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Programme de mathématiques pour la classe BCPST2

I - Préambule

Objectifs de la formation

En classe de BCPST2 I'objectif est, dans le cadre d'un approfondissement de la formation, d’amener I'étu-
diant a intégrer les différentes étapes permettant de résoudre un probléeme exprimable de fagon mathéma-
tique. L'enjeu est la reformulation et la résolution de probléemes issus de contextes ou de réalités a priori non
mathématiques (provenant souvent d’autres disciplines).

Ainsi sont mises en jeu diverses compétences. Certaines ont déja été envisagées en premiere année
(BCPST1), et sont consolidées en seconde année :

Engager une recherche, définir une stratégie.
Modéliser un phénomene a l'aide du langage mathématique.
Représenter, changer de registre.

Raisonner, démontrer, argumenter. ..

ok L

Calculer (symboliquement ou numériquement avec une calculatrice ou un ordinateur), maitriser le
formalisme mathématique.

6. Communiquer al’écrit et al’oral.

D’autres constituent des objectifs plus spécifiquement approfondis en seconde année, dans la perspec-
tive des concours :

— Identifier un probleme sous différents aspects;
— Mobiliser des connaissances scientifiques pertinentes;
— Critiquer ou valider un modele ou un résultat.

Buts visés

Le programme de mathématiques de BCPST2 approfondit celui de BCPST1, ce qui se traduit par les en-
jeux suivants.

— Consolider les acquis mathématiques de BCPST1, notamment en matiéere de calcul et raisonnement.
Par souci de clarté, il a été choisi de numéroter de maniere compatible les tétes de chapitre des pro-
grammes de BCPST1 et de BCPST2.

— Généraliser et compléter les concepts introduits en BCPST1.

— Mettre un accent particulier sur la notion de modélisation, ol se confrontent les mathématiques et
les autres sciences, notamment dans le cadre des T.I.PE.

Equilibre entre compétences

Les différentes compétences sont développées puis évaluées (au cours de I'année puis lors des concours)
en veillant a leur équilibre. On prend garde en particulier a ne pas surdévelopper une compétence par rapport
a une autre.

Les capacités en calcul par exemple (point 5 ci-dessus), lorsqu’elles sont propres aux mathématiques,
restent relativement simples, I'objectif n'étant pas ici d’aboutir a une virtuosité technique. On attend, en la
matiere, une maitrise solide des calculs, concepts et théorémes mathématiques, dans des situations cou-
rantes, sans pour autant négliger les autres compétences.
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Contenu

Le programme de seconde année combine des révisions du programme de premiere année, des appro-
fondissements de certaines parties et des nouveautés.

Les résultats mentionnés dans le programme seront admis ou démontrés selon les choix didactiques faits
par le professeur; pour certains résultats, marqués comme «admis », la présentation d’'une démonstration en
classe est déconseillée.

L'analyse apparait sous forme de révisions, de nouveautés (séries et intégrales généralisées) ou de com-
pléments (équations différentielles). C’est ainsi que les séries sont introduites comme outil de base des pro-
babilités, tandis que I'étude des intégrales généralisées est insérée dans la mise en place des variables aléa-
toires a densité; 'usage de ces outils est limité aux contextes probabilistes et aux démarches de modélisation;
on évitera les développements artificiels ou purement techniques a ce propos.

En algebre linéaire, le passage de K" aux espaces vectoriels généraux permet d’élargir le champ d’action
et de donner une vision géométrique des espaces de fonctions. Ce cadre plus systématique permet de donner
un sens a l'étude des bases et changements de base qui sont fondamentaux pour aborder les valeurs propres
et vecteurs propres des applications linéaires et des matrices; cette derniéere approche se limite a la diagonali-
sation pour s’en tenir a des phénomenes simples. En vue de nombreuses applications (optimisation, analyse
de données), est proposée une présentation du produit scalaire dans R”, du théoréme de projection ortho-
gonale et du théoreme spectral. La notion de sous-espaces supplémentaires ne figure pas au programme,
mais dans bien des situations le théoreme de la projection orthogonale fournit une approche similaire tout
en permettant un calcul effectif.

L'étude des probabilités est donc un enjeu majeur du programme de seconde année. Le but de ce par-
cours est de mettre en place, de la maniére la plus efficace possible, un contexte opérationnel permettant
d’utiliser aussi bien des variables aléatoires discrétes prenant une infinité de valeurs (amenant notamment
les lois géométrique et de Poisson) que des variables aléatoires a densité (dites « continues »), avec un ac-
cent particulier sur les variables gaussiennes. Pour maintenir le programme dans un volume raisonnable, les
couples de variables aléatoires ne sont abordés que pour les variables discretes, ce qui évite d’avoir a aborder
les intégrales doubles. Les démarches de simulation de variables aléatoires sont fortement encouragées.

Quelques théoremes limites en probabilités ainsi que la construction précise d'un test d’hypotheése en
découlant (comparaison d'une moyenne ou d’'une proportion expérimentale a sa valeur théorique) offrent
un environnement propice a la simulation numérique et permettent aux étudiants qui en ont le besoin pour
leurs TIPE d’aller plus loin sur ces questions.

La variété des modéles ainsi mis en place, combinés avec les différents théorémes limites proposés, per-
met d’aborder de nombreuses applications dans les domaines les plus divers; I'évocation de ces contextes
applicatifs est un élément important de la formation et fait partie des buts visés. Comme dans le programme
de premiére année, on signale par un symbole = certaines situations particuliéres ot un lien avec d’autres
enseignements scientifiques est encouragé, permettant de donner corps aux démarches de modélisation et
d’application pratique des mathématiques.

En prolongement des programmes de premiére année en mathématiques et informatique, le programme
encourage la démarche algorithmique et le recours aux outils informatiques ; le maniement de ces outils fait
partie intégrante de la formation et a toute sa place dans I'évaluation en cours d’année et lors des concours.

Pour ce qui concerne les révisions, la proposition de consolider les compétences acquises en premiere
année par quelques exercices ne doit pas étre prise dans un sens restrictif : des approches numériques,
pouvant s’appuyer sur le programme d’informatique ou recourir a des outils logiciels ou des calculatrices,
peuvent tout aussi bien renforcer la maitrise des concepts et de leurs applications.
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IT - Programme de seconde année

La répartition en chapitres proposée ci-dessous (ainsi que I’agencement des chapitres de révisions) est
fournie a titre indicatif et ne constitue pas une progression figée ou obligatoire. Les impératifs pédagogiques
liés a la préparation aux concours peuvent justifier une organisation différente, sous réserve de maintenir
une structure cohérente.

Révisions 1 — Suites

Exercices et situations illustrant le programme de premiére année (Analyse 1 et Analyse 5).
= Exemples en lien avec le programme d’informatique.

Révisions 2 — Fonctions et dérivées

Exercices et situations illustrant le programme de premiére année (Analyse 2, Analyse 3, Analyse 6, Analyse
7, Analyse 9).
= Exemples en lien avec le programme d’informatique.

Révisions 3 - Intégrales

Exercices et situations illustrant le programme de premiere année (Analyse 8).
= Exemples en lien avec le programme d’informatique.

Révisions 4 - Equations différentielles

Exercices et situations illustrant le programme de premiere année (Analyse 4 ) = Exemples en lien avec le
programme d’informatique.

Révisions 5 — Fonctions de deux variables

Exercices et situations illustrant le programme de premiere année (Analyse 10).

Analyse 1 - Séries réelles

Contenus Commentaires
Sommes partielles, convergence d’'une série, somme d’'une série | La série est notée Y u, ou plus succinctement
n=ngp
convergente. -
8 Y uy. En cas de convergence, la somme de la série
+o0o
estnotée Y u,.
n=ngpy
La terminologie de « famille sommable » n’est pas

donnée.
La notion de reste d'une série est hors programme.

Combinaison linéaire de séries convergentes.
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Contenus (suite)

Commentaires

Theoremes de convergence pour deux séries a termes positifs
Upetvy:
o théoreme de comparaison si u, < v, a partir d'un cer-
tain rang,
e si u, ~ vy, alors les séries ) u, et Y v, sont de méme
nature.

Convergence et somme de la série géométrique Y. ¢g" (pour
n=0

Y n(n-1)q"2.
n=2

xn
Convergence et somme de la série exponentielle ) —.
n=0 1.

> —.

n=1nNn

lgl < 1) et des séries « dérivées» Y ng" ! et
n=1

1
Convergence de . — et divergence de
n=1 N

Convergence absolue.

Tout autre critere de convergence est hors pro-
gramme.

Les résultats relatifs aux restes et sommes partielles
sont hors programme.

Résultat admis.

L'étude générale des séries de Riemann est hors pro-
gramme.

La convergence absolue est présentée comme une
condition suffisante pour obtenir la convergence de
la série.

En vue des applications probabilistes, on admet
que la valeur de la somme d’une série absolument
convergente ne dépend pas de 'ordre d’énuméra-
tion de ses termes.

Létude de séries semi-convergentes est hors pro-
gramme.

Analyse 2 - Intégrales généralisées

Contenus

Commentaires

Convergence d’'une intégrale généralisée (ou impropre) d'une
fonction continue sur un intervalle I semi-ouvert ou ouvert.

Cas d'une fonction définie sur un intervalle et continue sur cet
intervalle sauf éventuellement en un nombre fini de points.
Propriétés des intégrales convergentes : linéarité, relation de
Chasles, positivité, stricte positivité (f positive non nulle),
croissance.

Adaptation de I'intégration par parties aux intégrales générali-
sées.

Adaptation de la formule de changement de variable pour les
intégrales généralisées.

Cas des fonctions paires ou impaires.
Théorémes de convergence pour deux fonctions positives f
etg:
o théoréme par comparaisonsi f < g,
o si f(x) = g(x), alors les intégrales généralisées en b
X

[? f et 7 g sont de méme nature.

La convergence est traduite en termes de limites
portant sur une primitive.

La terminologie de « fonction intégrable » n’est pas
donnée.

Les notations [, f, [; f(£)dt, f:f, f:f(t)dt pour-
ront, selon le contexte, désigner l'intégrale généra-
lisée ou sa valeur.

Cas particulier d'une fonction prolongeable par
continuité en un point.

La démonstration de la stricte positivité n’est pas
exigible.

On souligne la nécessité de confirmer la conver-
gence de tous les termes apparaissant dans une telle
formule.

Si la fonction ¢ est de classe €' et strictement mo-
notone sur un intervalle d’extrémités a et b ayant
des limites @ = lim,¢ et f = limp¢p et si [ est
continue sur l'intervalle d’extrémités a et 3, alors
les intégrales fff(x)dx et f:f((p(t)kp’(t)dt sont de
méme nature, et ont la méme valeur lorsqu’elles
convergent.

Tout autre critére de convergence est hors pro-
gramme.

Tout résultat sur la nature des intégrales de Riemann
devra étre démontré.

© Ministere de I'enseignement supérieur, de la recherche et de I'innovation

http://www.enseignementsup-recherche.gouv.fr

Mathématiques - BCPST2
Page 4/15



Contenus (suite)

Commentaires

Convergence absolue d'une intégrale généralisée.

+00 2
Lintégrale f e 2dx converge et vaut v/27.

—00

La convergence absolue est présentée comme une
condition suffisante pour obtenir la convergence de
I'intégrale.

Les intégrales semi-convergentes sont hors pro-
gramme.

La valeur de cette intégrale est un résultat admis.

Analyse 3 - Equations différentielles scalaires autonome d’ordre 1

Contenus

Commentaires

Exemples de résolution d’équations différentielles autonomes
du type y'(t) = F(y(1)), F étant une fonction continue sur un
intervalle et a valeurs réelles.

Aucune théorie générale ne doit étre faite. Toute
étude devra étre entierement guidée.

— On se limite ici a quelques exemples issus de
la biologie des populations ou de la cinétique chi-
mique (modeles malthusien, logistique, de Gom-
pertz).

— Lien avec l'informatique : programmation de la
méthode d’Euler. Dans un énoncé, la méthode d’Eu-
ler sera rappelée.

Révisions 6 - Nombres complexes

Exercices et situations illustrant le programme de premiere année (Outils 3, Outils 4).

Révisions 7 — Systemes linéaires et matrices

Exercices et situations illustrant le programme de premiere année (Algebre linéaire 1 et 2).

Algébre — Polynomes

Contenus

Commentaires

a) Polyndmes, regles de calcul.

Retour sur les polynomes réels : notation X pour 'application
X — x et réécriture d'un polynéme avec cette notation.

On introduit les polynémes a coefficients dans C. Notation X
pour 'application x — x.

Les opérations usuelles (combinaison linéaire, produit, compo-
sée) sur les polyndmes fournissent des polynémes.

Unicité de 'écriture des polyndémes : un polyndéme est nul si, et
seulement si, tous ses coefficients sont nuls.

Coefficient dominant et degré d'un polynéme.

Degré d’'une somme, d'un produit de polyndmes.

Notations R[X], C[X],R,[X],Cp[X].

On remarque que les regles de calcul avec X pro-
longent les regles de calculs dans R ou C.

En conséquence, deux polynémes sont égaux si, et
seulement si, ils ont les mémes coefficients.
On convient que le polyndme nul est de degré —oo.

b) Racines et factorisation.

Définition d’'une racine @ d'un polynéme P : P(a) = 0.

Un nombre réel ou complexe « est racine d'un polynéome P si,
et seulement si, il existe un polynéme Q tel que P = (X — a)Q.
Généralisation a plusieurs racines distinctes.

Le nombre de racines distinctes d'un polynéme non nul est ma-
joré par son degré.

La division euclidienne des polynémes est hors pro-
gramme.
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Contenus (suite)

Commentaires

Ordre de multiplicité d'une racine.

Cas des polyndmes réels : si a est racine, @ est aussi racine.
Théoréme de d’Alembert-Gauss. Factorisation dans C[X].

La caractérisation de la multiplicité d'une racine a
I'aide des polynémes dérivés n’est pas un attendu du
programme.

Ce théoreme est admis. La factorisation dans R[X]
est hors programme.

Algeébre linéaire 1 — Espaces vectoriels

Ce chapitre reprend les concepts présentés en premiere année dans un cadre limité (K") et les adapte brie-

vement a d’autres espaces, de dimension finie ou non.

La notion de somme de sous-espaces vectoriels n’est pas au programme.

On travaille uniquement dans des K-espaces vectoriels, K désignant R ou bien C. Lorsqu'un espace est un
C-espace vectoriel, le considérer comme un R-espace vectoriel n’est pas un attendu du programme. Il n’est
pas dans l'esprit du programme de rentrer dans des détails techniques comme parler de R-base, C-base,

R-dimension, C-dimension.

Contenus

Commentaires

a) Structure vectorielle
Structure d’espace vectoriel. Régles de calcul.

Combinaison linéaire d'une famille finie de vecteurs.
Sous-espaces vectoriels.
Intersection d’'un nombre fini de sous-espaces vectoriels.

Sous-espace vectoriel engendré par une famille finie de vec-
teurs.

Famille génératrice finie d'un espace vectoriel (sous réserve
d’existence).

Famille libre finie. Famille liée finie.

Exemple fondamental de famille libre : toute famille finie de po-
lynémes non nuls de degrés deux a deux distincts est libre.
Base finie d'un espace vectoriel (sous réserve d’existence). Co-
ordonnées d'un vecteur dans une base.

Matrice des coordonnées d'une famille finie de vecteurs dans
une base.

Bases canoniques de K" et K, [ X].

On met plus particulierement en valeur les espaces
vectoriels suivants : K", .4, p(K), 'ensemble des ap-
plications définies sur un intervalle I a valeurs dans
K, K[X], K, [X].

Létude d’espaces de suites n’est pas un attendu du
programme.

On introduit la notation Vect(xy, x2, ..., Xi).

D’autres exemples peuvent étre proposés, mais les
attendus du programme se limitent aux cas men-
tionnés.

b) Dimension

On dit que E est de dimension finie s’il possede une famille gé-
nératrice finie.

De toute famille génératrice finie d'un espace E non réduit au
vecteur nul on peut extraire une base.

Toutes les bases d'un espace vectoriel de dimension finie non
réduit au vecteur nul E ont le méme cardinal ; ce nombre com-
mun est appelé dimension de E. Par convention, 'espace vec-
toriel réduit au vecteur nul est de dimension 0.

Dans un espace vectoriel de dimension n=1:

« Toute famille libre peut se compléter en une base.
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Contenus (suite)

Commentaires

» Toute famille libre a au plus n éléments.

¢ Une famille libre ayant n éléments est une base.

o Toute famille génératrice a au moins n éléments.

e Une famille génératrice ayant n éléments est une base.

Si F est un sous-espace vectoriel de E, alors F est de dimension
finie et dim F < dim E. Si les deux dimensions sont égales, alors
F=E.

Rang d’une famille finie de vecteurs.

Compte tenu des objectifs pédagogiques, la plupart
de ces énoncés doivent étre admis, mais on peut
montrer comment certains de ces résultats peuvent
en impliquer d’autres.

Cerang peut se calculer comme le rang de la matrice
des coordonnées de la famille dans n'importe quelle
base.

Algebre linéaire 2 — Applications linéaires et matrices

Le passage aux espaces vectoriels quelconques pousse a redéfinir les notions liées aux applications linéaires.
Il convient de faire cette adaptation avec une certaine briéveté afin de garder tout le temps requis pour traiter

des exemples.

On travaille dans K= R ou C.

Contenus

Commentaires

a) Applications linéaires

Application linéaire, endomorphisme, isomorphisme. Espaces
isomorphes.

Opérations sur les applications linéaires : addition, multiplica-
tion par un scalaire, composition, réciproque. Propriétés de ces
opérations.

Noyau. Lien avec I'injectivité.

Image. Lien avec la surjectivité.

On introduit les notations £ (E,F) et Z(E), mais
leur étude n’est pas un attendu du programme.
Notation f” pour n € N.

On montre que le noyau est un sous-espace vecto-
riel de 'espace de départ.

On montre que 'image est un sous-espace vectoriel
de I'espace d’arrivée.

b) Cas de la dimension finie

Détermination d’'une application linéaire par I'image d'une
base.

Une application linéaire est un isomorphisme si, et seulement
si, 'image d’'une base est une base.

Rang d’'une application linéaire.

Théoréme du rang.

Pour une application linéaire entre deux espaces de méme di-
mension finie, il y a équivalence entre l'injectivité, la surjectivité
et la bijectivité.

Tout espace de dimension n est isomorphe a K”.

Résultat admis.

On soulignera, a travers un exemple, que ce n’est
pas le cas en dimension infinie. Toutefois, aucun
exemple ne sera exigible des étudiants.

c) Matrices et applications linéaires

Matrice d'une application linéaire d'un espace vectoriel de di-
mension finie dans un espace vectoriel de dimension finie, une
base ayant été choisie dans chacun d’eux.

Matrice de la somme de deux applications linéaires, du produit
par un scalaire d'une application linéaire, de la composée de
deux applications linéaires, de 'application réciproque.

Définitions du noyau et de I'image d'une matrice. Lien entre
noyau et image d’'une matrice et d'une application linéaire re-
présentée par cette matrice dans des bases.

On montre qu'un endomorphisme est bijectif si, et
seulement si, sa matrice, dans une base quelconque,
est inversible, et qu'il suffit pour cela de disposer
d’'une matrice inverse a gauche ou a droite.

Toute identification entre vecteur de K" et sa repré-
sentation matricielle dans une base, méme la base
canonique, est a éviter.
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Contenus (suite)

Commentaires

d) Changement de base

Changement de base. Matrice de passage.

Action d'un changement de base sur les coordonnées d'un vec-
teur.

Action d’'un changement de base sur la matrice d'un endomor-
phisme.

Matrices semblables.

On met en valeur I'intérét des matrices semblables
pour le calcul des puissances. On ne parlera pas de
matrices équivalentes.

Algebre linéaire 3 — Valeurs propres, vecteurs propres

Contenus

Commentaires

a) Eléments propres

Valeurs propres, vecteurs propres, sous-espaces propres d'un
endomorphisme.

Valeurs propres, vecteurs propres, sous-espaces propres d'une
matrice carrée.

Les valeurs propres d'une matrice triangulaire sont les éléments
diagonaux de cette matrice.

On appelle spectre de 'endomorphisme f (respec-
tivement de la matrice A) I'ensemble des valeurs
propres de f (respectivement de A).

En dimension finie, on fait le lien entre les éléments
propres d'un endomorphisme et ceux d'une matrice
qui le représente dans une base.

b) Diagonalisation

Une famille finie de vecteurs propres associés a des valeurs
propres distinctes est libre.

Une famille finie obtenue par juxtaposition de bases de sous-
espaces propres associés a des valeurs propres distinctes est
libre.

En dimension finie, endomorphisme diagonalisable. Matrice
diagonalisable.

Un endomorphisme en dimension n ou une matrice carrée
n x n est diagonalisable si, et seulement si, la somme des di-
mensions des sous-espaces propres est égale a n.

Un endomorphisme en dimension 7 ou une matrice carrée n x
n ayant n valeurs propres distinctes est diagonalisable.

Un endomorphisme en dimension n ou une matrice
carrée n x n admet au plus n valeurs propres deux
a deux distinctes et la somme des dimensions des
sous-espaces propres est inférieure ou égale a n.

On fait observer que les sous-espaces propres sont
de dimension 1.

La notion de polyndme annulateur est hors pro-
gramme.

Révisions 7 — Géométrie

Exercices et situations illustrant le programme de premiére année (Géométrie 1).

Géométrie — Produit scalaire dans R”

Ce chapitre propose une extension modeste des notions de géométrie euclidienne a l’espace euclidien de di-
mension 7, avec la notion de projection orthogonale sur un sous-espace et une application aux statistiques.

Contenus

Commentaires

a) Produit scalaire dans R”
Produit scalaire usuel dans R”. Ecriture matricielle.
Bilinéarité.
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Contenus (suite)

Commentaires

Norme euclidienne. Inégalité de Cauchy-Schwarz et inégalité
triangulaire. Cas d’égalité.

Vecteurs orthogonaux.

Une famille de vecteurs non nuls deux a deux orthogonaux est
libre.

Théoreme de Pythagore.

Bases orthonormales de I’espace R” ou d'un sous-espace de R”.

Le recours a l'inégalité de Cauchy-Schwarz devra
étre précisé.
Définition de deux matrices colonnes orthogonales.

On souligne le fait que le produit scalaire et lanorme
se calculent de la méme maniere dans toutes les
bases orthonormales.

Les algorithmes d’orthonormalisation ne sont pas
au programme.

b) Projection orthogonale

Orthogonal F* d’'un sous-espace vectoriel F de R”.

Lensemble F est un sous-espace vectoriel de R” et, pour tout
x € R", il existe un unique couple (xr,xp1) € F x FL vérifiant
X=Xp+XpL.

On appelle projection orthogonale sur le sous-espace F de R”
I'application p qui a tout x € R" associe xr.

La projection orthogonale sur le sous-espace F est I'endomor-
phisme p de R” vérifiant po p = p, Im(p) = F et Ker(p) = F*.
Relation dim F + dim F* = n.

Distance entre deux vecteurs de R".

Définition de la distance d'un vecteur a une partie non vide de
R". Cas de la distance d’un vecteur a un sous-espace de R”.
Interprétation en termes de projection orthogonale.

On rappelle que les notions générales de sommes de
sous-espaces vectoriels et de projections ne sont pas
au programme.

On admet qu'il existe une base orthonormale du
sous-espace F deés que F n’est pas réduit au vecteur
nul.

Ecriture du projeté orthogonal d’'un vecteur de R”
dans une base orthonormale de F.

Interprétation de I’ajustement affine par la méthode
des moindres carrés en termes de projection sur un
sous-espace de dimension 2.

La démonstration n’est pas exigible. Les coefficients
de la droite de meilleure approximation au sens des
moindres carrés devront étre rappelés.

c) Théoreme spectral

Deux vecteurs propres associés a des valeurs propres distinctes
d’'une matrice symétrique réelle sont orthogonaux.

Toute matrice symétrique réelle est diagonalisable en base or-
thonormale.

La démonstration de ce thoreme est hors pro-
gramme. On fera remarquer qu’il existe aussi des
bases de diagonalisation non orthonormales.

Les étudiants devront étre guidés pour la construc-
tion effective d'une base orthonormale de vecteurs
propres.

Probabilités 1 — Concepts de base des probabilités et des variables aléatoires

Ce chapitre étend le cadre des probabilités qui avait été posé en premiere année (Probabilités 1) pour aborder
une situation plus générale, se prétant a la définition des variables aléatoires discrétes ou a densité.

Les séries ont été introduites comme un outil pour donner tout leur sens aux probabilités et variables aléa-
toires discrétes. En dehors de questions probabilistes, les séries ne doivent étre utilisées que de maniere
exceptionnelle et en lien avec des démarches de modélisation.
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Contenus

Commentaires

a) Compléments ensemblistes et notion de probabilité
+o0 +o00

Définitionde N A, et U Aj,.
n=0 n=0

Notion de tribu.

Définition d'une probabilité sur (Q,9).

Définition d'un événement négligeable, d'un événement
presque sir.

Révisions et extensions a ce nouveau cadre des propriétés des
probabilités et des définitions vues en premiere année, en par-
ticulier :

e Une suite d’événements (A4,) est un systeme complet d’évé-
nements si les A, sont deux a deux incompatibles et si leur
réunion est égale a Q.

e Formule des probabilités totales : si (A,) est un systeme
complet d’événements, alors, pour tout événement B, la série

Y. P(A, N B) converge et P(B) = +ZOZP(A” N B).

n=

n=0

e Indépendance de deux événements. Indépendance (mu-
tuelle) de n événements, d'une suite d’événements.

On convient de nommer événements les éléments
d’une tribu.

Une tribu 9 (ou o-algebre) sur Q est une partie de
22(Q) contenant Q, stable par passage au complé-
mentaire et telle que, pour toute suite (B,) d’événe-
ments, la réunion des B,, est un événement.
Aucune question sur les tribus ne doit étre proposée
dans une épreuve de mathématiques.

On met en valeur l'axiome de o—additivité

+ +
P( LOJOB,,] = foP(B,,) pour des suites (B;) d’évé-
n=0 n=0

nements deux a deux incompatibles, et on fait
remarquer que la série ). P(B,) converge.

n=0
On distingue I'événement impossible (resp. certain)
des événements négligeables (resp. presque sirs).

+00
Pour une telle suite, ona Y. P(A;)=1.
n=0

Cette formule reste valable dans le cas d'une suite
(A;) d’événements deux a deux incompatibles et

+o0
telsque Y, P(A,) =1;ondiradans ce cas quele sys-
n=0

téme est quasi-complet.

Interprétation en termes de probabilités condition-
nelles, avec la convention suivante : si P(A,) = 0,
alors on pose P(A,)Pa,(B) =0.

b) Variables aléatoires réelles

On nomme variable aléatoire réelle sur (Q,97) toute application
X de Q dans R telle que, pour tout a € R, 'ensemble {w € Q :
X(w) < a}, noté (X < a), soit un événement.

Si I est un intervalle de R, alors (X € I) = {w € Q : X(w) € I} est
un événement.

Fonction de répartition: Fx : t — P(X < 1).

Croissance, limites en +oo.

Deux variables X et Y sont dites indépendantes si pour tous in-
tervallesIet J,P(XeInYe)=P(Xel) P(Y€])).
Généralisation au cas de n variables aléatoires, puis d'une suite
de variables aléatoires.

Aucune vérification du fait qu'une fonction est
une variable aléatoire ne sera demandée dans une
épreuve de mathématiques.

Résultat admis.

Probabilités 2 — Variables aléatoires réelles discretes

Lensemble de ce chapitre donne 'occasion de revoir, par le biais d’exercices, les lois de probabilités finies
présentées dans le programme de premiére année (Probabilités 2).

Contenus

Commentaires

a) Variables aléatoires réelles discretes
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Contenus (suite)

Commentaires

Une variable aléatoire réelle est dite discrete sil’ensemble X (Q)
de ses valeurs est inclus dans un sous-ensemble .4/ de R indexé
par une partie de N.

Loi de probabilité et fonction de répartition d'une variable aléa-
toire discrete.

Si (x;)jen est une suite de réels deux a deux distincts et (p;)jen
une suite de réels positifs tels que Y ;-o p; converge et a pour
somme 1, alors il existe une variable aléatoire réelle discrete X
vérifiant P(X = x;) = p; pour tout entier naturel i.

On pourra utiliser le terme dénombrable mais ce
terme n’est pas exigible.

On met en valeur le systéme complet d’événements
formé des événements (X = x) pour x € A". On sou-
ligne la validité de la formule des probabilités totales
obtenue.

On décrit les représentations graphiques de ces
deux fonctions. Les étudiants doivent savoir déter-
miner la loi d'une variable aléatoire a partir de sa
fonction de répartition.

On tolere qu’'une variable aléatoire issue d'une ex-
périence aléatoire puisse ne pas étre définie sur un
événement de probabilité nulle.

— En lien avec l'informatique : simulation d'une
variable aléatoire discrete dont la loi est impo-
sée, construite a partir d'une variable aléatoire uni-
forme.

b) Indépendance
Deux variables aléatoires discretes X et Y sont indépendantes
si, et seulement si, P(X = x,Y = y) = P(X = x)P(Y = y) pour
tout (x,y) € X(QQ) x Y(Q).
Généralisation : indépendance (mutuelle) de n variables aléa-
toires ; d'une suite de variables aléatoires.
Propriétés de I'indépendance mutuelle :
e Si Xj, Xo,..., X, sontindépendantes, toute sous-famille
lest aussi.
e Lemme des coalitions : si Xi,..., Xy, Xp+1,..., Xp+p sont
indépendantes, alors u(Xy,..., Xp) et v(Xp+1,..., Xn+p)
sont indépendantes.

On observera que cette propriété peut s'étendre
a un nombre fini de fonctions s’appliquant a une
partition des variables, et en particulier au cas de
(11 (X1), u2(X2), ..., un(Xy)).

c) Espérance et variance
Espérance. Propriétés (linéarité, positivité, croissance).
Théoreme de transfert.

Généralisation des propriétés et des définitions vues en pre-
miere année, en particulier :

o Inégalité de Markov. Inégalité de Bienaymé-Tchebychev.

» Variance et moments d'une variable aléatoire.

o Ecart-type o(X) d’'une variable aléatoire X.

« Formule de Konig-Huygens V (X) = E(X?) — E(X)?.

e Variance de aX + b. Notion de variable centrée réduite.

¢ Si X est une variable aléatoire admettant une variance non

nulle, X* = est une variable centrée réduite.

o(X)
¢ Si X et Y sont indépendantes, espérance de XY et variance
de X+Y.

La linéarité de 'espérance est admise.
Ce résultat peut étre admis.

X* estappelée variable centrée réduite associée a X.

Résultat sur I'espérance admis.
Généralisation au cas de n variables aléatoires indé-
pendantes.

d) Lois usuelles discreétes

Loi de Poisson. Espérance, variance.

Loi géométrique. Espérance, variance.

Propriété d’'invariance temporelle ou d’absence de mémoire de
la loi géométrique.

On présente la loi géométrique comme loi du
nombre d’épreuves nécessaires pour obtenir le pre-
mier succes dans une suite illimitée d’épreuves de
Bernoulli indépendantes et de méme parametre.

— Exemples de situations expérimentales modéli-
sées par une loi géométrique.
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Probabilités 3 — Couples de variables aléatoires discrétes

Ce chapitre permet, par le maniement de sommes de séries, d’appréhender les phénomenes liés aux couples
de variables aléatoires : lois conjointes, lois marginales, indépendance. Cependant, le théoréme de transfert
est énoncé dans le seul cas des couples de variables aléatoires discretes finies, et les séries doubles ne sont

au programme.

Contenus

Commentaires

a) Couples de variables aléatoires réelles discretes

Couple (X,Y) de deux variables aléatoires discréetes. Loi
conjointe.

Lois marginales.

Lois conditionnelles.

Lévénement ((X = x) N (Y = y)) est également noté
X=xY=y).

L'espérance conditionnelle n'est pas un attendu du
programme.

b) Exemples de variable aléatoire de la forme u(X,Y)
Sur des exemples simples, recherche de la loi de u(X,Y), le
couple (X, Y) ayant une loi conjointe connue.

Cas particulier de la somme de deux variables discretes a va-
leurs dans N.

Loi de la somme de deux variables indépendantes suivant des
lois de Poisson.

Théoreme de transfert : espérance de u(X,Y) a partir de la loi
de (X,Y) quand X et Y sont des variables aléatoires discretes
finies.

On s’intéressera en particulier au maximum et au
minimum de deux ou de n variables aléatoires in-
dépendantes.

Les deux variables ne sont pas nécessairement indé-
pendantes.

Généralisation au cas de n variables.

Ce résultat peut étre admis.

c) Covariance

Covariance, formule de Konig-Huygens Cov(X,Y) = E(XY) —
E(X)E(Y) et calcul effectif quand X et Y sont discretes finies.
Variancede X + Y.

Le calcul effectif de E(XY) au moyen d’'une série
double n’est pas au programme.

On remarquera qu'en cas d’indépendance
Cov(X,Y) =0, mais que la réciproque est fausse.

Probabilités 4 — Variables aléatoires a densité

Contenus

Commentaires

a) Variables aléatoires admettant une densité
On appelle densité de probabilité une fonction f définie sur R,
positive, dont I'intégrale généralisée sur R converge et vaut 1.

On dit qu'une variable aléatoire réelle X est a densité s'il existe
une densité de probabilité f telle que, pour tout x e R: Fx(x) =

fx fde.

Fx est dérivable en tout point de continuité x de f et F%(x) =

fx)

Si f est une densité de probabilité, alors il existe une variable
aléatoire X dont f est une densité.

Dans le cadre du programme, 'intégrale généralisée
n'est définie que pour des fonctions continues sauf
éventuellement en un nombre fini de points.

Une telle fonction, qui n’est pas unique, est appelée
densité de X.

Ce résultat peut étre admis.

Dans ce contexte, donner la loi d'une variable aléa-
toire X, c’est justifier que X admet une densité et en
donner une.

Résultat admis.
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Contenus (suite)

Commentaires

X admet une densité si, et seulement si, sa fonction de réparti-
tion Fy est continue sur R et de classe € sur R sauf éventuelle-
ment en un nombre fini de points.

Ce résultat peut étre admis. On insistera sur les re-
présentations graphiques de la fonction de densité
et delafonction de répartition, en faisant le lien avec
les histogrammes de variables aléatoires finies. Les
étudiants doivent savoir déterminer la loi d'une va-
riable aléatoire a partir de sa fonction de répartition.

Sur des exemples simples, recherche de la loi de
u(X), X ayant une densité donnée.

b) Indépendance
Propriétés de 'indépendance mutuelle :
e Si X1, Xo,..., X, sont indépendantes, toute sous-famille
I'est aussi.
e Lemme des coalitions : si Xi,..., Xy, Xp41,..., Xp1p sont
indépendantes, alors u(X, ..., X;) et v(X;+1,..., Xn+p)
sont indépendantes.

On observera que cette propriété peut s’étendre a un
nombre fini de fonctions, et en particulier au cas de
(U1 (X1), u2(X2), ..., un(Xn)).

Exemples de recherche de la loi du minimum et du
maximum de deux ou de n variables aléatoires indé-
pendantes.

c) Espérance
Espérance. Propriétés. Notion de variable centrée.

Théoreme de transfert : si X est une variable aléatoire a den-
sité et u est une fonction définie sur un intervalle I conte-
nant X(Q), continue sauf éventuellement en un nombre fini
de points, alors u(X) admet une espérance si, et seulement

si, f u(x) f(x) dx est absolument convergente. Le cas échéant,
I

E(u(X)) =f1u(x)f(x)dx.

Propriétés :
« Inégalité de Markov. Inégalité de Bienaymé-Tchebychev.

e Variance et moments.

o Ecart-type o(X) d'une variable aléatoire X.

« Formule de Konig-Huygens V (X) = E(X?) — E(X)?.

e Variance de aX + b. Notion de variable centrée réduite.

¢ Si X est une Var)i(gble aléatoire admettant une variance non

nulle, X* = est une variable centrée réduite.

o(X)
¢ Si X et Y sont indépendantes, espérance de XY et variance
de X+Y.

La linéarité de 'espérance est admise.

Par extension, on pourra appliquer la linéarité de
I'espérance a des variables aléatoires, qu’elles soient
discretes ou a densité, sans savoir si leur résultante
est discrete ou a densité.

Résultat admis.

On pourra appliquer ce théoreme sans savoir si #(X)
est une variable aléatoire discrete ou a densité.

On pourra appliquer ce théoreme dés lors que la va-
riable aléatoire admet une variance, sans savoir si
elle est discrete ou a densité.

X* estappelée variable centrée réduite associée a X.

Résultat sur 'espérance admis.

Par extension, on pourra appliquer ces formules a
des variables aléatoires, qu’elles soient discrétes ou
adensité, sans savoir sileurs résultantes XY et X+V
sont discretes ou a densité.

Généralisation au cas de n variables aléatoires indé-
pendantes.

d) Lois usuelles
Loi uniforme : densité, fonction de répartition, espérance, va-
riance.
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Contenus (suite)

Commentaires

Loi exponentielle : densité, fonction de répartition, espérance,
variance. Propriété d’invariance temporelle ou d’absence de
mémoire: P(X = s+ t|X = s) = P(X = 1) et on donne quelques
exemples d’expériences donnant du sens a cette propriété.

Loi normale (ou gaussienne) centrée et réduite : densité, espé-
rance et variance.

Loi normale de parameétres u et o2 : densité, espérance et va-
riance.

Si X suit une loi normale, alors aX + b aussi si a # 0.

— Une variable aléatoire de loi exponentielle peut
étre simulée a partir d'une variable aléatoire suivant
la loi uniforme sur 10, 11.

— On obtient les valeurs de la fonction de réparti-
tion (notée souvent @) et de sa réciproque au moyen
de la calculatrice ou d’'une bibliotheque associée a
un langage de programmation.

Un échantillon de valeurs utiles devra étre rappelé.
— Une variable aléatoire de loi normale peut étre si-
mulée a partir d'une variable aléatoire suivant la loi
uniforme sur 10, 1[.

Pour une variable de loi A (1, 0?), on se raménera le
plus souvent a la variable centrée réduite associée.

e) Sommes de variables aléatoires a densité indépendantes
Loi de la somme de deux variables indépendantes a densité.

Somme de deux variables aléatoires normales indépendantes.

Le résultat est admis.

La formule du produit de convolution devra étre
rappelée en cas de besoin.

La démonstration de la convergence de l'intégrale,
le cas échéant, n’est pas attendue des étudiants.

Le calcul montrant la normalité de la somme n’est
pas un attendu du programme.

On généralise le résultat au cas de n variables gaus-
siennes indépendantes.

Probabilités 5 — Théoremes limites

Contenus

Commentaires

a) Loi faible des grands nombres
La moyenne empirique d'un n-uplet de variables aléatoires

n
(X1,..., Xp), notée My, est définie par M, =+ ¥ X;.
=1

Loi faible des grands nombres pour des variables aléatoires mu-
tuellement indépendantes.

La définition générale de la convergence en proba-
bilité n’est pas un objectif du programme.

b) Convergence en loi

Définition de la convergence en loi d'une suite de variables
aléatoires (X;,) vers une variable aléatoire X.

Cas particulier ot les X, prennent leurs valeurs dans N.

Convergence en loi d'une suite de variables aléatoires de lois
binomiales vers une variable aléatoire de loi de Poisson.

Théoreme central limite (premiére forme) : si (X,);>1 est une
suite de variables aléatoires indépendantes de méme loi, ad-
mettant une espérance y et une variance o non nulle, alors
(M) n=1 converge en loi vers une variable aléatoire suivant la
loi normale centrée réduite.

Cas de la loi binomiale : théoréeme de de Moivre-Laplace.

Lécart-type empirique d’'un n-uplet de variables aléatoires
n

(X1,..., Xn), nOté Sy, est défini par 2 = + ¥ (X; — My)%.
i=1

Approximations qui en découlent. Les criteres d’ap-
proximation devront étre explicités.

Théoréme admis.

My - o
o
vn

toire centrée réduite associée a M,,.

= On illustre numériquement cette convergence.

On rappelle que M, = est la variable aléa-
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Contenus (suite)

Commentaires

Théoreme central limite (seconde forme) :
Si (X)) n=1 est une suite de variables aléatoires indépendantes
de méme loi, admettant une espérance p et une variance, alors

My~ . . P .

( o ) converge en loi vers une variable aléatoire suivant la
. ﬁ nz 1 2 z .

loi normale centrée réduite.

Théoreme admis. Une autre version de ce théoréme,
impliquant I’écart-type empirique corrigé S, défini

n
2 . )
par S,,” = -1- ¥ (X; — M,))?, pourra étre donnée.
i=1

¢) Introduction aux tests
Test de conformité a la moyenne.

On traitera le cas particulier d'une proportion par
majoration de I'écart-type.

Les notions de risque a ou f, de puissance ne sont
pas au programme.

— En lien avec I'informatique, mécanisme et simu-
lation de tests statistiques.
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