Corrigé du DS n°1

Thème 1 : Trigonométrie, nombres complexes

1. La forme exponentielle d'un complexe $z \neq 0$ est $z = re^{i\theta}$ où r est le module de z et θ en est un argument.

2.
$$\forall \theta \in \mathbf{R}, \cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\forall \theta \in \mathbf{R}, \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

3. Formes algébriques :

(a)
$$e^{i\frac{\pi}{4}} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$
 (b) $\overline{e^{\frac{5i\pi}{6}}} = -\frac{\sqrt{3}}{2} - \frac{i}{2}$ (c) $e^{i\pi} = -1$ (d) $e^{18i\pi} = 1$

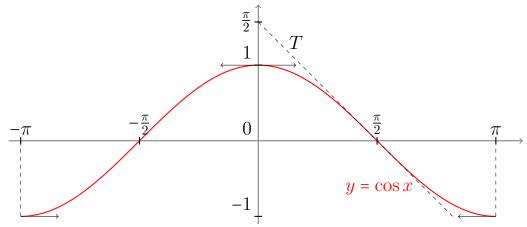
4. Forme exponentielle:

(a)
$$1 = e^{0i}$$
 (b) $5/7 = \frac{5}{7}e^{0i}$ (c) $-3/4 = \frac{3}{4}e^{i\pi}$ (d) $i = e^{i\frac{\pi}{2}}$ (f) $-4i/3 = \frac{4}{3}e^{-i\frac{\pi}{2}}$ (e) $-i = e^{-i\frac{\pi}{2}}$

5. (a) $\cos' = -\sin$

(b)
$$\cos(\frac{\pi}{2}) = 0$$
 et $\cos'(\frac{\pi}{2}) = -1$ donc $T: y = -x + \frac{\pi}{2}$.

(c) Courbe représentative du cosinus entre $-\pi$ et π :



(d)
$$A_0 = \left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\}, A_+ = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \text{ et } A_- = \left[-\pi, -\frac{\pi}{2}\right] \cup \left[\frac{\pi}{2}, \pi\right].$$

(e)
$$\underline{1}^{\text{er}} \underline{\text{cas}} : \alpha \in A_0$$
. Alors $z = 0$.
 $\underline{2}^{\text{ème}} \underline{\text{cas}} : \alpha \in A_+$. Alors $z = (\cos \alpha)e^{i\theta}$.
 $\underline{3}^{\text{ème}} \underline{\text{cas}} : \alpha \in A_-$. Alors $z = (-\cos \alpha)e^{i(\theta + \pi)}$.

- 6. (a) u+iv=u'+iv' n'implique pas u=u' et v=v'. Ce n'est le cas que si u,u',v,v' sont réels. $Contre-exemple: 0+i(-i)=1+i\times 0$, pourtant $0\neq 1$.
 - (b) $\overline{u+v} = \overline{u} + \overline{v}$.

(c)
$$\overline{u+iv} = \overline{u} - i\overline{v}$$
.

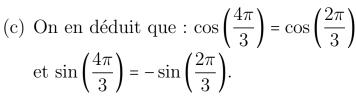
(d)
$$|u+v|^2 = (u+v) \times \overline{u+v} = u\overline{u} + u\overline{v} + v\overline{u} + v\overline{v} = |u|^2 + |v|^2 + 2\operatorname{Re}(u\overline{v})$$

= $|u|^2 + |v|^2 + 2\operatorname{Re}(v\overline{u})$.

- 7. Soit $n \in \mathbb{N}$ et $z_n = (1 + i\sqrt{3})^n (1 i\sqrt{3})^n$. On pose : $w = 1 + i\sqrt{3}$.
 - (a) $z_n = w^n (\overline{w})^n$.
 - (b) $\forall \theta \in \mathbf{R}, (e^{i\theta})^n = e^{in\theta}$ lorsque n est un <u>entier</u> (positif ou négatif).
 - (c) $w = 2e^{i\frac{\pi}{3}}$.
 - (d) $\forall z \in \mathbf{C}, \ z \overline{z} = 2i \operatorname{Im}(z).$
 - (e) $z_n = w^n (\overline{w})^n = 2^n e^{\frac{ni\pi}{3}} 2^n e^{-\frac{ni\pi}{3}} = 2^n \times \left(e^{\frac{ni\pi}{3}} e^{-\frac{ni\pi}{3}}\right)$ $= 2^n \times 2i \sin\left(\frac{n\pi}{3}\right) = \lambda_n i \sin(\theta_n) \text{ en posant } : \left[\lambda_n = 2^{n+1} \text{ et } \theta_n = \frac{n\pi}{3}\right]$

 \mathcal{C}

- (f) |i| = 1 donc $|z_n| = 2^{n+1} \left| \sin \left(\frac{n\pi}{3} \right) \right|$. On en déduit :
 - * si n est multiple de $3: z_n = 0$.
 - * sinon : $|z_n| = 2^n \sqrt{3}$.
- 8. Soit $j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$.
 - (a) $\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$ et $\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}$.
 - (b) M_1 image de $e^{\frac{2i\pi}{3}}$ et M_2 image de $e^{\frac{4i\pi}{3}}$:



(e)
$$j^2 = e^{\frac{4i\pi}{3}} = e^{-\frac{2i\pi}{3}}$$
.

- (f) L'argument principal de j^2 est $-\frac{2\pi}{3}$.
- (g) On a : $j^2 = \overline{j}$.

(h)
$$j^3 = (e^{\frac{2i\pi}{3}})^3 = e^{2i\pi} \text{ donc } j^3 = 1.$$

- (i) $S = 1 + j + j^2 = \frac{1 j^3}{1 j}$ (somme géométrique de raison $j \neq 1$) donc S = 0.
- (j) Soit $n \in \mathbb{N}$. Alors:

$$(1+j)^{3n} = (-j^2)^{3n} = (-1)^{3n}j^{6n} = (-1)^n(j^3)^{2n} \operatorname{donc} \left[(1+j)^{3n} = (-1)^n \right]$$

- 9. Soit $\theta \in \mathbf{R}$. On pose : $Z = (\cos \theta + i \sin \theta)^3$.
 - (a) Forme algébrique de Z: on développe grâce au binôme de Newton.

$$Z = \cos^3 \theta + 3\cos^2 \theta (i\sin \theta) + 3\cos \theta (i\sin \theta)^2 + (i\sin \theta)^3$$

$$Z = \cos^3 \theta - 3\cos\theta \sin^2 \theta + i(3\cos^2 \theta \sin \theta - \sin^3 \theta).$$

(b) Forme exponentielle de Z : on utilise la formule de Moivre.

$$Z = (e^{i\theta})^3 = e^{3i\theta}.$$

(c) Expression de $\sin(3\theta)$: on identifie les parties imaginaires.

$$\sin(3\theta) = 3\cos^2\theta\sin\theta - \sin^3\theta$$
 puis on remplace \cos^2 par $1 - \sin^2\theta$

$$\sin(3\theta) = 3(1 - \sin^2 \theta) \sin \theta - \sin^3 \theta \text{ donc } \forall \theta \in \mathbf{R}, \sin(3\theta) = 3\sin \theta - 4\sin^3 \theta.$$

10. Soit l'équation (E): $\sqrt{3}\cos(t) - \sin(t) = 1$.

On pose $z = \sqrt{3} - i = 2e^{-\frac{i\pi}{6}}$ donc en divisant par |z| = 2:

$$(E) \Leftrightarrow \frac{\sqrt{3}}{2}\cos t + \left(-\frac{1}{2}\right)\sin t = \frac{1}{2} \Leftrightarrow \cos\left(-\frac{\pi}{6}\right)\cos t + \sin\left(-\frac{\pi}{6}\right)\sin t = \frac{1}{2}$$

$$(E) \Leftrightarrow \cos\left(t + \frac{\pi}{6}\right) = \frac{1}{2} \text{ donc à } 2\pi \text{ près} : t + \frac{\pi}{6} = \frac{\pi}{3} \text{ ou } -\frac{\pi}{3}$$

Conclusion:
$$S_E = \left\{ \frac{\pi}{6} + 2k\pi, -\frac{\pi}{2} + 2k\pi, k \in \mathbf{Z} \right\}.$$

11. Soit l'équation (E): $5z^2 - 4z + 1 = 0$.

(E) est une équation du second degré à coefficients réels.

On calcule son discriminant : $\Delta = (-4)^2 - 4 \times 5 \times 1 = -4 < 0$

On trouve deux solutions complexes conjuguées : $S_E = \left\{ \frac{2+i}{5}; \frac{2-i}{5} \right\}$.

Thème 2 : Analyse réelle

12. On pose $f: x \mapsto \frac{\sqrt{x-1}}{x^2+2x-3}$.

(a) $x_0 = 1$: on pose t = x - 1. On a alors:

$$f(x) = f(1+t) = \frac{\sqrt{1+t-1}}{(1+t)^2 + 2(1+t) - 3} = \frac{\sqrt{t}}{4t+t^2} \underset{t\to 0}{\sim} \frac{\sqrt{t}}{4t} = \frac{1}{4\sqrt{t}}$$

donc
$$f(x) \sim \frac{1}{4\sqrt{x-1}}$$
 et $\lim_{x\to 1} f(x) = +\infty$.

(b)
$$x_0 = 2$$
: f est continue en 2 donc $\lim_{x \to 2} f(x) = f(2) = \frac{1}{5}$ et $f(x) \sim \frac{1}{5}$.

(c)
$$x_0 = +\infty : x - 1 \underset{+\infty}{\sim} x \text{ donc } \sqrt{x - 1} \underset{+\infty}{\overset{\sim}{\sim}} \sqrt{x} \text{ (élévation à la puissance } 1/2)$$

et
$$x^2 + 2x - 3 \sim x^2$$
, donc par quotient : $f(x) \sim \frac{\sqrt{x}}{x^2} = x^{-\frac{3}{2}}$ et $\lim_{x \to +\infty} f(x) = 0$.

13. Études de limites :

(a) $\frac{\sin(2t)}{\ln(1+t)} \sim \frac{2t}{t} = 2$ par équivalents usuels et quotient d'équivalents,

donc
$$\lim_{t \to 0} \frac{\sin(2t)}{\ln(1+t)} = 2.$$

(b) On pose
$$x = t - 1$$
. On a alors $x \to 0$.

D'une part,
$$e^t - e = e^{1+x} - e = e(e^x - 1) \sim ex$$
.

D'autre part,
$$\sqrt{t} - 1 = \sqrt{1 + x} - 1 \approx \frac{x}{0}$$
.

Par quotient d'équivalents :
$$\frac{e^{1+x}-e}{\sqrt{1+x}-1} \sim \frac{ex}{\frac{x}{2}} = 2e \text{ donc} \left[\lim_{t\to 1} \frac{e^t-e}{\sqrt{t}-1} = 2e\right]$$

14. Soit
$$f$$
 définie sur \mathbf{R}^* par : $f(x) = \frac{1 - \cos x}{e^x - 1}$

On étudie la limite de
$$f$$
 en 0 : $\cos x - 1 \sim \frac{x^2}{2}$ et $e^x - 1 \sim x$

donc par quotient :
$$f(x) \sim \frac{x^2}{2} = \frac{x}{2}$$
 et $\lim_{x \to 0} f(x) = 0$.

On peut prolonger f par continuité en 0 en posant : f(0) = 0.

15. Étude de
$$f: x \mapsto \cos(\sqrt{x})$$
.

- * L'ensemble de définition de f est \mathbf{R}_+ car \sqrt{x} existe si et seulement si $x \ge 0$.
- * Par opérations, f est dérivable sur \mathbf{R}_{+}^{\star} et $\forall x > 0$, $f'(x) = -\frac{1}{2\sqrt{x}}\sin(\sqrt{x})$.
- * On pose $t = \sqrt{x}$ pour $x \ge 0$. Quand $x \to 0$, on a $t \to 0$ donc on peut effectuer un développement limité de $f(x) = f(t^2) = \cos(t) = 1 \frac{t^2}{2} + o(t^2)$.

Donc : $f(x) = 1 - \frac{x}{2} + o(x)$. L'existence d'un développement limité d'ordre 1 en 0 prouve la dérivabilité de f en 0, et donne : $f'(0) = -\frac{1}{2}$.

Conclusion:
$$f \text{ est d\'erivable sur } \mathbf{R}_+ \text{ et } f'(x) = \begin{cases} -\frac{\sin(\sqrt{x})}{2\sqrt{x}} & \text{si } x > 0\\ -\frac{1}{2} & \text{si } x = 0 \end{cases}$$

16. On pose pour
$$x > 0$$
: $f(x) = \frac{\ln(x)}{1 + x^2}$ et $g(x) = 1 + x^2 - 2x^2 \ln(x)$.

(a) Étude de g:g est dérivable sur \mathbf{R}_+^{\star} par opérations, et :

$$\forall x > 0, \ g'(x) = 2x - 4x \ln(x) - 2x^2 \times \frac{1}{x} = -4x \ln(x)$$

On a donc : $g'(x) \ge 0 \Leftrightarrow x \in]0,1]$ et on en déduit les variations de g.

x	(0	1			+∞	
g'(x)			+	0	_		
g		1		2		* −∞	

Justification des limites :

* en 0, par croissances comparées,
$$\lim_{x\to 0} x^2 \ln(x) = 0$$
 donc $\lim_{x\to 0} g(x) = 1$.
* en $+\infty$, $g(x) = 1 + x^2(1 - 2\ln x)$ donc par opérations, $\lim_{x\to +\infty} g(x) = -\infty$.

(b) Équation g(x) = 0:

D'après 16(a), $\forall x \in]0,1]$, $g(x) \ge 1$ donc g(x) = 0 n'admet pas de solution sur]0,1]. Sur l'intervalle $I = [1, +\infty[$, g est strictement décroissante et continue.

D'après le théorème de la bijection, q réalise une bijection de I dans $q(I) =]-\infty, 2]$. Puisque $0 \in g(I)$, l'équation g(x) = 0 admet une unique solution α , avec $\alpha \in I$.

(c) Signe de g: on déduit de la question précédente le signe de g(x).

x	0		α		$+\infty$
g(x)		+	0	_	

(d) Variations de f:

f est dérivable sur \mathbf{R}_{+}^{\star} par opérations, et :

$$\forall x > 0, \ f'(x) = \frac{\frac{1}{x} \times (1 + x^2) - \ln(x) \times 2x}{(1 + x^2)^2} = \frac{1 + x^2 - 2x^2 \ln(x)}{x(1 + x^2)^2} = \frac{g(x)}{x(1 + x^2)^2}$$

Le signe de f'(x) est donc celui de g(x). On en déduit :

x	0			α	+	+∞		
f'(x)			+	0	_			
f		$-\infty$		$\frac{1}{2\alpha^2}$		0		

Justification des limites et du maximum:

* en 0 : $\lim_{x\to 0} f(x) = -\infty$ par opérations

* en +\infty: $f(x) \sim \frac{\ln x}{x^2}$ et $\lim_{x \to +\infty} \frac{\ln x}{x^2} = 0$ par croissances comparées

 \star D'après son tableau de variations, f admet un maximum M atteint en $\alpha.$

Or
$$g(\alpha) = 0$$
 donc $1 + \alpha^2 = 2\alpha^2 \ln(\alpha)$. Ainsi, $M = f(\alpha) = \frac{\ln(\alpha)}{1 + \alpha^2} = \frac{\ln \alpha}{2\alpha^2 \ln \alpha} = \frac{1}{2\alpha^2}$

17. Soit la fonction f définie par : $f(x) = \frac{2x+1}{\sqrt{x^2+x+1}}$.

(a) Ensemble de définition :

Le trinôme $x^2 + x + 1$ a un discriminant $\Delta = -3 < 0$ donc il ne s'annule pas sur **R**. Le signe du coefficient dominant permet d'affirmer que : $\forall x \in \mathbf{R}, x^2 + x + 1 > 0$. En conséquence, $|\mathcal{D} = \mathbf{R}$.

5

(b) Dérivée de f: Par opérations, f est dérivable sur \mathbf{R} et :

$$\forall x \in \mathbf{R}, \ f'(x) = \frac{2\sqrt{x^2 + x + 1} - (2x + 1)\frac{2x + 1}{2\sqrt{x^2 + x + 1}}}{x^2 + x + 1} = \frac{4(x^2 + x + 1) - (2x + 1)^2}{2(x^2 + x + 1)^{\frac{3}{2}}}$$
Conclusion:
$$\forall x \in \mathbf{R}, \ f'(x) = \frac{3}{2(x^2 + x + 1)^{\frac{3}{2}}}.$$

Conclusion:
$$\forall x \in \mathbf{R}, \ f'(x) = \frac{3}{2(x^2 + x + 1)^{\frac{3}{2}}}.$$

(c) <u>Limites</u>: par règle des équivalents des fonctions polynomiales en $\pm \infty$, $2x+1\underset{\pm\infty}{\sim}2x$ et $x^2+x+1\underset{\pm\infty}{\sim}x^2$ donc en appliquant la puissance 1/2 puis

par quotient :
$$f(x) \underset{\pm \infty}{\sim} \frac{2x}{\sqrt{x^2}} = \frac{2x}{|x|} = \begin{cases} 2 & \text{si } x > 0 \\ -2 & \text{si } x < 0 \end{cases}$$

On en déduit que :
$$\lim_{x \to +\infty} f(x) = 2 \text{ et } \lim_{x \to -\infty} f(x) = -2.$$

(d) f bijective:

 $\forall x \in \mathbf{R}, f'(x) > 0 \text{ donc } f \text{ est strictement croissante et continue}$ sur l'intervalle \mathbf{R} . D'après le théorème de la bijection, f réalise une bijection de **R** sur $f(\mathbf{R}) =]-2,2[=J.$

(e) Propriétés de f^{-1} :

 f^{-1} est une bijection strictement croissante et continue de J sur \mathbf{R} . Puisque f est dérivable et que f' ne s'annule pas, f^{-1} est dérivable sur J.

(f) Valeur de $(f^{-1})'(1)$:

On a: $(f^{-1})'(1) = \frac{1}{f' \circ f^{-1}(1)}$. On voit facilement que f(0) = 1, donc $f^{-1}(1) = 0$.

Ainsi,
$$(f^{-1})'(1) = \frac{1}{f'(0)} = \frac{1}{\frac{3}{2}}$$
. Conclusion: $(f^{-1})'(1) = \frac{2}{3}$.

18. Etude du sinus cardinal

(a) Régularités de f sur \mathbf{R}^* :

Par opérations,
$$f \in \mathcal{C}^1(\mathbf{R}^*)$$
 et $\forall x \neq 0, \ f'(x) = \frac{x \cos x - \sin x}{x^2} = \frac{g(x)}{x^2}$.

(b) Continuité en 0 :

$$f(x) \sim \frac{x}{x} = 1$$
 donc $\lim_{x\to 0} f(x) = 1 = f(0)$. f est continue en 0.

(c) Dérivabilité en 0 :

$$f(x) = \frac{1}{x}(x + o(x^2)) = 1 + o(x), \text{ donc } f \text{ admet en } 0 \text{ un DL d'ordre } 1.$$

$$f \text{ est dérivable en } 0, \text{ et } f'(0) = 0.$$

(d) $f \in \mathcal{C}^1(\mathbf{R})$:

On a vu que $f \in C^1(\mathbf{R}^*)$, la question est donc de savoir si f' est continue en 0.

On effectue un DL de f'(x) pour $x \to 0$, $x \ne 0$:

$$f'(x) = \frac{x \cos x - \sin x}{x^2} = \frac{1}{x^2} \left(x \left(1 + o(x) \right) - x + o(x^2) \right) = \frac{o(x^2)}{x^2} = o(1)$$

donc $\lim_{x\to 0} f'(x) = 0 = f'(0)$, ainsi f' est continue en 0. $f \in C^1(\mathbf{R})$.

(e) Variations de f sur $[0, \pi]$:

g est dérivable sur \mathbf{R} par opérations, et :

$$\forall x \in \mathbf{R}, \ g'(x) = \cos x - x \sin x - \cos x = -x \sin x \le 0 \ \text{sur} \ [0, \pi].$$

Ainsi g est décroissante sur $[0, \pi]$, avec g(0) = 0 donc g est négative sur $[0, \pi]$.

f'(x) est du signe de g(x) donc f est décroissante sur $[0,\pi]$.

(f) Solution
$$\alpha_n$$
 de (E_n) : $(E_n) \Leftrightarrow \begin{cases} g(x) = 0 \\ x \in I_n \end{cases}$

Sur I_n , le sinus garde un signe constant donc g' aussi.

Ainsi, g est continue et strictement monotone sur l'intervalle I_n .

Elle réalise donc une bijection de I_n sur $g(I_n)$.

De plus,
$$g(n\pi) = n\pi \cos(n\pi) - \sin(n\pi) = n\pi(-1)^n$$

et
$$g((n+1)\pi) = (n+1)\pi\cos((n+1)\pi) - \sin((n+1)\pi) = (n+1)\pi(-1)^{n+1}$$
.

On en déduit que $g(n\pi)$ et $g((n+1)\pi)$ sont de signes contraires : $0 \in g(I_n)$.

Conclusion : $\exists ! \alpha_n \in I_n \mid g(\alpha_n) = 0.$

- (g) Variations de f sur I_n :
- * si n pair : $g(n\pi) = n\pi > 0$ donc $g \ge 0$ sur $[n\pi, \alpha_n]$ et $g \le 0$ sur $[\alpha_n, (n+1)\pi]$.

On a : f croissante sur $[n\pi, \alpha_n]$ et décroissante sur $[\alpha_n, (n+1)\pi]$.

* si n impair : $g(n\pi) = -n\pi < 0$ donc $g \le 0$ sur $[n\pi, \alpha_n]$ et $g \ge 0$ sur $[\alpha_n, (n+1)\pi]$.

On a : f décroissante sur $[n\pi, \alpha_n]$ et croissante sur $[\alpha_n, (n+1)\pi]$.

(h) Limite en $+\infty$ et asymptote :

 $\forall x > 0, |f(x)| \le \frac{1}{x}$ et $\lim_{x \to +\infty} \frac{1}{x} = 0$ donc d'après le théorème des gendarmes :

 $\lim_{x\to+\infty} f(x) = 0$. Ainsi, l'axe des abscisses est asymptote horizontale à C_f .

(i) Courbe représentative de f :

