
1-

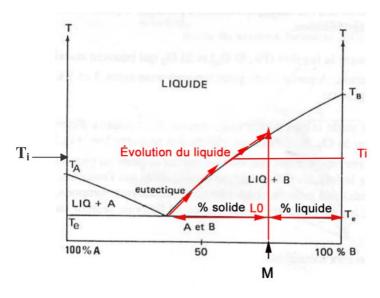
	Roche				
Quartz	20	24.4			
Feldspaths	6	7.3			
alcalins					
(orthose +					
albite)					
Plagioclases	56	68.3			
Total	82	100			

- 2- Calcul de taux de fusion partielle
- 2-1 Graphe:
- 2-2 Les 3 points sont sensiblement alignés ce qui indique une proportionnalité des 2 oxydes pour les 3 roches. Sachant que le K+ est un élément hygromagmatophile, lors d'une fusion partielle, il passe préférentiellement dans la phase liquide. Comme il est plus abondant dans la roche A et moins dans la roche C, on peut supposer que la roche B est la péridotite fertile à l'origine de la roche A et la roche C, la péridotite résiduelle.
 2-3 A : basalte ; B : lherzolite et C : harsburgite
 2-3 3 méthodes possibles :
- On considère K+ comme totalement incompatible, il se retrouve intégralement dans la phase liquide et donc $F = (0.1/0.4) \times 100 = 25\%$
- La méthode des leviers qui exploite le graphe F =

100 x (BC)/(BC+BA) = 100 x 18/75 = 24%

- La troisième se fonde sur la conservation des masses

- Soit V_A le volume de roche A contenant m_A % d'un élément chimique donné.
- Soit V_C le volume de roche C contenant m_C % du même élément chimique
- Soit V_B le volume total de roche B contenant m_B % du même élément chimique.
- On peut écrire suivant le principe de conservation de la masse : $V_B \times m_B = (V_A \times m_A) + (V_C \times m_C)$ (1)


Soit F le taux de fusion partielle. On a alors : $V_A = F \times V_B$ et $V_C = (1 - F) \times V_B$ que l'on remplace dans la relation (1) :

$$V_B \times m_B = F \times V_B \times m_A + (1-F) \times V_B \times m_C (2)$$

d'où on en tire : $F = (m_B - m_C) / (m_{A^-} m_C)$

Application numérique pour tous les éléments chimiques du tableau :

	SiO ₂	TiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K₂O
Roche A (m _A)	47,10	2,3	14,2	11,0	0,2	12,7	9,90	2,20	0,40
Roche B (m _B)	45,30	0,2	3,6	7,30	0,1	41,30	1,90	0,20	0,10
Roche C (m _C)	42,30	0,1	0,50	7,10	0,1	46,60	0,10	0,10	0,0005
$F = (m_B - m_C)/(m_A - m_C)$	0,62	0,05	0,23	0,05	0,00	0,16	0,18	0,05	0,25

3-2 Composition du mélange Ti:

% Solide B = 20/60 x100= 33%

% Liquide A + B = $40/60 \times 100 = 66\%$ le liquide de composition E ; A et B fondant dans les proportions de l'eutectique (A = 64% et B = 36%).

- A Ti, tout A a fondu et le liquide contient à peu près 60% de B et 40% de A

3-3 F= 25%.

La roche fond dans les proportions de l'eutectique jusqu'à ce que tout A soit fondu.

Or le liquide formé à l'eutectique contient 64% de A et 36% de B.

Le liquide quittera la composition eutectique quand tout A sera fondu, ce qui représente un taux de fusion de $F_E = 25/64\% = 39\%$. Donc à 25%, tout A n'est pas fondu.

Donc le liquide contient : $64 \times F = 64/4 = 16\%$ de A et $36 \times F = 36/4 = 9\%$ de B fondus.

Donc encore solides : 25 - 16 = 9% de A et 75 - 9 = 66% de B

3-4 Loi de refroidissement le minéral majoritaire cristallise en premier jusqu'à l'eutectique où tout cristallise. Donc avant E, la phase solide n'est formée que de B et la composition du liquide suit le liquidus.