±1√
2
±3 + ±1√

2

.
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