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Programme de mathématiques pour la classe BCPST2

I – Préambule

Objectifs de la formation

En classe de BCPST2 l’objectif est, dans le cadre d’un approfondissement de la formation, d’amener l’étu-
diant à intégrer les différentes étapes permettant de résoudre un problème exprimable de façon mathéma-
tique. L’enjeu est la reformulation et la résolution de problèmes issus de contextes ou de réalités a priori non
mathématiques (provenant souvent d’autres disciplines).

Ainsi sont mises en jeu diverses compétences. Certaines ont déjà été envisagées en première année
(BCPST1), et sont consolidées en seconde année :

1. Engager une recherche, définir une stratégie.

2. Modéliser un phénomène à l’aide du langage mathématique.

3. Représenter, changer de registre.

4. Raisonner, démontrer, argumenter. . .

5. Calculer (symboliquement ou numériquement avec une calculatrice ou un ordinateur), maîtriser le
formalisme mathématique.

6. Communiquer à l’écrit et à l’oral.

D’autres constituent des objectifs plus spécifiquement approfondis en seconde année, dans la perspec-
tive des concours :

— Identifier un problème sous différents aspects ;
— Mobiliser des connaissances scientifiques pertinentes ;
— Critiquer ou valider un modèle ou un résultat.

Buts visés

Le programme de mathématiques de BCPST2 approfondit celui de BCPST1, ce qui se traduit par les en-
jeux suivants.

— Consolider les acquis mathématiques de BCPST1, notamment en matière de calcul et raisonnement.
Par souci de clarté, il a été choisi de numéroter de manière compatible les têtes de chapitre des pro-
grammes de BCPST1 et de BCPST2.

— Généraliser et compléter les concepts introduits en BCPST1.
— Mettre un accent particulier sur la notion de modélisation, où se confrontent les mathématiques et

les autres sciences, notamment dans le cadre des T.I.P.E.

Équilibre entre compétences

Les différentes compétences sont développées puis évaluées (au cours de l’année puis lors des concours)
en veillant à leur équilibre. On prend garde en particulier à ne pas surdévelopper une compétence par rapport
à une autre.

Les capacités en calcul par exemple (point 5 ci-dessus), lorsqu’elles sont propres aux mathématiques,
restent relativement simples, l’objectif n’étant pas ici d’aboutir à une virtuosité technique. On attend, en la
matière, une maîtrise solide des calculs, concepts et théorèmes mathématiques, dans des situations cou-
rantes, sans pour autant négliger les autres compétences.
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Contenu

Le programme de seconde année combine des révisions du programme de première année, des appro-
fondissements de certaines parties et des nouveautés.

Les résultats mentionnés dans le programme seront admis ou démontrés selon les choix didactiques faits
par le professeur ; pour certains résultats, marqués comme « admis », la présentation d’une démonstration en
classe est déconseillée.

L’analyse apparait sous forme de révisions, de nouveautés (séries et intégrales généralisées) ou de com-
pléments (équations différentielles). C’est ainsi que les séries sont introduites comme outil de base des pro-
babilités, tandis que l’étude des intégrales généralisées est insérée dans la mise en place des variables aléa-
toires à densité ; l’usage de ces outils est limité aux contextes probabilistes et aux démarches de modélisation;
on évitera les développements artificiels ou purement techniques à ce propos.

En algèbre linéaire, le passage de K
n aux espaces vectoriels généraux permet d’élargir le champ d’action

et de donner une vision géométrique des espaces de fonctions. Ce cadre plus systématique permet de donner
un sens à l’étude des bases et changements de base qui sont fondamentaux pour aborder les valeurs propres
et vecteurs propres des applications linéaires et des matrices ; cette dernière approche se limite à la diagonali-
sation pour s’en tenir à des phénomènes simples. En vue de nombreuses applications (optimisation, analyse
de données), est proposée une présentation du produit scalaire dans R

n , du théorème de projection ortho-
gonale et du théorème spectral. La notion de sous-espaces supplémentaires ne figure pas au programme,
mais dans bien des situations le théorème de la projection orthogonale fournit une approche similaire tout
en permettant un calcul effectif.

L’étude des probabilités est donc un enjeu majeur du programme de seconde année. Le but de ce par-
cours est de mettre en place, de la manière la plus efficace possible, un contexte opérationnel permettant
d’utiliser aussi bien des variables aléatoires discrètes prenant une infinité de valeurs (amenant notamment
les lois géométrique et de Poisson) que des variables aléatoires à densité (dites « continues »), avec un ac-
cent particulier sur les variables gaussiennes. Pour maintenir le programme dans un volume raisonnable, les
couples de variables aléatoires ne sont abordés que pour les variables discrètes, ce qui évite d’avoir à aborder
les intégrales doubles. Les démarches de simulation de variables aléatoires sont fortement encouragées.

Quelques théorèmes limites en probabilités ainsi que la construction précise d’un test d’hypothèse en
découlant (comparaison d’une moyenne ou d’une proportion expérimentale à sa valeur théorique) offrent
un environnement propice à la simulation numérique et permettent aux étudiants qui en ont le besoin pour
leurs TIPE d’aller plus loin sur ces questions.

La variété des modèles ainsi mis en place, combinés avec les différents théorèmes limites proposés, per-
met d’aborder de nombreuses applications dans les domaines les plus divers ; l’évocation de ces contextes
applicatifs est un élément important de la formation et fait partie des buts visés. Comme dans le programme
de première année, on signale par un symbole ⌦ certaines situations particulières où un lien avec d’autres
enseignements scientifiques est encouragé, permettant de donner corps aux démarches de modélisation et
d’application pratique des mathématiques.

En prolongement des programmes de première année en mathématiques et informatique, le programme
encourage la démarche algorithmique et le recours aux outils informatiques ; le maniement de ces outils fait
partie intégrante de la formation et a toute sa place dans l’évaluation en cours d’année et lors des concours.

Pour ce qui concerne les révisions, la proposition de consolider les compétences acquises en première
année par quelques exercices ne doit pas être prise dans un sens restrictif : des approches numériques,
pouvant s’appuyer sur le programme d’informatique ou recourir à des outils logiciels ou des calculatrices,
peuvent tout aussi bien renforcer la maîtrise des concepts et de leurs applications.
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II – Programme de seconde année

La répartition en chapitres proposée ci-dessous (ainsi que l’agencement des chapitres de révisions) est
fournie à titre indicatif et ne constitue pas une progression figée ou obligatoire. Les impératifs pédagogiques
liés à la préparation aux concours peuvent justifier une organisation différente, sous réserve de maintenir
une structure cohérente.

Révisions 1 – Suites

Exercices et situations illustrant le programme de première année (Analyse 1 et Analyse 5).
⌦ Exemples en lien avec le programme d’informatique.

Révisions 2 – Fonctions et dérivées

Exercices et situations illustrant le programme de première année (Analyse 2, Analyse 3, Analyse 6, Analyse
7, Analyse 9).
⌦ Exemples en lien avec le programme d’informatique.

Révisions 3 – Intégrales

Exercices et situations illustrant le programme de première année (Analyse 8).
⌦ Exemples en lien avec le programme d’informatique.

Révisions 4 – Equations différentielles

Exercices et situations illustrant le programme de première année (Analyse 4 ) ⌦ Exemples en lien avec le
programme d’informatique.

Révisions 5 – Fonctions de deux variables

Exercices et situations illustrant le programme de première année (Analyse 10).

Analyse 1 – Séries réelles

Contenus Commentaires

Sommes partielles, convergence d’une série, somme d’une série
convergente.

La série est notée
P

n∏n0
un ou plus succinctement

P
un . En cas de convergence, la somme de la série

est notée
+1P

n=n0
un .

La terminologie de « famille sommable » n’est pas
donnée.
La notion de reste d’une série est hors programme.

Combinaison linéaire de séries convergentes.
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Contenus (suite) Commentaires

Thèorèmes de convergence pour deux séries à termes positifs
un et vn :

• théorème de comparaison si un ∑ vn à partir d’un cer-
tain rang,

• si un ª vn , alors les séries
P

un et
P

vn sont de même
nature.

Tout autre critère de convergence est hors pro-
gramme.

Les résultats relatifs aux restes et sommes partielles
sont hors programme.

Convergence et somme de la série géométrique
P

n∏0
qn (pour

|q | < 1) et des séries « dérivées »
P

n∏1
nqn°1 et

P
n∏2

n(n °1)qn°2 .

Convergence et somme de la série exponentielle
P

n∏0

xn

n!
. Résultat admis.

Convergence de
P

n∏1

1
n2 et divergence de

P
n∏1

1
n

. L’étude générale des séries de Riemann est hors pro-
gramme.

Convergence absolue. La convergence absolue est présentée comme une
condition suffisante pour obtenir la convergence de
la série.
En vue des applications probabilistes, on admet
que la valeur de la somme d’une série absolument
convergente ne dépend pas de l’ordre d’énuméra-
tion de ses termes.
L’étude de séries semi-convergentes est hors pro-
gramme.

Analyse 2 – Intégrales généralisées

Contenus Commentaires

Convergence d’une intégrale généralisée (ou impropre) d’une
fonction continue sur un intervalle I semi-ouvert ou ouvert.

La convergence est traduite en termes de limites
portant sur une primitive.
La terminologie de « fonction intégrable » n’est pas
donnée.
Les notations

R
I f ,

R
I f (t )dt ,

Rb
a f ,

Rb
a f (t )dt pour-

ront, selon le contexte, désigner l’intégrale généra-
lisée ou sa valeur.

Cas d’une fonction définie sur un intervalle et continue sur cet
intervalle sauf éventuellement en un nombre fini de points.

Cas particulier d’une fonction prolongeable par
continuité en un point.

Propriétés des intégrales convergentes : linéarité, relation de
Chasles, positivité, stricte positivité ( f positive non nulle),
croissance.

La démonstration de la stricte positivité n’est pas
exigible.

Adaptation de l’intégration par parties aux intégrales générali-
sées.

On souligne la nécessité de confirmer la conver-
gence de tous les termes apparaissant dans une telle
formule.

Adaptation de la formule de changement de variable pour les
intégrales généralisées.

Si la fonction ' est de classe C 1 et strictement mo-
notone sur un intervalle d’extrémités a et b ayant
des limites Æ = lima' et Ø = limb' et si f est
continue sur l’intervalle d’extrémités Æ et Ø, alors
les intégrales

RØ
Æ f (x)dx et

Rb
a f ('(t ))'0(t )dt sont de

même nature, et ont la même valeur lorsqu’elles
convergent.

Cas des fonctions paires ou impaires.
Théorèmes de convergence pour deux fonctions positives f
et g :

• théorème par comparaison si f ∑ g ,
• si f (x) ª

x!b
g (x), alors les intégrales généralisées en b

Rb
a f et

Rb
a g sont de même nature.

Tout autre critère de convergence est hors pro-
gramme.

Tout résultat sur la nature des intégrales de Riemann
devra être démontré.
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Contenus (suite) Commentaires

Convergence absolue d’une intégrale généralisée. La convergence absolue est présentée comme une
condition suffisante pour obtenir la convergence de
l’intégrale.
Les intégrales semi-convergentes sont hors pro-
gramme.

L’intégrale
Z+1

°1
e°x2/2dx converge et vaut

p
2º. La valeur de cette intégrale est un résultat admis.

Analyse 3 – Équations différentielles scalaires autonome d’ordre 1

Contenus Commentaires

Exemples de résolution d’équations différentielles autonomes
du type y 0(t ) = F (y(t )), F étant une fonction continue sur un
intervalle et à valeurs réelles.

Aucune théorie générale ne doit être faite. Toute
étude devra être entièrement guidée.
⌦On se limite ici à quelques exemples issus de
la biologie des populations ou de la cinétique chi-
mique (modèles malthusien, logistique, de Gom-
pertz).
⌦ Lien avec l’informatique : programmation de la
méthode d’Euler. Dans un énoncé, la méthode d’Eu-
ler sera rappelée.

Révisions 6 – Nombres complexes

Exercices et situations illustrant le programme de première année (Outils 3, Outils 4).

Révisions 7 – Systèmes linéaires et matrices

Exercices et situations illustrant le programme de première année (Algèbre linéaire 1 et 2).

Algèbre – Polynômes

Contenus Commentaires

a) Polynômes, règles de calcul.

Retour sur les polynômes réels : notation X pour l’application
x 7! x et réécriture d’un polynôme avec cette notation.
On introduit les polynômes à coefficients dans C. Notation X
pour l’application x 7! x.

On remarque que les règles de calcul avec X pro-
longent les règles de calculs dans R ou C.

Les opérations usuelles (combinaison linéaire, produit, compo-
sée) sur les polynômes fournissent des polynômes.
Unicité de l’écriture des polynômes : un polynôme est nul si, et
seulement si, tous ses coefficients sont nuls.

En conséquence, deux polynômes sont égaux si, et
seulement si, ils ont les mêmes coefficients.

Coefficient dominant et degré d’un polynôme. On convient que le polynôme nul est de degré °1.
Degré d’une somme, d’un produit de polynômes.
Notations R[X ],C[X ],Rn[X ],Cn[X ].
b) Racines et factorisation.

Définition d’une racine Æ d’un polynôme P : P (Æ) = 0.
Un nombre réel ou complexe Æ est racine d’un polynôme P si,
et seulement si, il existe un polynôme Q tel que P = (X °Æ)Q.

La division euclidienne des polynômes est hors pro-
gramme.

Généralisation à plusieurs racines distinctes.
Le nombre de racines distinctes d’un polynôme non nul est ma-
joré par son degré.

© Ministère de l’enseignement supérieur, de la recherche et de l’innovation Mathématiques – BCPST2
Page 5/15



Contenus (suite) Commentaires

Ordre de multiplicité d’une racine. La caractérisation de la multiplicité d’une racine à
l’aide des polynômes dérivés n’est pas un attendu du
programme.

Cas des polynômes réels : si Æ est racine, Æ est aussi racine.
Théorème de d’Alembert-Gauss. Factorisation dans C[X ]. Ce théorème est admis. La factorisation dans R[X ]

est hors programme.

Algèbre linéaire 1 – Espaces vectoriels

Ce chapitre reprend les concepts présentés en première année dans un cadre limité (K
n) et les adapte briè-

vement à d’autres espaces, de dimension finie ou non.

La notion de somme de sous-espaces vectoriels n’est pas au programme.

On travaille uniquement dans des K-espaces vectoriels, K désignant R ou bien C. Lorsqu’un espace est un
C-espace vectoriel, le considérer comme un R-espace vectoriel n’est pas un attendu du programme. Il n’est
pas dans l’esprit du programme de rentrer dans des détails techniques comme parler de R-base, C-base,
R-dimension, C-dimension.

Contenus Commentaires

a) Structure vectorielle

Structure d’espace vectoriel. Règles de calcul. On met plus particulièrement en valeur les espaces
vectoriels suivants : K

n , Mn,p (K), l’ensemble des ap-
plications définies sur un intervalle I à valeurs dans
K, K[X ], Kn[X ].
L’étude d’espaces de suites n’est pas un attendu du
programme.

Combinaison linéaire d’une famille finie de vecteurs.
Sous-espaces vectoriels.
Intersection d’un nombre fini de sous-espaces vectoriels.
Sous-espace vectoriel engendré par une famille finie de vec-
teurs.

On introduit la notation Vect(x1, x2, . . ., xk ).

Famille génératrice finie d’un espace vectoriel (sous réserve
d’existence).
Famille libre finie. Famille liée finie.
Exemple fondamental de famille libre : toute famille finie de po-
lynômes non nuls de degrés deux à deux distincts est libre.
Base finie d’un espace vectoriel (sous réserve d’existence). Co-
ordonnées d’un vecteur dans une base.
Matrice des coordonnées d’une famille finie de vecteurs dans
une base.
Bases canoniques de K

n et Kn[X ]. D’autres exemples peuvent être proposés, mais les
attendus du programme se limitent aux cas men-
tionnés.

b) Dimension

On dit que E est de dimension finie s’il possède une famille gé-
nératrice finie.
De toute famille génératrice finie d’un espace E non réduit au
vecteur nul on peut extraire une base.
Toutes les bases d’un espace vectoriel de dimension finie non
réduit au vecteur nul E ont le même cardinal ; ce nombre com-
mun est appelé dimension de E . Par convention, l’espace vec-
toriel réduit au vecteur nul est de dimension 0.
Dans un espace vectoriel de dimension n ∏ 1 :
• Toute famille libre peut se compléter en une base.
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Contenus (suite) Commentaires

• Toute famille libre a au plus n éléments.
• Une famille libre ayant n éléments est une base.
• Toute famille génératrice a au moins n éléments.
• Une famille génératrice ayant n éléments est une base. Compte tenu des objectifs pédagogiques, la plupart

de ces énoncés doivent être admis, mais on peut
montrer comment certains de ces résultats peuvent
en impliquer d’autres.

Si F est un sous-espace vectoriel de E , alors F est de dimension
finie et dimF ∑ dimE . Si les deux dimensions sont égales, alors
F = E .
Rang d’une famille finie de vecteurs. Ce rang peut se calculer comme le rang de la matrice

des coordonnées de la famille dans n’importe quelle
base.

Algèbre linéaire 2 – Applications linéaires et matrices

Le passage aux espaces vectoriels quelconques pousse à redéfinir les notions liées aux applications linéaires.
Il convient de faire cette adaptation avec une certaine brièveté afin de garder tout le temps requis pour traiter
des exemples.

On travaille dans K = R ou C.

Contenus Commentaires

a) Applications linéaires

Application linéaire, endomorphisme, isomorphisme. Espaces
isomorphes.

On introduit les notations L (E ,F ) et L (E), mais
leur étude n’est pas un attendu du programme.

Opérations sur les applications linéaires : addition, multiplica-
tion par un scalaire, composition, réciproque. Propriétés de ces
opérations.

Notation f n pour n 2 N.

Noyau. Lien avec l’injectivité. On montre que le noyau est un sous-espace vecto-
riel de l’espace de départ.

Image. Lien avec la surjectivité. On montre que l’image est un sous-espace vectoriel
de l’espace d’arrivée.

b) Cas de la dimension finie

Détermination d’une application linéaire par l’image d’une
base.
Une application linéaire est un isomorphisme si, et seulement
si, l’image d’une base est une base.

Tout espace de dimension n est isomorphe à K
n .

Rang d’une application linéaire.
Théorème du rang. Résultat admis.
Pour une application linéaire entre deux espaces de même di-
mension finie, il y a équivalence entre l’injectivité, la surjectivité
et la bijectivité.

On soulignera, à travers un exemple, que ce n’est
pas le cas en dimension infinie. Toutefois, aucun
exemple ne sera exigible des étudiants.

c) Matrices et applications linéaires

Matrice d’une application linéaire d’un espace vectoriel de di-
mension finie dans un espace vectoriel de dimension finie, une
base ayant été choisie dans chacun d’eux.
Matrice de la somme de deux applications linéaires, du produit
par un scalaire d’une application linéaire, de la composée de
deux applications linéaires, de l’application réciproque.

On montre qu’un endomorphisme est bijectif si, et
seulement si, sa matrice, dans une base quelconque,
est inversible, et qu’il suffit pour cela de disposer
d’une matrice inverse à gauche ou à droite.

Définitions du noyau et de l’image d’une matrice. Lien entre
noyau et image d’une matrice et d’une application linéaire re-
présentée par cette matrice dans des bases.

Toute identification entre vecteur de K
n et sa repré-

sentation matricielle dans une base, même la base
canonique, est à éviter.

© Ministère de l’enseignement supérieur, de la recherche et de l’innovation Mathématiques – BCPST2
Page 7/15



Contenus (suite) Commentaires

d) Changement de base

Changement de base. Matrice de passage.
Action d’un changement de base sur les coordonnées d’un vec-
teur.
Action d’un changement de base sur la matrice d’un endomor-
phisme.
Matrices semblables. On met en valeur l’intérêt des matrices semblables

pour le calcul des puissances. On ne parlera pas de
matrices équivalentes.

Algèbre linéaire 3 – Valeurs propres, vecteurs propres

Contenus Commentaires

a) Éléments propres

Valeurs propres, vecteurs propres, sous-espaces propres d’un
endomorphisme.
Valeurs propres, vecteurs propres, sous-espaces propres d’une
matrice carrée.

On appelle spectre de l’endomorphisme f (respec-
tivement de la matrice A) l’ensemble des valeurs
propres de f (respectivement de A).
En dimension finie, on fait le lien entre les éléments
propres d’un endomorphisme et ceux d’une matrice
qui le représente dans une base.

Les valeurs propres d’une matrice triangulaire sont les éléments
diagonaux de cette matrice.
b) Diagonalisation

Une famille finie de vecteurs propres associés à des valeurs
propres distinctes est libre.
Une famille finie obtenue par juxtaposition de bases de sous-
espaces propres associés à des valeurs propres distinctes est
libre.

Un endomorphisme en dimension n ou une matrice
carrée n £n admet au plus n valeurs propres deux
à deux distinctes et la somme des dimensions des
sous-espaces propres est inférieure ou égale à n.

En dimension finie, endomorphisme diagonalisable. Matrice
diagonalisable.
Un endomorphisme en dimension n ou une matrice carrée
n £ n est diagonalisable si, et seulement si, la somme des di-
mensions des sous-espaces propres est égale à n.
Un endomorphisme en dimension n ou une matrice carrée n £
n ayant n valeurs propres distinctes est diagonalisable.

On fait observer que les sous-espaces propres sont
de dimension 1.
La notion de polynôme annulateur est hors pro-
gramme.

Révisions 7 – Géométrie

Exercices et situations illustrant le programme de première année (Géométrie 1).

Géométrie – Produit scalaire dans R
n

Ce chapitre propose une extension modeste des notions de géométrie euclidienne à l’espace euclidien de di-
mension n, avec la notion de projection orthogonale sur un sous-espace et une application aux statistiques.

Contenus Commentaires

a) Produit scalaire dans R
n

Produit scalaire usuel dans R
n . Écriture matricielle.

Bilinéarité.
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Contenus (suite) Commentaires

Norme euclidienne. Inégalité de Cauchy-Schwarz et inégalité
triangulaire. Cas d’égalité.

Le recours à l’inégalité de Cauchy-Schwarz devra
être précisé.

Vecteurs orthogonaux.
Une famille de vecteurs non nuls deux à deux orthogonaux est
libre.

Définition de deux matrices colonnes orthogonales.

Théorème de Pythagore.
Bases orthonormales de l’espace R

n ou d’un sous-espace de R
n . On souligne le fait que le produit scalaire et la norme

se calculent de la même manière dans toutes les
bases orthonormales.
Les algorithmes d’orthonormalisation ne sont pas
au programme.

b) Projection orthogonale

Orthogonal F? d’un sous-espace vectoriel F de R
n .

L’ensemble F? est un sous-espace vectoriel de R
n et, pour tout

x 2 R
n , il existe un unique couple (xF , xF? ) 2 F £ F? vérifiant

x = xF +xF? .

On rappelle que les notions générales de sommes de
sous-espaces vectoriels et de projections ne sont pas
au programme.
On admet qu’il existe une base orthonormale du
sous-espace F dès que F n’est pas réduit au vecteur
nul.

On appelle projection orthogonale sur le sous-espace F de R
n

l’application p qui à tout x 2 R
n associe xF .

Écriture du projeté orthogonal d’un vecteur de R
n

dans une base orthonormale de F .
La projection orthogonale sur le sous-espace F est l’endomor-
phisme p de R

n vérifiant p ±p = p, Im(p) = F et Ker(p) = F?.
Relation dimF +dimF? = n.

Distance entre deux vecteurs de R
n .

Définition de la distance d’un vecteur à une partie non vide de
R

n . Cas de la distance d’un vecteur à un sous-espace de R
n .

Interprétation en termes de projection orthogonale. Interprétation de l’ajustement affine par la méthode
des moindres carrés en termes de projection sur un
sous-espace de dimension 2.
La démonstration n’est pas exigible. Les coefficients
de la droite de meilleure approximation au sens des
moindres carrés devront être rappelés.

c) Théorème spectral

Deux vecteurs propres associés à des valeurs propres distinctes
d’une matrice symétrique réelle sont orthogonaux.
Toute matrice symétrique réelle est diagonalisable en base or-
thonormale.

La démonstration de ce thorème est hors pro-
gramme. On fera remarquer qu’il existe aussi des
bases de diagonalisation non orthonormales.
Les étudiants devront être guidés pour la construc-
tion effective d’une base orthonormale de vecteurs
propres.

Probabilités 1 – Concepts de base des probabilités et des variables aléatoires

Ce chapitre étend le cadre des probabilités qui avait été posé en première année (Probabilités 1) pour aborder
une situation plus générale, se prêtant à la définition des variables aléatoires discrètes ou à densité.

Les séries ont été introduites comme un outil pour donner tout leur sens aux probabilités et variables aléa-
toires discrètes. En dehors de questions probabilistes, les séries ne doivent être utilisées que de manière
exceptionnelle et en lien avec des démarches de modélisation.
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Contenus Commentaires

a) Compléments ensemblistes et notion de probabilité

Définition de
+1T
n=0

An et
+1S
n=0

An .

Notion de tribu. On convient de nommer événements les éléments
d’une tribu.
Une tribu T (ou æ-algèbre) sur ≠ est une partie de
P (≠) contenant ≠, stable par passage au complé-
mentaire et telle que, pour toute suite (Bn) d’événe-
ments, la réunion des Bn est un événement.
Aucune question sur les tribus ne doit être proposée
dans une épreuve de mathématiques.

Définition d’une probabilité sur (≠,T ). On met en valeur l’axiome de æ°additivité

P
≥ +1S

n=0
Bn

¥
=

+1P
n=0

P (Bn) pour des suites (Bn) d’évé-

nements deux à deux incompatibles, et on fait
remarquer que la série

P
n∏0

P (Bn) converge.

Définition d’un événement négligeable, d’un événement
presque sûr.

On distingue l’événement impossible (resp. certain)
des événements négligeables (resp. presque sûrs).

Révisions et extensions à ce nouveau cadre des propriétés des
probabilités et des définitions vues en première année, en par-
ticulier :
• Une suite d’événements (An) est un système complet d’évé-

nements si les An sont deux à deux incompatibles et si leur
réunion est égale à≠.

Pour une telle suite, on a
+1P
n=0

P (An) = 1.

• Formule des probabilités totales : si (An) est un système
complet d’événements, alors, pour tout événement B , la série
P

n∏0
P (An \B) converge et P (B) =

+1P
n=0

P (An \B).

Cette formule reste valable dans le cas d’une suite
(An) d’événements deux à deux incompatibles et

tels que
+1P
n=0

P (An) = 1 ; on dira dans ce cas que le sys-

tème est quasi-complet.
Interprétation en termes de probabilités condition-
nelles, avec la convention suivante : si P (An) = 0,
alors on pose P (An)P An (B) = 0.

• Indépendance de deux événements. Indépendance (mu-
tuelle) de n événements, d’une suite d’événements.
b) Variables aléatoires réelles

On nomme variable aléatoire réelle sur (≠,T ) toute application
X de ≠ dans R telle que, pour tout a 2 R, l’ensemble {! 2 ≠ :
X (!) ∑ a}, noté (X ∑ a), soit un événement.

Aucune vérification du fait qu’une fonction est
une variable aléatoire ne sera demandée dans une
épreuve de mathématiques.

Si I est un intervalle de R, alors (X 2 I ) = {! 2 ≠ : X (!) 2 I } est
un événement.

Résultat admis.

Fonction de répartition : FX : t 7! P (X ∑ t ).
Croissance, limites en ±1.
Deux variables X et Y sont dites indépendantes si pour tous in-
tervalles I et J , P (X 2 I \Y 2 J ) = P (X 2 I ) P (Y 2 J ).
Généralisation au cas de n variables aléatoires, puis d’une suite
de variables aléatoires.

Probabilités 2 – Variables aléatoires réelles discrètes

L’ensemble de ce chapitre donne l’occasion de revoir, par le biais d’exercices, les lois de probabilités finies
présentées dans le programme de première année (Probabilités 2).

Contenus Commentaires

a) Variables aléatoires réelles discrètes
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Contenus (suite) Commentaires

Une variable aléatoire réelle est dite discrète si l’ensemble X (≠)
de ses valeurs est inclus dans un sous-ensemble N de R indexé
par une partie de N.

On pourra utiliser le terme dénombrable mais ce
terme n’est pas exigible.
On met en valeur le système complet d’événements
formé des événements (X = x) pour x 2N . On sou-
ligne la validité de la formule des probabilités totales
obtenue.

Loi de probabilité et fonction de répartition d’une variable aléa-
toire discrète.

On décrit les représentations graphiques de ces
deux fonctions. Les étudiants doivent savoir déter-
miner la loi d’une variable aléatoire à partir de sa
fonction de répartition.

Si (xi )i2N est une suite de réels deux à deux distincts et (pi )i2N

une suite de réels positifs tels que
P

i∏0 pi converge et a pour
somme 1, alors il existe une variable aléatoire réelle discrète X
vérifiant P (X = xi ) = pi pour tout entier naturel i .

On tolère qu’une variable aléatoire issue d’une ex-
périence aléatoire puisse ne pas être définie sur un
événement de probabilité nulle.
⌦ En lien avec l’informatique : simulation d’une
variable aléatoire discrète dont la loi est impo-
sée, construite à partir d’une variable aléatoire uni-
forme.

b) Indépendance

Deux variables aléatoires discrètes X et Y sont indépendantes
si, et seulement si, P (X = x,Y = y) = P (X = x)P (Y = y) pour
tout (x, y) 2 X (≠)£Y (≠).
Généralisation : indépendance (mutuelle) de n variables aléa-
toires ; d’une suite de variables aléatoires.
Propriétés de l’indépendance mutuelle :

• Si X1, X2, . . . , Xn sont indépendantes, toute sous-famille
l’est aussi.

• Lemme des coalitions : si X1, . . . , Xn , Xn+1, . . . , Xn+p sont
indépendantes, alors u(X1, . . . , Xn) et v(Xn+1, . . . , Xn+p )
sont indépendantes.

On observera que cette propriété peut s’étendre
à un nombre fini de fonctions s’appliquant à une
partition des variables, et en particulier au cas de
(u1(X1),u2(X2), . . . ,un(Xn)).

c) Espérance et variance

Espérance. Propriétés (linéarité, positivité, croissance). La linéarité de l’espérance est admise.
Théorème de transfert. Ce résultat peut être admis.

Généralisation des propriétés et des définitions vues en pre-
mière année, en particulier :
• Inégalité de Markov. Inégalité de Bienaymé-Tchebychev.
• Variance et moments d’une variable aléatoire.
• Écart-type æ(X ) d’une variable aléatoire X .
• Formule de König-Huygens V (X ) = E(X 2)°E(X )2.
• Variance de aX +b. Notion de variable centrée réduite.
• Si X est une variable aléatoire admettant une variance non

nulle, X § = X °E(X )
æ(X )

est une variable centrée réduite.

X § est appelée variable centrée réduite associée à X .

• Si X et Y sont indépendantes, espérance de X Y et variance
de X +Y .

Résultat sur l’espérance admis.
Généralisation au cas de n variables aléatoires indé-
pendantes.

d) Lois usuelles discrètes

Loi de Poisson. Espérance, variance.
Loi géométrique. Espérance, variance.
Propriété d’invariance temporelle ou d’absence de mémoire de
la loi géométrique.

On présente la loi géométrique comme loi du
nombre d’épreuves nécessaires pour obtenir le pre-
mier succès dans une suite illimitée d’épreuves de
Bernoulli indépendantes et de même paramètre.
⌦ Exemples de situations expérimentales modéli-
sées par une loi géométrique.
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Probabilités 3 – Couples de variables aléatoires discrètes

Ce chapitre permet, par le maniement de sommes de séries, d’appréhender les phénomènes liés aux couples
de variables aléatoires : lois conjointes, lois marginales, indépendance. Cependant, le théorème de transfert
est énoncé dans le seul cas des couples de variables aléatoires discrètes finies, et les séries doubles ne sont
au programme.

Contenus Commentaires

a) Couples de variables aléatoires réelles discrètes

Couple (X ,Y ) de deux variables aléatoires discrètes. Loi
conjointe.

L’événement ((X = x)\ (Y = y)) est également noté
(X = x,Y = y).

Lois marginales.
Lois conditionnelles. L’espérance conditionnelle n’est pas un attendu du

programme.
b) Exemples de variable aléatoire de la forme u(X ,Y )
Sur des exemples simples, recherche de la loi de u(X ,Y ), le
couple (X ,Y ) ayant une loi conjointe connue.

On s’intéressera en particulier au maximum et au
minimum de deux ou de n variables aléatoires in-
dépendantes.

Cas particulier de la somme de deux variables discrètes à va-
leurs dans N.

Les deux variables ne sont pas nécessairement indé-
pendantes.

Loi de la somme de deux variables indépendantes suivant des
lois de Poisson.

Généralisation au cas de n variables.

Théorème de transfert : espérance de u(X ,Y ) à partir de la loi
de (X ,Y ) quand X et Y sont des variables aléatoires discrètes
finies.

Ce résultat peut être admis.

c) Covariance

Covariance, formule de König-Huygens Cov(X ,Y ) = E(X Y ) °
E(X )E(Y ) et calcul effectif quand X et Y sont discrètes finies.

Le calcul effectif de E(X Y ) au moyen d’une série
double n’est pas au programme.

Variance de X +Y . On remarquera qu’en cas d’indépendance
Cov(X ,Y ) = 0, mais que la réciproque est fausse.

Probabilités 4 – Variables aléatoires à densité

Contenus Commentaires

a) Variables aléatoires admettant une densité

On appelle densité de probabilité une fonction f définie sur R,
positive, dont l’intégrale généralisée sur R converge et vaut 1.

Dans le cadre du programme, l’intégrale généralisée
n’est définie que pour des fonctions continues sauf
éventuellement en un nombre fini de points.

On dit qu’une variable aléatoire réelle X est à densité s’il existe
une densité de probabilité f telle que, pour tout x 2 R : FX (x) =Zx

°1
f (t )dt .

Une telle fonction, qui n’est pas unique, est appelée
densité de X .

FX est dérivable en tout point de continuité x de f et F 0
X (x) =

f (x)
Ce résultat peut être admis.
Dans ce contexte, donner la loi d’une variable aléa-
toire X , c’est justifier que X admet une densité et en
donner une.

Si f est une densité de probabilité, alors il existe une variable
aléatoire X dont f est une densité.

Résultat admis.
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Contenus (suite) Commentaires

X admet une densité si, et seulement si, sa fonction de réparti-
tion FX est continue sur R et de classe C 1 sur R sauf éventuelle-
ment en un nombre fini de points.

Ce résultat peut être admis. On insistera sur les re-
présentations graphiques de la fonction de densité
et de la fonction de répartition, en faisant le lien avec
les histogrammes de variables aléatoires finies. Les
étudiants doivent savoir déterminer la loi d’une va-
riable aléatoire à partir de sa fonction de répartition.

Sur des exemples simples, recherche de la loi de
u(X ), X ayant une densité donnée.

b) Indépendance

Propriétés de l’indépendance mutuelle :
• Si X1, X2, . . . , Xn sont indépendantes, toute sous-famille

l’est aussi.
• Lemme des coalitions : si X1, . . . , Xn , Xn+1, . . . , Xn+p sont

indépendantes, alors u(X1, . . . , Xn) et v(Xn+1, . . . , Xn+p )
sont indépendantes.

On observera que cette propriété peut s’étendre à un
nombre fini de fonctions, et en particulier au cas de
(u1(X1),u2(X2), . . . ,un(Xn)).

Exemples de recherche de la loi du minimum et du
maximum de deux ou de n variables aléatoires indé-
pendantes.

c) Espérance

Espérance. Propriétés. Notion de variable centrée. La linéarité de l’espérance est admise.
Par extension, on pourra appliquer la linéarité de
l’espérance à des variables aléatoires, qu’elles soient
discrètes ou à densité, sans savoir si leur résultante
est discrète ou à densité.

Théorème de transfert : si X est une variable aléatoire à den-
sité et u est une fonction définie sur un intervalle I conte-
nant X (≠), continue sauf éventuellement en un nombre fini
de points, alors u(X ) admet une espérance si, et seulement

si,
Z

I
u(x) f (x)dx est absolument convergente. Le cas échéant,

E(u(X )) =
Z

I
u(x) f (x)dx.

Résultat admis.
On pourra appliquer ce théorème sans savoir si u(X )
est une variable aléatoire discrète ou à densité.

Propriétés :
• Inégalité de Markov. Inégalité de Bienaymé-Tchebychev. On pourra appliquer ce théorème dès lors que la va-

riable aléatoire admet une variance, sans savoir si
elle est discrète ou à densité.

• Variance et moments.
• Écart-type æ(X ) d’une variable aléatoire X .
• Formule de König-Huygens V (X ) = E(X 2)°E(X )2.
• Variance de aX +b. Notion de variable centrée réduite.
• Si X est une variable aléatoire admettant une variance non

nulle, X § = X °E(X )
æ(X )

est une variable centrée réduite.

X § est appelée variable centrée réduite associée à X .

• Si X et Y sont indépendantes, espérance de X Y et variance
de X +Y .

Résultat sur l’espérance admis.
Par extension, on pourra appliquer ces formules à
des variables aléatoires, qu’elles soient discrètes ou
à densité, sans savoir si leurs résultantes X Y et X +Y
sont discrètes ou à densité.
Généralisation au cas de n variables aléatoires indé-
pendantes.

d) Lois usuelles

Loi uniforme : densité, fonction de répartition, espérance, va-
riance.

© Ministère de l’enseignement supérieur, de la recherche et de l’innovation Mathématiques – BCPST2
Page 13/15



Contenus (suite) Commentaires

Loi exponentielle : densité, fonction de répartition, espérance,
variance. Propriété d’invariance temporelle ou d’absence de
mémoire : P (X ∏ s + t |X ∏ s) = P (X ∏ t ) et on donne quelques
exemples d’expériences donnant du sens à cette propriété.

⌦Une variable aléatoire de loi exponentielle peut
être simulée à partir d’une variable aléatoire suivant
la loi uniforme sur ]0,1[.

Loi normale (ou gaussienne) centrée et réduite : densité, espé-
rance et variance.

⌦On obtient les valeurs de la fonction de réparti-
tion (notée souvent©) et de sa réciproque au moyen
de la calculatrice ou d’une bibliothèque associée à
un langage de programmation.
Un échantillon de valeurs utiles devra être rappelé.
⌦Une variable aléatoire de loi normale peut être si-
mulée à partir d’une variable aléatoire suivant la loi
uniforme sur ]0,1[.

Loi normale de paramètres µ et æ2 : densité, espérance et va-
riance.
Si X suit une loi normale, alors aX +b aussi si a 6= 0. Pour une variable de loi N (µ,æ2), on se ramènera le

plus souvent à la variable centrée réduite associée.
e) Sommes de variables aléatoires à densité indépendantes

Loi de la somme de deux variables indépendantes à densité. Le résultat est admis.
La formule du produit de convolution devra être
rappelée en cas de besoin.
La démonstration de la convergence de l’intégrale,
le cas échéant, n’est pas attendue des étudiants.

Somme de deux variables aléatoires normales indépendantes. Le calcul montrant la normalité de la somme n’est
pas un attendu du programme.
On généralise le résultat au cas de n variables gaus-
siennes indépendantes.

Probabilités 5 – Théorèmes limites

Contenus Commentaires

a) Loi faible des grands nombres

La moyenne empirique d’un n-uplet de variables aléatoires

(X1, . . . , Xn), notée Mn , est définie par Mn = 1
n

nP
i=1

Xi .

Loi faible des grands nombres pour des variables aléatoires mu-
tuellement indépendantes.

La définition générale de la convergence en proba-
bilité n’est pas un objectif du programme.

b) Convergence en loi

Définition de la convergence en loi d’une suite de variables
aléatoires (Xn) vers une variable aléatoire X .
Cas particulier où les Xn prennent leurs valeurs dans N.
Convergence en loi d’une suite de variables aléatoires de lois
binomiales vers une variable aléatoire de loi de Poisson.

Approximations qui en découlent. Les critères d’ap-
proximation devront être explicités.

Théorème central limite (première forme) : si (Xn)n∏1 est une
suite de variables aléatoires indépendantes de même loi, ad-
mettant une espérance µ et une variance æ2 non nulle, alors
(M§

n )n∏1 converge en loi vers une variable aléatoire suivant la
loi normale centrée réduite.

Théorème admis.

On rappelle que M§
n = Mn °µ

æp
n

est la variable aléa-

toire centrée réduite associée à Mn .
⌦On illustre numériquement cette convergence.

Cas de la loi binomiale : théorème de de Moivre-Laplace.

L’écart-type empirique d’un n-uplet de variables aléatoires

(X1, . . . , Xn), noté Sn , est défini par S2
n = 1

n

nP
i=1

(Xi °Mn)2.
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Contenus (suite) Commentaires

Théorème central limite (seconde forme) :
Si (Xn)n∏1 est une suite de variables aléatoires indépendantes
de même loi, admettant une espérance µ et une variance, alorsµ

Mn°µ
Snp

n

∂

n∏1

converge en loi vers une variable aléatoire suivant la

loi normale centrée réduite.

Théorème admis. Une autre version de ce théorème,
impliquant l’écart-type empirique corrigé S0

n défini

par S0
n

2 = 1
n°1

nP
i=1

(Xi °Mn)2, pourra être donnée.

c) Introduction aux tests

Test de conformité à la moyenne. On traitera le cas particulier d’une proportion par
majoration de l’écart-type.
Les notions de risque Æ ou Ø, de puissance ne sont
pas au programme.
⌦ En lien avec l’informatique, mécanisme et simu-
lation de tests statistiques.
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