

On considère la fonction F définie sur \mathbf{R}_{+}^{\star} par :

$$F(x) = \int_1^x e^{\frac{1}{t}} dt.$$

- **1.** Programmer sous python une fonction F(x) prenant en entrée un flottant x et renvoyant en sortie une valeur approchée calculée par la méthode des rectangles du réel F(x).
- **2.** Justifier que F est de classe \mathscr{C}^1 sur \mathbf{R}^*_+ et préciser la monotonie de F.
- 3. Étude en 0 de F.
 - a) Montrer que : $\forall \alpha \in [1; +\infty[\quad \alpha \leq e^{\alpha}.$
 - **b)** Montrer alors que : $\forall x \in]0;1]$ $F(x) \leq \ln x$.
 - c) Étudier la limite de F en 0.
- **4.** Étude en $+\infty$.
 - a) Montrer que : $\forall x \ge 1$ $F(x) \ge x 1$.
 - **b)** Montrer à l'aide d'un changement de variables que : $\forall x > 1$ $F(x) = \int_{\frac{1}{2}}^{1} \frac{e^{s}}{s^{2}} ds$.
 - c) Établir à l'aide d'une intégration par parties que :

$$\forall x \in]1; +\infty[F(x) = xe^{\frac{1}{x}} - e + R(x)]$$

où R est une fonction à préciser.

- **d)** Montrer que : $\forall x \in]1; +\infty[$ $0 \le R(x) \le e \ln x$.
- e) En déduire un équivalent de F(x) au voisinage de $+\infty$.
- **5.** On considère l'équation différentielle suivante sur \mathbf{R}_{+}^{\star} avec condition initiale :

(E)
$$\begin{cases} xy' + 2y = \frac{e^{\frac{1}{x}}}{x} \\ y(1) = 0 \end{cases}$$

- a) Résoudre l'équation (E), et exprimer la solution obtenue w en termes de F.
- **b)** Calculer les limites w en 0 et en $+\infty$.
- c) Donner l'équation de la tangente à la courbe de z au point d'abscisse x = 1.
- d) Tracer sa courbe représentative sous python.