TD 9 : théorie basique des probabilités

Exercice 83

On se place dans A, (K). Soient A € K une valeur propre de M et U € K"\ {0} un vecteur propre associé,
c’est-a-dire MU = A\U.

1. Expression de M*U. On montre par récurrence sur k € N que

| MU = 2FU |

Initialisation : k = 0. On a MU = I,U = U = A°U. Hérédité : si MFU = \FU, alors
MU = M(M*U) = M(OAFU) = XEMU = XE(O\U) = AL
La propriété est vraie pour tout k € N.

2. SoitQ:quXkEK[ , et Q(M quMk.
k=0
(a) En utilisant le point 1,

MU =Y g MU =) ¢ XU = (qu)\k>U = QU |
k=0 k=0 k=0

(b) Si Q(M) = 0,, alors pour tout vecteur propre U # 0 associé a A,
0=QM)U =[ QU |

Comme U # 0, on obtient | Q(\) = 0 | : la valeur propre A est racine du polynoéme Q.

Exercice 84

On suit la marche a suivre. Pour chaque matrice A, on devine une valeur propre, puis on résout (A—AI)X =0
pour décrire Ker(A — AI,,), le sous-espace propre de A associé a X\. On conclut a la diagonalisabilité et, le
cas échéant, on donne P tel que P~'AP = D.

3 —1
Las (3 50)

Sommes de lignes constantes = 2 donc A = 2 est valeur propre, vecteur propre (1,1)7.
La trace vaut 3 =, on devine que la seconde valeur propre est 1.

(A—I)@) —0 = 20-y=0 = Ker(A—IQ):Vect@).

Sp(A) ={1,2}, A diagonalisable, P = (; 1) , D = diag(1,2).




-5 3
2 an (29),

Sommes de lignes constantes = —2 donc A = —2 est valeur propre, vecteur propre (1,1).
La trace vaut —1 donc 'autre valeur propre est 1.

T
Y

(A—I)( )—o S e 43y =0 = Ker(A—b)—vect(;).

Sp(A) = {—2,1}, A diagonalisable, P = (i ;) , D =diag(—2,1).

2 3 2
3. A= 0 —1 -2 (triangulaire supérieure).
0 0 1

Lecture directe : Sp(A) = {2, —1,1}. Sous-espaces propres :

Ker(A — 2I3) = Vect(1,0,0), Ker(A+ I3) = Vect(1,—1,0), Ker(A — I3) = Vect(1,—1,1).

1 1 1
Sp(A) ={2,-1,1}, A diagonalisable, P= 10 -1 —1], D =diag(2,—1,1).
0 0 1
-5 6 4
4. A=1-4 5 4
2 -2 =3
Tests +1 :

(A-1)(1,1,0)T =0 = )= 1.
(A+1)(1,0,1)T =0 =\ = —1.
La trace vaut —3 donc on devine que la troisiéme valeur propre vaut —3 (et (A+3I)(—1,—1,1)"T = 0).

Ker(A — I3) = Vect(1,1,0), Ker(A+ I3) = Vect(1,0,1), Ker(A+ 3I3) = Vect(—1,—1,1).

1 1 -1
Sp(A) ={1,—-1,-3}, A diagonalisable, P= |1 0 —1|, D = diag(1l,—1,-3).
01 1
5. On considere
1 3 2
A= 0o -2 =2
-3 9 8

Objectif : mettre en évidence, par pivots sur A — A3 (sans déterminant), les valeurs de A pour
lesquelles rg(A — A\I3) < 3.

Etape 1 — Ecriture de 4 — \[5.

1-A 3 2
A— M3 = 0 —2-X =2
-3 9 8—A
Etape 2 — Elimination de la premiére colonne sans division. Remplacons la troisiéme ligne
par

L3 — (]_ — )\)Lg + 3L1



On obtient
1-—A 3 2
0 —2—=A -2
0 9(2—X) 14—9x+ )2
Etape 3 — Annulation de 1’« entrée pivot » en colonne 2, toujours sans division. Posons

L3 — (—2 — /\) L3 — 9(2 — )\) Lo.
Alors la colonne 2 de L3 devient nulle, et la colonne 3 devient
(2= A) (14 =92+ 2A%) =92 = N\)(—2) = = (N> = 7TA* + 14X —8) = —(A — 1)(A — 2)(A — 4).
Ainsi une forme échelonnée (sans divisions) est
1—-A 3 2
0 —-2-2A -2
0 0 —A=1)(A=2)(A—4)

Conclusion. Le rang de A— \I3 est strictement inférieur & 3 si et seulement si (A—1)(A—2)(A—4) = 0.
Donc

| Sp(4) = {1,2,4} |

Sous-espaces propres Ker(A — A\I3) et diagonalisabilité.

0o 3 2
e A=1:A-13 = 0 —3 —2]. Des équations 3y + 2z = 0, —3x 4+ 9y + 7z = 0 on tire
-3 9 7

| Ker(A — Iy) = Vect(1,-2,3) |

-1 3 2
e N=2:A-2I3=| 0 —4 —2|. Des équations —4y — 2z = 0, —x 4+ 3y + 2z = 0 on tire
-3 9 6

‘ Ker(A — 213) = Vect(1, -1, 2) ‘

-3 3 2
e \N=4:A—4I3=| 0 -6 —2]. Des équations —6y — 2z = 0, —3x + 3y + 2z = 0 on tire
-3 9 4

(z,y,2) = (—u,u, —3u), donc (z,y,2) = (u, —u,3u) apres changement de signe.

‘ Ker(A — 413) = Vect(1, -1, 3) ‘

Les trois valeurs propres sont distinctes et 'on a trois sous-espaces propres de dimension 1 en somme
directe : A est diagonalisable. En prenant

1 1 1
P=1-2 -1 -1 (colonnes = vecteurs propres pour 1,2,4), D = diag(1,2,4),
3 2 3

on a

P'AP=D |



1 4 2

6. A=(2 3 2

-4 -8 =5
La somme de chaque colonne vaut —1, ce qui permettait de deviner que —1 est valeur propre (via AT).
Pour A = —1, on constate que rg(A + I3) =1 < 3, donc on résout (A+ I3)X =0 :

2 4 2
A+L=|2 4 3| = Ker(A+I3) = Vect((—2,1,0),(—-1,0,1))
—4 -8 —4

A Paide de la trace, on devine que 1 est la derniére valeur propre et par résolution d’un systéme on
trouve : (A — I3)(—1,-1,2)" =0

Finalement :
-1 -2 -1
Sp(A) ={1,-1,—1}, A diagonalisable, P= -1 1 0 |, D =diag(1l,-1,-1).
2 0 1
1 -1 0
.A=11 3 0
-1 -3 1

Valeur propre évidente grace a la 3° colonne : AF3 =1- E3, donc Ker(A — I3) = Vect(0,0,1).
Recherche de A tel que rg(A — Al3) diminue.
En observant le bloc 2 x 2 en haut a gauche on remarque que,

-1 -1 O
rg(A-2)=rg|( 1 1 0 | =2
-1 -3 -1

Par résolution d’un systéeme : Ker(A — 2I3) = Vect(1, —1,2)

Le calcul de la trace semble indiquer que la derniére valeur propre serait aussi 2, ce qui impose alors
que A ne serait pas diagonalisable, puisque la dimension des deux sous espaces-propres trouvés a une
somme de 2 et non 3.

Cependant, cet argument de trace n’est pas admissible avec le programme de BCPST, il convient donc
de procéder avec des calculs de pivots.

Objectif : exhiber, par des pivots sur A — \I3 (sans déterminant), les A pour lesquels rg(A — AI3) < 3.
Etape 1 — Ecriture de A — \I3.
1-Xx -1 0
A— N3 = 1 3—A 0
-1 -3 1=A
Etape 2 — Annulation de la premiére colonne sans division. Posons

L2<_(1_>\)L2_L]_, L‘g(—(l—)\)Lg—f-Ll

On obtient



Etape 3 — Annulation de I’entrée (3,2) sans division. Posons
L3+ (A —2)2 L3 — (3\ — 4) Ly.
Alors la 2° composante de L3 devient nulle, et la composante (3, 3) vaut
(A—2)2(1— N2
On a donc une forme échelonnée (au sens du rang) :
1—A -1 0
0 (A—2)? 0
0 0 (A —2)2(1 - \)?
Conclusion sur le rang. Le rang de A — A3 est strictement inférieur a 3 si et seulement si
A=2221-N?=0 <= Xe{1,2}.

Ainsi

| Sp(4) = {1,2,2} |

Sous-espaces propres Ker(A — \I3) et diagonalisabilité.

e Pour A =1,
0 -1 0 -
A-=(1 2 o) = {77 — y=0, 2 =0, 2 libre.
Donc
| Ker(A — Iy) = Vect(0,0,1) | (dim = 1),
e Pour \ =2,
1 -1 0 w0
A-2=[1 1 0] = Y o=y oz -2
1 -3 _1 —2y—2=0

On peut prendre y = 1, d’ott un générateur (—1, 1, —2), équivalent a (1, —1,2). Donc

| Ker(A —2I3) = Vect(1,-1,2) | (dim = 1).

Comme dim Ker(A — I3) = 1 et dimKer(A — 2I3) = 1, on ne peut extraire que 2 vecteurs propres
indépendants au total.

‘ A n’est pas diagonalisable (dim Ker(A — I3) + dimKer(A — 2I3) =2 < 3). ‘

Exercice 85

On travaille dans A(3(R) avec



1. Calcul de M? — 3M + 2I5.

10 1 10 1 1 0 3
M2=|12 —-1][1 2 -1|=|3 4 -3
00 2 00 2 00 4
Donc
10 3 30 3 -2 0 0
M?-3M=13 4 -3|—-(3 6 -3]=0 -2 0|=-2L,
00 4 00 6 0 0 =2

et par suite

M? —3M + 23 =03 |.

2. Valeurs propres et sous-espaces propres.
L’égalité précédente montre que M est annulée par le polyndéme P(X) = (X — 1)(X — 2). Par le lien
polynoéme annulateur / spectre, on en déduit

| Sp(M)  {1,2} |

Cherchons les sous-espaces propres (et vérifions que 1 et 2 sont bien valeurs propres).

> Pour A =1,

00 1
M—-I;=[11 -1
00 1

Le systeme (M — I3)X =0 donne z =0 et  +y = 0. Ainsi

Ker(M — I3) = Vect((1,-1,0)) | (dim = 1).

> Pour A = 2,
-1 0 1
M-2I3=]11 0 -1
0 0 O

Le systeme (M — 2I3)X = 0 impose z = x et ne contraint pas y. Ainsi

Ker(M — 2I3) = Vect((1,0,1),(0,1,0)) | (dim = 2).

Comme les deux noyaux sont non triviaux, on a bien

| Sp(M) = {1,2} |

3. Diagonalisabilité.
La somme des dimensions des sous-espaces propres vaut 1 4+ 2 = 3 (dimension totale). Donc M est
diagonalisable. En prenant comme colonnes de P une base de vecteurs propres, par exemple

P=1[(1,-1,0) (1,0,1) (0,1,0)]=|-1 0 1], D = diag(1,2,2),
0

on obtient

| pP'MP=D]




Exercice 86

On définit, pour n € N,

Unp, -5 6 4 1
Xo=1| ], Xpt1=A4X,, oo A=|-4 5 41, Xo=11
Wy, 2 -2 -3 2
1. Mise sous forme matricielle.
-5 6 4
A=1|—-4 5 4 |, Xnt1 =AX,
2 -2 -3

2. Diagonalisation de A.
On teste d’abord A =1 et A = —1 en résolvant (A — A\3)X = 0.
> A = 1. On obtient :

Ker(A — I3) = Vect((1,1,0))

> A = —1. On obtient :

Ker(A + I3) = Vect((1,0,1))

> La trace vaut tr(A) = =5+ 5 — 3 = —3. Comme la somme des valeurs propres vaut la trace, la
troisieme valeur propre vérifie 1 + (—1) + A3 = —3, donc on devine que —3 est valeur propre. On le
vérifie avec un systeme a résoudre et :

Ker(A + 313) = Vect((—1,-1,1))

Ainsi

| Sp(4) = {1, -1, -3} |

Les trois sous-espaces propres sont de dimension 1 et engendrent R, donc A est diagonalisable. En
choisissant pour colonnes des vecteurs propres associés (dans l'ordre 1, —1, —3),

1 1 -1
P=(1,1,0) (1,0,1) (-1,-1,1)]=[1 0 -1, D = diag(1,—1,-3),
01 1
on a
PlAP=D|

Une inversion par pivots donne
-1 2 1
Pl=11 -10
-1 1 1

3. Calcul de A™. Pour n € N,
A"=PD"P™' avec D" =diag(l, (—1)", (—3)").

En posant b = (—1)" et ¢ = (—3)", un calcul matriciel donne

b+c—1 2—-b—c 1—c¢
A" = c—1 2—c 1—c
b—c c—>b c

4. Formules explicites pour u,, v,, w,. On a X,, = A"X, avec Xo = (1,1,2)".
En utilisant la matrice ci-dessus (ou la décomposition sur la base propre),

un =3-2(=3)", v, =3-2(-3)", w,=2(-3)" (neN)|




Exercice 87

On travaille dans J3(R) avec

1. Diagonalisation de A.
Recherche des valeurs propres par réduction de rang (sans déterminant). On consideére

1-A 3 2
A— A3 = 0 —2-X =2
-3 9 8—A

En effectuant des opérations de lignes (sans division) :

1— A 3 2
L3+ (1-XNL3+3L; = 0 —-2-A -2
0 9(2—X) 14—9\+ )2

Puis
L3 — (—2 — )\)Lg — 9(2 — )\)Lg,

ce qui donne une forme échelonnée dont 'entrée (3,3) vaut
—A=1DA=2)(A—14).
Donc rg(A — Al3) < 3 si et seulement si (A — 1)(A —2)(A —4) = 0. Ainsi

| Sp(4) = {1,2,4} |

Sous-espaces propres. On résout (A — AI3)X = 0 pour chaque A.

0o 3 2

eA=1:A-I3=[0 -3 —2]| donne3y+2z=0et —3z+9y+ 7z =0, dou Ker(A — I3) =
-3 9 7

Vect(1,—2,3).
-1 3 2

e AN=2:A-2[3=| 0 -4 —2| donne —4y—2z=0et —x+3y+2z=0, dou Ker(A —2[3) =
-3 9 6

Vect(1,—1,2).
-3 3 2

e N=4:A—-4I3=| 0 —6 —2| donne —6y—2z=0et —3z+3y+ 2z =0, d’ou Ker(A —4I3) =
-3 9 4

Vect(1, -1, 3).

‘ Ker(A — I3) = Vect(1,-2,3), Ker(A —2I3) = Vect(1,-1,2), Ker(A —4I3) = Vect(1,—1,3). ‘

Comme la somme des dimensions vaut 3, A est diagonalisable. En posant (dans l'ordre 1,2,4)

1 1 1
P=|-2 -1 —-1|, D =diag(1,2,4),
3 2 3

A=PDP!|

on a



2. Systéme différentiel X’ = AX et changement de variables.

On pose
x u
X=|y]|, Y=P!'X=|v
z w
Alors

Y =P X' =P 'AX = P7'APY = DY,

soit le systeme découplé

’u/:u, v = 2u, w = 4w ‘

Donc, pour des constantes réelles C1, Cy, Cs,
u(t) = Cie', o) =Coe™,  w(t) = Cye™.
En revenant a X = PY,

1 1 1
X(t)=Cre' | =2 | + Coe® | =1 | + C3e?'| -1
3 2 3

Autrement dit,

z(t) = Cret + Cye® + Cze,
y(t) = —20C1 ¢! — Cye?t — Cyet,
2(t) = 3C el + 205e* + 3C3e™.

Exercice 88

On note ay, by, ¢, les probabilités d’étre, au jour n, dans A, B, C, et

1. Matrice de transition.
e Depuis A : le Loup va en B avec probabilité 1.
e Depuis B : il ne reste pas en B, et P(A | B) = 2P(C | B) avec somme 1, d'ott P(A | B) = 2,

P(C | B) ==
e Depuis C : il ne reste pas en C, et P(A | C) =2P(B | C), douP(A|C) =2, P(B|C) = 1.
Avec X, 11 = M X, (vecteur-colonne), les colonnes de M sont les lois de trans1t10n depuis A, B,C' :
2 2
M={10 3], Xn+t1=MX,.
0 1 0

2. Valeurs propres et sous-espaces propres par pivots sur (M — \I3)X = 0.

On écrit
-\ 2 2
o1
M-Ay=|1 -x 1
0 1 -
Réduction (sans divisions) pour X tel que X # 0 et \? # 2,
2 2
—A 3 3
Lo+ ALy +L; ~ 0 222 22
0 3 =



10

Posons S = 3L3 = (0,1, —3)), puis

Ainsi, pour ces A, on a rang < 3 si et seulement si 9\3 — 7\ — 2 = 0, c’est-a-dire

A-D(x+3)(r+3) =0}

Les cas particuliers A = 0 ou \? = % se traitent directement et donnent rang 3 (systémes de Cramer),
donc ne fournissent pas de valeur propre supplémentaire.
On résout maintenant (M — AI3)X = 0 pour chaque racine.
>A=1. )
1 2
M-I3=|1 -1 z
0 —1

win

1
3

La troisieme équation donne b = 3¢, puis la seconde donne a + %(b +c)=0=a= %c. Ainsi

Ker(M — I3) = Vect((8,9,3)) |

1
1 2 2
3
M+il;=|1 Pl
o &1
3 3
La troisiéme équation donne b = —c, la seconde impose a = 0. Donc
Ker( M + §13) = Vect((0,1,-1)) |
2
2 2 2
3
M+2=|1 81
o 1
3 3
La troisiéme équation donne b = —2¢, puis la seconde impose a = ¢. Donc

Ker(M+ %Ig) = Vect((1,-2,1)) |

En résumé,

Sp(M) = {1, —%, —%} , et les sous-espaces propres sont ceux ci-dessus.

. Diagonalisabilité et forme de M"Xj.
Les trois valeurs propres sont distinctes, donc M est diagonalisable. Si b = (V1, Vs, V3) est une base de
vecteurs propres de M associée a 1, —%, —%, et si Xg = a1 Vi + asVs + a3Vs, alors

M'Xg=a1 Vq + ag(—%)n Vo + a3 (_%)n V3.




11

4. Limite de X,,.
Des questions précédentes, on dispose d’une base de vecteurs propres (V7, Vs, V3) associée aux valeurs
propres 1, —%, —%, et d'une décomposition

Xn=a1Vi+az(—3)" Voa+as(—2)" Va.

Invariance de la somme des coordonnées.

Les colonnes de M somment a 1, donc pour tout vecteur colonne X = (z1 x2 Jig)T, la somme des
coordonnées de M X est la méme que celle de X.

Il s’ensuit que a,, + b, + ¢, est constant en n, et comme c’est une probabilité totale : Vn, a,+b,+c, =1

Conséquence pour les vecteurs propres non associés a 1.
Si V est un vecteur propre tel que MV = AV avec A # 1, alors la somme des coordonnées de V', notée
X(V), vérifie

(V) = B(MV) = S(AV) = AS(V).

Donc (1 — A\)X(V) =0 et, puisque X # 1, alors (V) = 0.

Ainsi, les coordonnées de V5 et V3 somment & 0, tandis que X(V7) # 0 (par exemple, avec V1 = (8,9, 3),
alors (V1) = 20).

Passage a la limite.

Comme ’—%‘ <1let }—%| <1,

(—%)n V5 tend vers 0 et (—%)n V3 tend vers 0 quand n tend vers + oo.

Donc X, converge vers a; V7.
Or la somme des coordonnées est conservée et vaut toujours 1, d’ou, a la limite,

1 =¥(X,) tend vers (a1 V1) = a1 2(V1) = aq - 20,

.. 1 .
ce qui impose o = 20" Ainsi,

1 2 9 3
lim X, = — = (2,2, 2.
o Xn = 55(8,9,3) <5’20’20>

lim e, =

20 20

2
lima, = 5 limb,, =

L’alpage le plus stir est donc C' (probabilité limite la plus faible %)



