CH6 – **Fonctions polynomiales**

Plan du chapitre

1	Génér	alités	3
	A)	Polynômes	3
	B)	Unicité	3
	C)	Degré	4
2	Opéra	tions sur les polynômes	4
	A)	Définitions	4
	B)	Opérations et degré	5
3	Racine	es	5
	A)	Racine (ou zéro) d'un polynôme	5
	B)	Racine multiple	6
4	Factor	risation	7
	A)	Existence de racines	7
	B)	Nombre de racines	7
	C)	Factorisations classiques	8
	D)	Relations coefficients-racines	8

Liste des définitions

Déf.1	Fonctions $1, X, X^k$	3
Déf.2	Monôme	3
Déf.3	Polynôme, coefficients d'un polynôme , polynôme nul	3
Déf.4	degré, terme dominant, coefficient dominant, polynôme unitaire/normalisé	4
Déf.5	Somme, facteur d'échelle, produit, composition, dérivation	4
Déf.6	Racine, zéro d'un polynôme	5
Déf.7	Racine simple, racine multiple, ordre de multiplicité d'une racine	6
Déf.8	Polynôme \bar{P}	6

Liste des techniques de base

T1.	Comment présenter la recherche des racines de P?	3
T2.	Calcul du degré d'un polynôme	4
T3.	Calculer le degré des polynômes d'une suite (P_n)	5
T4.	Comment résoudre l'équation $P(x) = 0$ où $P \in \mathbf{R}[X]$?	5
T5.	Factoriser P par $(X - a)$ quand $P(\alpha) = 0$	6
T6.	Montrer que a est une racine multiple de P	6
T7.	Factoriser un polynôme de $K[X]$	7
T8.	Prouver que P est unique, que P est nul	8
T9.	Usage des relations coefficients-racines	8

Grille d'analyse des exercices

Exercice	Question	0	Référence(s)	Commentaires/remarques

- **1.** T_0 : technique ancestrale.
- **2. Déf** : pas de technique livrée. Revenir à la définition.
- 3.

1 Généralités

A) Polynômes

■ Définition 1 [Fonctions $1,X,X^k$]

Soit $k \in \mathbb{N}$. On pose :

$$X^k : \mathbf{K} \longrightarrow \mathbf{K}$$

 $t \mapsto t^k$

La fonction X^0 est notée 1, la fonction X^1 est notée X.

■ Remarque 1.

- **1.** Ainsi : $\forall t \in \mathbf{K}$ $X^k(t) = t^k$.
- **2.** La fonction **1** est une fonction *constante*.
- **3.** \aleph Il est donc *interdit* d'utiliser *X* comme nom de variable, ou d'inconnue dans la recherche des racines d'un polynôme.

Comment présenter la recherche des racines de P?

En pratique on écrit : «Soit $z \in K$. On résout l'équation P(z) = 0» Surtout, on n'écrit pas P(X) = 0

■ Remarque 2.

La fonction nulle n'est pas un monôme.

■ Définition 3[Polynôme, coefficients d'un polynôme, polynôme nul]

1. On appelle polynôme toute fonction qui est soit la fonction nulle sur **K** (et on l'appelle polynôme nul), ou alors toute combinaison linéaire de monômes :

$$P = \sum_{k=0}^{n} a_k X^k, \quad a_k \in \mathbf{C}$$
 (1)

2. Les scalaires a_k ci-dessus s'appellent les coefficients du polynôme P.

■ Remarque 3.

Comme une somme indexée sur l'ensemble vide est nulle, la représentation (1) est également valable pour le polynôme nul.

B) Unicité

- $P = Q \iff P$ et Q ont mêmes coefficients.
- En particulier : $P = 0 \Leftrightarrow$ les coefficients de P sont tous nuls.
- 🙎 Vérifier que l'on a bien une égalité de fonctions avant d'appliquer ce théorème.

Lycée Chateaubriand, RennesClasse de B_2^B 2025-2026MY Patel $\textcircled{\bullet}$ $\textcircled{\bullet}$

C) Degré

■ Définition 4 . [degré, terme dominant, coefficient dominant, polynôme unitaire/normalisé]

Soit $P \in \mathbf{K}[X]$, et, avec les notations de **déf.3**, $E := \{k \in \mathbf{N} \mid a_k \neq 0\}$. Le degré de P est noté $d = \deg(P)$ et est défini par : $d = \sup E$

- **1.** $d = -\infty \iff E = \emptyset \iff P = 0$.
- **2.** Si $d \in \mathbb{N}$:
 - **a)** $a_d X^d$: s'appelle terme dominant de P
 - **b)** a_d s'appelle coefficient dominant/directeur de P
 - **c)** $a_d = 1 : P$ est dit normalisé/unitaire.

■ Remarque 4.

- **1.** Le polynôme nul est de degré $-\infty$.
- 2. Les polynômes constants (sauf le polynôme nul) sont de degré 0.

Calcul du degré d'un polynôme

Penser à vérifier que $a_n \neq 0$ avant d'affirmer que P est de degré n

■ Exemple 1.

Soit $n \in \mathbb{N}^*$ et $P = (n-2)X^n + X^2 + X + 1$. Donner le degré de P.

2 Opérations sur les polynômes

A) Définitions

■ **Définition 5**[Somme, facteur d'échelle, produit, composition, dérivation] Soit $P := \sum_{k=0}^{n} a_k X^k, Q := \sum_{k=0}^{n} b_k X^k, \lambda \in K$

• Somme:
$$P + Q := \sum_{k=0}^{\max(m,n)} (a_k + b_k) X^k$$

• Facteur d'échelle :
$$\lambda P := \sum_{k=0}^{n} \lambda a_k X^k$$

• Produit :
$$PQ := \sum_{k=0}^{n} c_k X^k$$
 où
$$c_k = \sum_{j=0}^{k} a_j b_{k-j} = \sum_{j=0}^{k} b_j a_{k-j}$$

- Composition : $P(Q) := P \circ Q$. En particulier P(X) = P.
- Polynôme dérivé : $P' \stackrel{(1)}{=} \sum_{k=1}^{n} k a_{k-1} X^{k-1}$

■ Remarque 5.

1. L'opération de composition est très utilisée dans le contexte des espaces vectoriels de polynômes

Lycée Chateaubriand, Rennes Classe de B_2^B 2025-2026 MY Patel $\textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet}$

- **2. Question :** ce qui suit est-il un abus d'écriture : P(X) = P? Pourquoi?
- 3. 🙎 Le quotient de deux polynômes n'est pas un polynôme en général.

B) Opérations et degré

Soit $\overline{K} = K \cup \{-\infty\}$, et $\lambda \in \overline{K}$. On convient que :

- $-\infty + \lambda = \lambda + (-\infty) := -\infty$
- $-\infty \times \lambda = \lambda \times (-\infty) := -\infty$.
- $\forall \lambda \in \overline{\mathbf{K}} \quad \lambda \geq -\infty$.

R =	deg(R) =
P+Q	$\max(m, n)$ si $m \neq n$, sinon $\leq n$
λP	$n \text{ si } \lambda \neq 0, -\infty \text{ sinon}$
$P \times Q$	m+n
$P \circ Q$	mn
P'	$n-1$ si $n>0$, $-\infty$ sinon

Calculer le degré des polynômes d'une suite (P_n)

Ce genre de suite de polynômes est très souvent définie par récurrence.

- **1.** La plupart des propriétés à prouver sur les P_n s'établissent par une récurrence (à deux pas si la suite est à deux pas).
- **2.** Pour les calculs de degré, penser à n'introduire que l'information utile dans les expressions algébriques, sous peine de s'embourber dans des expressions interminables. Si par exemple, on demande de prouver que P_n est de degré n, il suffit de formuler une hypothèse de récurrence du style :

$$\exists a_n \neq 0 \quad \exists R_n \in \mathbf{K}[X] \quad P_n = a_n X^n + R_n \quad \deg(R_n) < n.$$

Inutile d'écrire par exemple :

$$P_n = a_n X^n + \underbrace{a_{n-1} X^{n-1} + \dots + a_0}_{\text{non informatif}}$$

La partie non informative est résumée par R_n .

3 Racines

A) Racine (ou zéro) d'un polynôme

■ Définition 6 [Racine, zéro d'un polynôme]

 $a \in \mathbf{K}$ est racine (ou zéro du polynôme $P \in \mathbf{K}[X]$ signifie : P(a) = 0

Lycée Chateaubriand, RennesClasse de B_2^B 2025-2026MY Patel\$

Comment résoudre l'équation P(x) = 0 où $P \in \mathbb{R}[X]$?

En dehors des équations du premier ou second degré (éventuellement déguisées), ou dans le cas de racines évidentes, il est vain de chercher toutes les racines d'un polynôme sans indications.

B) Racine multiple

- **Définition 7**[Racine simple, racine multiple, ordre de multiplicité d'une racine] Le nombre a est racine d'ordre de r de $P \Leftrightarrow \begin{cases} \exists R \in \mathbf{K}[X] & P = (X - a)^r R \\ R(a) \neq 0 \end{cases}$ (b)
 - **1.** L'entier *r* s'appelle l'ordre de multiplicité de *a* dans *P*.
 - **2.** Si r = 1, la racine a est dite simple.
 - **3.** Si $r \ge 2$ on dit que a est racine multiple de P.

T₅

Factoriser P par (X - a) quand $P(\alpha) = 0$

Si P est de degré 3 il est certain que

$$P = (X - \alpha)(aX^2 + bX + c) \quad (\star)$$

pour 3 scalaires a, b, c bien choisis.

- **1.** Il est certain que a = coefficient dominant de P.
- 2. De même en développant, il est certain que $-\alpha c=$ le terme constant de P. Ce qui donne la valeur de c
- **3.** Reste à trouver b. Soit β un scalaire de votre choix (autre que 0 ou α , $\beta=\pm 1$ est un bon choix dans la mesure du possible) En calculant $P(\beta)$ avec la définition de P, puis avec (\star) , on trouve que $P(\beta)=(\beta-\alpha)(\alpha\beta^2+b\beta+c)$, ce qui donne la valeur de b en résolvant. Ce dernier calcul est très simple sur des cas particuliers.

Montrer que a est une racine multiple de P

On montre que P(a) = P'(a) = 0.

Il suit aussi de ce théorème que *P* divise *Q* (c-à-d *Q* se factorise par *P*) si et seulement si toute racine complexe de *P* est racine de *Q* avec multiplicité moindre.

Lycée Chateaubriand, Rennes Classe de B_2^B 2025-2026 MY Patel 0

■ Théorème 3 [Évaluation et conjugaison]

Si $a \in \mathbb{C}$ et $P \in \mathbb{C}[X]$ alors:

$$\overline{P(a)} = \overline{P}(\overline{a})$$

Si $P \in \mathbf{R}[X]$ et a est une racine non réelle de P alors \bar{a} est racine de P avec la même multiplicité.

4 Factorisation

A) Existence de racines

■ Théorème 5[D'Alembert]

Si P est non constant, P a au moins une racine dans C.

Ce théorème est existentiel : il ne dit rien sur comment calculer les racines.

B) Nombre de racines

- Un polynôme de degré *n* possède au plus *n* racines distinctes.
- Tout polynôme de degré *n* possède exactement *n* racines dans **C** à condition de les répéter autant de fois que leur multiplicité.

$$P = \alpha \prod_{k=1}^{m} (X - z_k)^{r_k}$$
 (2)

où z_1, \ldots, z_m sont les m racines distinctes de P, r_1, \ldots, r_m leurs multiplicités respectives et α son coefficient dominant. En particulier $n = r_1 + \cdots + r_m$

Factoriser un polynôme de $\mathtt{K}[X]$

- 1. On commence par chercher des racines évidentes.
- **2.** Si on trouve une racine non réelle α , et si P a tous ses coefficients **réels**, alors $\bar{\alpha}$ est aussi une racine de P.
- **3.** Si on trouve n racines distinctes et que P est de degré n, on a toutes les racines de P.
- **4.** Sinon on peut vérifier que la somme des multiplicités des racines trouvées fait bien deg(*P*).
- **5.** On n'oublie pas le coefficient dominant dans la factorisation de *P* !
- 2 Toujours veiller à ne pas oublier le coefficient dominant de P dans sa factorisation.

Lycée Chateaubriand, Rennes Classe de B_2^B 2025-2026 MY Patel 0

■ Théorème 7[Nullité d'un polynôme]

- **1.** Si *P* s'annule une infinité de fois, alors *P* est nul.
- **2.** Si *P* s'annule sur un intervalle non réduit à un point, *P* est nul.
- **3.** Si P est de degré n et s'annule en r nombres distincts tels que r > n, alors P est nul.

Prouver que P est unique, que P est nul

- **1.** Pour prouver que P est unique, on considère un autre polynôme Q ayant les même propriétés que P et on montre que R = P Q est nul, ce qui prouve que Q = P.
- **2.** Pour prouver qu'un polynôme *R* est nul :
 - **a)** On peut montrer que *R* s'annule sur un intervalle. On conclut avec **thm 7. a)**
 - **b)** On peut montrer que *R* s'annule une infinité de fois. On conclut avec **thm 7. b)**
 - **c)** Si on a une majoration de son degré, mettons : $deg(R) \le n$. On peut montrer que R a plus de n racines distinctes. On conclut avec **thm. 7 c)**

C) Factorisations classiques

- 1. Polynômes du premier degré.
- 2. Polynômes du second degré à coefficients réels.
- **3.** Factorisation de $X^2 a$ $a \in \mathbb{C}$.
- **4.** Factorisation dans **C** de $X^n 1$.

D) Relations coefficients-racines

- **1.** Si $P = aX^2 + bX + c$ est un trinôme, la somme s et le produit p de ses racines sont reliés aux coefficients de P par les formules : s = -b/a et p = c/a
- **2.** En particulier, si $P \in \mathbf{R}[X]$, et si les racines sont non réelles (mettons z et \bar{z}), $s = z + \bar{z} = 2\Re \mathfrak{c}(z)$ et $p = z\bar{z} = |z|^2$.

Usage des relations coefficients-racines

Formules particulièrement utiles pour :

- 1. Deviner dans certains cas les racines d'un trinôme.
- **2.** Trouver la deuxième racine d'un trinôme connaissant la première.
- **3.** Savoir si les racines sont réelles sans calculer Δ (en effet $p \le 0 \Rightarrow \Delta \ge 0$)
- 4. Développer rapidement un trinôme.