BCPST 2, Lycée Chateaubriand Samedi 24 janvier 2026

Corrigé du DS n°4

Exercice 1 : Codiagonalisation et systeme différentiel

1. Les premiere et troisieme colonnes de A sont identiques donc A n’est pas inversible.

On en déduit que ‘0 est une valeur propre de A. ‘

2. Soit A € R. Alors A est valeur propre de A si et seulement si rg(A - Al3) < 3.
2-A -1 2 0 1-X =A2+3)\
rg (A-Al3) =rg 4 -3-A 4 L=, gl 0 1-A 4\
1 1= ) i e -1 1-X
0 0 “AZ- )
- gl 0 1-x 4
frehits -1 1-A
donc A e Sp(A) < 1-A=0ou -A? -\ =0. Conclusion : |Sp(A) = {-1,0,1}.

A possede bien trois valeurs propres distinctes, qu’on ordonne : Ay = -1, Ay =0 et A\3=1.

3. D’apres le cours, A est diagonalisable et ses espaces propres sont de dimension 1.
T 0=0 x=0 0

4. Btudede By : X =|y|e B ((A) < {2y-42=0 < <{y=2z donc|E_;(A)=Vect|2].
1

< r-y+22=0 z=z

T 0=0 rT=x
Etude de By : X = |y | e Eo(4) < {y=0 <1{y=0 donc | Ey(A) = Vect| 0

< r-y+z=0 z=-T

—_

T -2z=0 T=1y 1

Etude de By : X = |y | e By (4) < {42=0 < {y=y donc|FE(A)=Vect|1].

=z r—y=0 z=0 0

5. Les vecteurs propres X, Xs, X3 demandés sont ceux donnés a la question précédente.
0 1 1 -1 0 0

Onadonc: P=] 2 0 1 |etD-= 0 0 0 | vérifient: A= PDP-1.
1 -1 0 0 0 1

6. Calcul de P! par inversion d’un systeéme : soient a, b, ¢ trois réels. Alors :

y+z=a r—y=c r—y=c r=—-a+b-c
20+2=b << {2y+z=0-2¢c <<{y+z=a <> jy=-a+b-2c
rT-y=c y+z=a -z2=b-2c-2a z=2a-b+2c
-1 1 -1
On peut alors lire les coefficients de P~' : |[P~1=| -1 1 -2
2 -1 2

7. On calcule BX; pour i € {1,2,3} :

0

BX;=141]=2X; donc X; est vecteur propre de B associé a la valeur propre 2.
2

1

BX5 =] 0 | = X5 donc X, est vecteur propre de B associé a la valeur propre 1.
-1

BX3=]6]=6X3 donc X3 est vecteur propre de B associé a la valeur propre 6.
0




8.

10.

11.

On en déduit que B possede les trois valeurs propres distinctes 1,2 et 6 donc B est diagonalisable.
Les vecteurs propres Xp, X, X3 forment une base de M3, (R) et la matrice de passage P diago-
nalise B : | B= PAP~! avec A = Diag(2,1,6).

. Avec les notations précédentes : AB = (PDP*)(PAP*) = PD(PP*)AP*1 = PDAP-!

Les matrices D et A sont diagonales, donc elles commutent : DA = AD.

On a alors : AB = PADP~' = (PAP-')(PDP-!) donc

Soit n € N. On note H,, la propriété : A = PD"P~1. On montre par récurrence que H,, est vraie
pour tout n € N.

e Initialisation pour n=0: A° = I3 et PDOP~! = PI3P~1 = I3 donc H, est vraie.

e Hérédité a partir de n =0. Soit n > 0. On suppose H,, vraie. Alors :

Al = A A" = (PDPY)(PD"P-') = PD(P-'P)D"P~' = PD"'P-! donc H,,1 est vraie.

e H, est initialisée au rang n = 0 et héréditaire a partir du rang n = 0. D’apres le principe de
récurrence, H,, est vraie pour tout entier naturel n.

Conclusion : ‘ VneN, A» = PDrP-1, ‘

Application :
(a) [ (S) < X" =AX'+ BX.

(b) D’apres les questions précédentes : (S) < X" = PDP1X’'+ PAP'X
donc en multipliant & gauche par la matrice inversible P~!, on obtient :
(S) < P'X"=DP'X'"+ AP'X < Y"=DY'+AY.

u" =-u'+2u
(¢) Y'=DY'"+AY < 30" =v

w’ =w' + 6w
On peut résoudre chacune de ces équations différentielles linéaires d’ordre 2 a coefficients
constants :
u” +u' - 2u =0 a pour équation caractéristique 72 +r -2 =0 de solutions réelles r = -2 et r = 1
donc |Ja, B e R, YVt e R, u(t) = ae 2 + fel.
v" —v =0 a pour équation caractéristique r2 — 1 =0 de solutions réelles r = -1 et r=1
donc [3y,0 € R, Vte R, v(t) = yet + det.
w"” —w' — 6w = 0 a pour équation caractéristique 2> —r — 6 = 0 de solutions réelles r = -2 et
r=3donc |3\, neR, VieR, w(t) = Ae72 + pedt.

(d) On utilise enfin la relation X = PY pour trouver les solutions de (S) :

T=v+w z(t) = yet + det + N2t + pedt
y=2u+w donc|VteR, {y(t)=(2a+N)e 2 +28e +pedt  ou a,B,7,0, A\ peR.
Z=Uu—-v 2(t) =ae? + (S -09)et —yet

Remarque : Pensemble solution correspondant pour ¢t — X (¢) peut s’écrire :

0 0 1 1 1 1
Vect |t e 2| 2|, t—et|2],t—et| 0 |,t=et| 0 |, t>e2|1],te3]1
1 1 -1 -1 0 0




Exercice 2 : Longueurs de séries de lancers identiques
1. Z;l(gl) = PJ.
2. [Ly = 0] signifie qu’on obtient toujours le méme coté de la piece : ou bien uniquement des Face’,

+o0 +oo
ou bien uniquement des 'Pile’. Ainsi : [L; =0] = (ﬂ Fn) U (ﬂ Fn)
n=1 n=1

Pour tout k > 1, [L; = k] signifie qu’on a obtenu k fois le méme c6té lors des k premiers lancers,
puis le ¢oté opposé lors du (k + 1)®™e lancer :

k ko
Vk>1, [lek:]:(ﬂ anFk+1) U (ﬂ FnﬁFk+1)
n=1

n=1

n=1

k ko
3. Soit k > 1. Par union disjointe, on a : P(L; =k) =P (ﬂ F,n Fk+1) +P (ﬂ E,n Fk+1)
n=1
Par indépendance des lancers successifs, on a :

I%g:kﬁ{lpwwxp(ﬁzpjlpﬁmXP(&H)

VkeN*, P(Ly=k)=q¢"xp+pFxq.

4. Les événement [L; = k] sont deux-a-deux disjoints, donc par o-additivité, la série ZP(Ll =k)
converge. De plus, Vk > 1, P(Ly = k) = pg* + qp* = pq(qk‘l) + qp(pk‘l) : on reconnait les termes

généraux de séries géométriques, de raisons p et ¢ appartenant a | -1, 1[.

+00o + 00 +00 1 1
Onadonc: Y P(Li=k)=pg) ¢" ' +qp) p" "' =pgx +qgpx —— =q+p=1.
k=1 k=1 k=1

l-q L=p
L’événement [L; = 0] est donc de probabilité nulle : ¢’est un événement quasi-impossible.

5. On étudie la convergence absolue de la série Z kxP(Ly=k):

kExP(Ly =k)=Fkx(pg*+qp*) = q(k X pq’“l) +p(k X qpkfl) : on reconnailt les termes généraux
de séries géométriques dérivées, qui convergent absolument. Les sommes de ces séries sont les
espérances de lois géométriques de parametres p et ¢ respectivement, donc :

L1 admet une espérance, égale a : E(L;) = 2,P_ L-p I 2" =2+ 1.
p g p 1l-p p-p’
6. f est bien définie sur ]0,1[, dérivable par opérations, et de dérivée :
(4o -2)(z-2?) - (222 - 20+ 1)(1 -22) 22-1
(r-x2)? (z - a?)?
1

f' s’annule donc en z = 1, et est strictement positive sur |3, 1[ et stritement négative sur 0, 3.

Vo el0, 1], f'(x) =

f admet donc un minimum m en x = 3, et m = f(3) = 2.

On a: E(L;) = f(p) donc l'espérance de Ly est minimale lorsque p = 1 (pitce non truquée).
7. a) Moment d’ordre 2 : on étudie la convergence de la série Y k* x P(L; = k)
k2 xP(Ly = k) = E*(pg* + qp*) = q(k;2 X qu‘l) +p(l{:2 X qpk‘l) : on reconnait les termes généraux

des séries des moments d’ordre 2 de lois géométriques de parametres p et ¢, valant respectivement

+1 +1 +1 +1
g+1 . p q(q )+p@ )‘

p? @ p? q>

Conclusion : | Ly possede un moment d’ordre 2 égal & : mo(Ly) =

b) L; admet un moment d’ordre 2 donc une variance et d’apres le théoreme de Koénig-Huygens :

V(L) = () - (B())? = WD PR D) (4 Py b
p q b q p q
P

Conclusion : |la variance de Ly est : V(L) = 4,P_ 2.

p2

LS

w



8.

10.

11.

Soient k> 1 et i > 1. L’événement [L; = k] n[Ls =i] est : "obtenir k fois le méme coté de la piece
lors des k premiers lancers, puis i fois le coté opposé lors des lancers (k+ 1) a (k +14), puis le
premier coté au (k +14+ 1)®™e lancer. ”

ki k ket
[lek?] LQ—Z (mF N m FnﬂFk+i+1) @] (anﬂ m anFk+i+1)
n=1

n=k+1 n=k+1

. Par union disjointe et mdependance des lancers successifs, on a :

k+i k k+i

P([Li =k]n[Ly=1]) = qu [T pxa+]Ipx [ axp

n=k+1 n=1 n=k+1

Vk,i> 1, P([Li = k] n[Ly=1i]) = ¢¥*1pi + ph*ig'.

Soit ¢ > 1. Les événements ([L1 = k:]) 4oy forment un systeme quasi-complet d’événements.

D’apres la formule des probabilités totales :
+00

P(Ly=i)=Y P([L1=k]n[Ly=1])
k=1

+00

kz:; (qk+1pz +pk‘+1qi)

too +00
=p'¢®* > ¢" " +¢'p* > p"'  en reconnaissant deux séries géométriques convergentes
k=1 k=1
2, 1 1
1 q 1- p
Conclusion : [Vi> 1, P(Ly =1) = ¢*p*~ + p?¢*L.

7

=pPq

ixP(Ly=1) = i(qui‘l +p2qi‘1) = q(z'qpi‘l) +p(ipqi‘1) est une combinaison linéaire des termes
généraux des séries des moments d’ordre 1 de lois géométriques de parametres g et p

donc Zz x P(Ly =1) converge absolument et ‘Lz admet une espérance. ‘

+00 ) +00 . 1 1
E(Ly) =q) igp"™ +p > ipg™" = q x p +px 5 Conclusion : |E(Ly) =2

i=1 i=1




