
BCPST 2, Lycée Chateaubriand Samedi 24 janvier 2026

Corrigé du DS n°4
Exercice 1 : Codiagonalisation et système différentiel

1. Les première et troisième colonnes de A sont identiques donc A n’est pas inversible.

On en déduit que 0 est une valeur propre de A.

2. Soit λ ∈ R. Alors λ est valeur propre de A si et seulement si rg(A − λI3) < 3.

rg (A − λI3) = rg
⎛
⎜
⎝

2 − λ −1 2
4 −3 − λ 4

1 −1 1 − λ

⎞
⎟
⎠

=
L2←L2−4L3

L1←L1−(2−λ)L3

rg
⎛
⎜
⎝

0 1 − λ −λ2 + 3λ
0 1 − λ 4λ

1 −1 1 − λ

⎞
⎟
⎠

=
L1←L1−L2

rg
⎛
⎜
⎝

0 0 −λ2 − λ
0 1 − λ 4λ

1 −1 1 − λ

⎞
⎟
⎠

donc λ ∈ Sp(A) ⇔ 1 − λ = 0 ou −λ2 − λ = 0. Conclusion : Sp(A) = {−1,0,1}.

A possède bien trois valeurs propres distinctes, qu’on ordonne : λ1 = −1, λ2 = 0 et λ3 = 1.

3. D’après le cours, A est diagonalisable et ses espaces propres sont de dimension 1.

4. Étude de E−1 : X =
⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
∈ E−1(A) ⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 = 0

2y − 4z = 0

x − y + 2z = 0

⇔
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = 0

y = 2z

z = z
donc E−1(A) = Vect

⎛
⎜
⎝

0
2
1

⎞
⎟
⎠

.

Étude de E0 : X =
⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
∈ E0(A) ⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 = 0

y = 0

x − y + z = 0

⇔
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = x
y = 0

z = −x
donc E0(A) = Vect

⎛
⎜
⎝

1
0
−1

⎞
⎟
⎠

.

Étude de E1 : X =
⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
∈ E1(A) ⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−2z = 0

4z = 0

x − y = 0

⇔
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = y
y = y
z = 0

donc E1(A) = Vect
⎛
⎜
⎝

1
1
0

⎞
⎟
⎠

.

5. Les vecteurs propres X1,X2,X3 demandés sont ceux donnés à la question précédente.

On a donc : P =
⎛
⎜
⎝

0 1 1
2 0 1
1 −1 0

⎞
⎟
⎠

et D =
⎛
⎜
⎝

−1 0 0
0 0 0
0 0 1

⎞
⎟
⎠

vérifient : A = PDP −1.

6. Calcul de P −1 par inversion d’un système : soient a, b, c trois réels. Alors :
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y + z = a
2x + z = b
x − y = c

⇔
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − y = c
2y + z = b − 2c

y + z = a
⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − y = c
y + z = a
−z = b − 2c − 2a

⇔
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = −a + b − c
y = −a + b − 2c

z = 2a − b + 2c

On peut alors lire les coefficients de P −1 : P −1 =
⎛
⎜
⎝

−1 1 −1
−1 1 −2
2 −1 2

⎞
⎟
⎠

.

7. On calcule BXi pour i ∈ {1,2,3} :

BX1 =
⎛
⎜
⎝

0
4
2

⎞
⎟
⎠
= 2X1 donc X1 est vecteur propre de B associé à la valeur propre 2.

BX2 =
⎛
⎜
⎝

1
0
−1

⎞
⎟
⎠
=X2 donc X2 est vecteur propre de B associé à la valeur propre 1.

BX3 =
⎛
⎜
⎝

6
6
0

⎞
⎟
⎠
= 6X3 donc X3 est vecteur propre de B associé à la valeur propre 6.
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8. On en déduit que B possède les trois valeurs propres distinctes 1,2 et 6 donc B est diagonalisable.

Les vecteurs propres X1,X2,X3 forment une base de M3,1(R) et la matrice de passage P diago-

nalise B : B = P∆P −1 avec ∆ = Diag(2,1,6).

9. Avec les notations précédentes : AB = (PDP −1)(P∆P −1) = PD(PP −1)∆P −1 = PD∆P −1

Les matrices D et ∆ sont diagonales, donc elles commutent : D∆ = ∆D.

On a alors : AB = P∆DP −1 = (P∆P −1)(PDP −1) donc AB = BA.

10. Soit n ∈ N. On note Hn la propriété : An = PDnP −1. On montre par récurrence que Hn est vraie
pour tout n ∈ N.

● Initialisation pour n = 0 : A0 = I3 et PD0P −1 = PI3P −1 = I3 donc H0 est vraie.

● Hérédité à partir de n = 0. Soit n ⩾ 0. On suppose Hn vraie. Alors :

An+1 = A.An = (PDP −1)(PDnP −1) = PD(P −1P )DnP −1 = PDn+1P −1 donc Hn+1 est vraie.

● Hn est initialisée au rang n = 0 et héréditaire à partir du rang n = 0. D’après le principe de
récurrence, Hn est vraie pour tout entier naturel n.

Conclusion : ∀n ∈ N, An = PDnP −1.

11. Application :

(a) (S) ⇔X ′′ = AX ′ +BX.

(b) D’après les questions précédentes : (S) ⇔X ′′ = PDP −1X ′ + P∆P −1X

donc en multipliant à gauche par la matrice inversible P −1, on obtient :

(S) ⇔ P −1X ′′ =DP −1X ′ +∆P −1X⇔ Y ′′ =DY ′ +∆Y .

(c) Y ′′ =DY ′ +∆Y ⇔
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u′′ = −u′ + 2u

v′′ = v
w′′ = w′ + 6w

On peut résoudre chacune de ces équations différentielles linéaires d’ordre 2 à coefficients
constants :

u′′+u′−2u = 0 a pour équation caractéristique r2+r−2 = 0 de solutions réelles r = −2 et r = 1

donc ∃α,β ∈ R, ∀t ∈ R, u(t) = αe−2t + βet.
v′′ − v = 0 a pour équation caractéristique r2 − 1 = 0 de solutions réelles r = −1 et r = 1

donc ∃γ, δ ∈ R, ∀t ∈ R, v(t) = γe−t + δet.
w′′ − w′ − 6w = 0 a pour équation caractéristique r2 − r − 6 = 0 de solutions réelles r = −2 et

r = 3 donc ∃λ,µ ∈ R, ∀t ∈ R, w(t) = λe−2t + µe3t.

(d) On utilise enfin la relation X = PY pour trouver les solutions de (S) :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = v +w
y = 2u +w
z = u − v

donc ∀t ∈ R,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(t) = γe−t + δet + λe−2t + µe3t

y(t) = (2α + λ)e−2t + 2βet + µe3t

z(t) = αe−2t + (β − δ)et − γe−t
où α,β, γ, δ, λ, µ ∈ R.

Remarque : l’ensemble solution correspondant pour tz→X(t) peut s’écrire :

Vect
⎛
⎜
⎝
t↦ e−2t

⎛
⎜
⎝

0
2
1

⎞
⎟
⎠
, t↦ et

⎛
⎜
⎝

0
2
1

⎞
⎟
⎠
, t↦ e−t

⎛
⎜
⎝

1
0
−1

⎞
⎟
⎠
, t↦ et

⎛
⎜
⎝

1
0
−1

⎞
⎟
⎠
, t↦ e−2t

⎛
⎜
⎝

1
1
0

⎞
⎟
⎠
, t↦ e3t

⎛
⎜
⎝

1
1
0

⎞
⎟
⎠

⎞
⎟
⎠
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Exercice 2 : Longueurs de séries de lancers identiques

1. L1(Ω) = N.

2. [L1 = 0] signifie qu’on obtient toujours le même côté de la pièce : ou bien uniquement des ’Face’,

ou bien uniquement des ’Pile’. Ainsi : [L1 = 0] = (
+∞

⋂
n=1

Fn) ∪ (
+∞

⋂
n=1

Fn)

Pour tout k ⩾ 1, [L1 = k] signifie qu’on a obtenu k fois le même côté lors des k premiers lancers,
puis le côté opposé lors du (k + 1)ème lancer :

∀k ⩾ 1, [L1 = k] = (
k

⋂
n=1

Fn ∩ Fk+1) ∪ (
k

⋂
n=1

Fn ∩ Fk+1)

3. Soit k ⩾ 1. Par union disjointe, on a : P(L1 = k) = P(
k

⋂
n=1

Fn ∩ Fk+1) +P(
k

⋂
n=1

Fn ∩ Fk+1)

Par indépendance des lancers successifs, on a :

P(L1 = k) =
k

∏
n=1

P(Fn) ×P (Fk+1) +
k

∏
n=1

P (Fn) ×P (Fk+1)

∀k ∈ N⋆, P(L1 = k) = qk × p + pk × q.
4. Les événement [L1 = k] sont deux-à-deux disjoints, donc par σ-additivité, la série ∑P(L1 = k)

converge. De plus, ∀k ⩾ 1, P(L1 = k) = pqk + qpk = pq(qk−1) + qp(pk−1) : on reconnâıt les termes

généraux de séries géométriques, de raisons p et q appartenant à ] − 1,1[.

On a donc :
+∞

∑
k=1

P(L1 = k) = pq
+∞

∑
k=1

qk−1 + qp
+∞

∑
k=1

pk−1 = pq × 1

1 − q + qp ×
1

1 − p = q + p = 1.

L’événement [L1 = 0] est donc de probabilité nulle : c’est un événement quasi-impossible.

5. On étudie la convergence absolue de la série ∑k ×P(L1 = k) :

k × P(L1 = k) = k × (pqk + qpk) = q(k × pqk−1) + p(k × qpk−1) : on reconnâıt les termes généraux
de séries géométriques dérivées, qui convergent absolument. Les sommes de ces séries sont les
espérances de lois géométriques de paramètres p et q respectivement, donc :

L1 admet une espérance, égale à : E(L1) =
q

p
+ p
q
= 1 − p

p
+ p

1 − p = 2p2 − 2p + 1

p − p2
.

6. f est bien définie sur ]0,1[, dérivable par opérations, et de dérivée :

∀x ∈]0,1[, f ′(x) = (4x − 2)(x − x2) − (2x2 − 2x + 1)(1 − 2x)
(x − x2)2

= 2x − 1

(x − x2)2

f ′ s’annule donc en x = 1
2 , et est strictement positive sur ]1

2 ,1[ et stritement négative sur ]0, 1
2[.

f admet donc un minimum m en x = 1
2 , et m = f(1

2) = 2.

On a : E(L1) = f(p) donc l’espérance de L1 est minimale lorsque p = 1
2 (pièce non truquée).

7. a) Moment d’ordre 2 : on étudie la convergence de la série ∑k2 ×P(L1 = k)
k2 ×P(L1 = k) = k2(pqk + qpk) = q(k2 × pqk−1) + p(k2 × qpk−1) : on reconnâıt les termes généraux

des séries des moments d’ordre 2 de lois géométriques de paramètres p et q, valant respectivement

q + 1

p2
et
p + 1

q2
. Conclusion : L1 possède un moment d’ordre 2 égal à : m2(L1) =

q(q + 1)
p2

+ p(p + 1)
q2

.

b) L1 admet un moment d’ordre 2 donc une variance et d’après le théorème de König-Huygens :

V(L1) =m2(L1) − (E(L1))2 = q(q + 1)
p2

+ p(p + 1)
q2

− (q
p
+ p
q
)

2

= q

p2
+ p

q2
− 2

Conclusion : la variance de L1 est : V(L1) =
q

p2
+ p

q2
− 2.
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8. Soient k ⩾ 1 et i ⩾ 1. L’événement [L1 = k] ∩ [L2 = i] est : ”obtenir k fois le même côté de la pièce
lors des k premiers lancers, puis i fois le côté opposé lors des lancers (k + 1) à (k + i), puis le
premier côté au (k + i + 1)ème lancer. ”

[L1 = k] ∩ [L2 = i] = (
k

⋂
n=1

Fn ∩
k+i

⋂
n=k+1

Fn ∩ Fk+i+1) ∪ (
k

⋂
n=1

Fn ∩
k+i

⋂
n=k+1

Fn ∩ Fk+i+1)

9. Par union disjointe et indépendance des lancers successifs, on a :

P([L1 = k] ∩ [L2 = i]) =
k

∏
n=1

q ×
k+i

∏
n=k+1

p × q +
k

∏
n=1

p ×
k+i

∏
n=k+1

q × p.

∀k, i ⩾ 1, P([L1 = k] ∩ [L2 = i]) = qk+1pi + pk+1qi.

10. Soit i ⩾ 1. Les événements ([L1 = k])k⩾1
forment un système quasi-complet d’événements.

D’après la formule des probabilités totales :

P(L2 = i) =
+∞

∑
k=1

P([L1 = k] ∩ [L2 = i])

=
+∞

∑
k=1

(qk+1pi + pk+1qi)

= piq2
+∞

∑
k=1

qk−1 + qip2
+∞

∑
k=1

pk−1 en reconnaissant deux séries géométriques convergentes

= piq2 × 1

1 − q + q
ip2 × 1

1 − p
Conclusion : ∀i ⩾ 1, P(L2 = i) = q2pi−1 + p2qi−1.

11. i × P(L2 = i) = i(q2pi−1 + p2qi−1) = q(iqpi−1) + p(ipqi−1) est une combinaison linéaire des termes
généraux des séries des moments d’ordre 1 de lois géométriques de paramètres q et p

donc ∑ i ×P(L2 = i) converge absolument et L2 admet une espérance.

E(L2) = q
+∞

∑
i=1

iqpi−1 + p
+∞

∑
i=1

ipqi−1 = q × 1

q
+ p × 1

p
Conclusion : E(L2) = 2.
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