Programme de colles Semaine 9 du 24/11 au 28/11/2025

Polynômes à coefficients réels ou complexes

- Monômes, degré, coefficients, polynômes à coefficients réels ou complexes
- Ensembles $\mathbf{R}[X], \mathbf{C}[X]$, ainsi que $\mathbf{R}_n[X], \mathbf{C}_n[X]$ quand $n \in \mathbf{N}$
- Opérations sur les polynômes : somme, produit, composée
- Degré d'une somme, d'un produit, d'une composée de polynômes
- Une combinaison linéaire de monômes de degrés distincts ne peut être nulle que si tous les coefficients sont nuls
- Polynôme dérivé, degré du polynôme dérivé
- Racines d'un polynôme
- Un polynôme P est factorisable par $X \alpha$ si, et seulement si, α est une racine de P
- Généralisation à plusieurs racines distinctes
- Ordre de multiplicité d'une racine
- Théorème de d'Alembert-Gauss :
 - * Tout polynôme à coefficients complexes de degré n peut s'écrire $P = \lambda \prod_{i=1}^{n} (X \alpha_i)$,

où α_i sont les racines complexes de P, pas nécessairement distinctes, et λ son coefficient dominant.

- \ast Tout polynôme de degré n admet exactement n racines complexes comptées avec leur ordre de multiplicité
- Un polynôme de degré inférieur ou égal à n ayant au moins n+1 racines, comptées avec leur ordre de multiplicité, est nul

Espaces vectoriels sur K = R ou C

- Structure d'espace vectoriel $(\mathbf{K}^n, \mathbf{K}^I)$ où I est un intervalle, $\mathbf{K}[X], \mathbf{K}_n[X], \mathcal{M}_{n,p}(\mathbf{K})$
- Combinaison linéaire d'une famille finie de vecteurs
- Sous-espaces vectoriels
- Intersection d'un nombre fini de sous-espaces vectoriels
- Sous-espace vectoriel engendré par une famille finie de vecteurs. Notation $\operatorname{Vect}(u_1,\ldots,u_n)$
- Famille génératrice finie d'un espace vectoriel (sous réserve d'existence)
- Famille libre finie. Famille liée finie
- Toute famille finie de polynômes de degrés deux à deux distincts est libre
- Base finie d'un sous-espace vectoriel (sous réserve d'existence)
- Coordonnées d'un vecteur dans une base
- Matrice des coordonnées d'une famille finie de vecteurs dans une base
- Base canonique de \mathbf{K}^n et $\mathbf{K}_n[X]$
- \bullet De toute famille génératrice finie d'un espace vectoriel E, on peut extraire une base
- ullet Toutes les bases de E ont le même cardinal
- \bullet Dimension d'un espace vectoriel E
- Dans un espace vectoriel de dimension n:
 - st toute famille libre a au plus n éléments
 - * toute famille libre ayant n élements est une base
 - * toute famille génératrice a au moins n éléments
 - * une famille génératrice ayant n éléments est une base
- \bullet Si F est un sous-espace vectoriel d'un espace vectoriel E de dimension finie alors :
 - *F est de dimension finie
 - $* \dim(F) \leq \dim(E)$
 - $*F = E \Leftrightarrow \dim(F) = \dim(E)$
- Rang d'une famille finie de vecteurs

Questions de cours :

1. si P et Q sont des polynômes non nuls, que dire de :

$$deg(P+Q), \quad deg(P\times Q), \quad deg(P\circ Q)$$
?

- 2. Qu'appelle-t-on racine d'un polynôme?
- 3. Qu'appelle-t-on ordre de multiplicité d'une racine d'un polynôme?
- 4. Somme et produit des racines d'un trinôme.
- 5. Si $\alpha \in \mathbf{C}$ est racine de $P \in \mathbf{R}[X]$, que dire de $\overline{\alpha}$?
- 6. Définition d'un sous-espace vectoriel F d'un espace vectoriel E.
- 7. Définition d'une base et de la dimension d'un espace vectoriel.
- 8. Définition du rang d'une famille de vecteurs d'un espace vectoriel.
- 9. Définition d'une famille libre (u_1, \ldots, u_k) de vecteurs dans un espace vectoriel E.
- 10. Définition d'une famille génératrice dans un espace vectoriel E.
- 11. Caractérisation à l'aide du rang d'une famille libre de p vecteurs de E de dimension n.
- 12. Caractérisation à l'aide du rang d'une famille génératrice de p vecteurs de E de dimension n.
- 13. Caractérisation à l'aide de son rang et de son cardinal d'une base de E de dimension n.
- 14. Soient \mathcal{B}_1 et \mathcal{B}_2 deux bases d'un espace vectoriel E de dimension n. On appelle P la matrice de passage de \mathcal{B}_1 à \mathcal{B}_2 . Si u est un vecteur de E, quelle relation lie $\operatorname{Mat}_{\mathcal{B}_1}(u)$ et $\operatorname{Mat}_{\mathcal{B}_2}(u)$?