
TD 9 : théorie basique des probabilités

Exercice 83
On se place dans Mn(K). Soient λ ∈ K une valeur propre de M et U ∈ Kn \ {0} un vecteur propre associé,
c’est-à-dire MU = λU .

1. Expression de MkU . On montre par récurrence sur k ∈ N que

MkU = λk U .

Initialisation : k = 0. On a M0U = InU = U = λ0U . Hérédité : si MkU = λkU , alors

Mk+1U = M(MkU) = M(λkU) = λkMU = λk(λU) = λk+1U.

La propriété est vraie pour tout k ∈ N.

2. Soit Q =
m∑
k=0

qkX
k ∈ K[X], et Q(M) =

m∑
k=0

qkM
k.

(a) En utilisant le point 1,

Q(M)U =
m∑
k=0

qk M
kU =

m∑
k=0

qk λ
k U =

( m∑
k=0

qkλ
k

)
U = Q(λ)U .

(b) Si Q(M) = 0n, alors pour tout vecteur propre U ̸= 0 associé à λ,

0 = Q(M)U = Q(λ)U .

Comme U ̸= 0, on obtient Q(λ) = 0 : la valeur propre λ est racine du polynôme Q.

Exercice 84
On suit la marche à suivre. Pour chaque matrice A, on devine une valeur propre, puis on résout (A−λI)X = 0
pour décrire Ker(A − λIn), le sous-espace propre de A associé à λ. On conclut à la diagonalisabilité et, le
cas échéant, on donne P tel que P−1AP = D.

1. A =

(
3 −1
2 0

)
.

Sommes de lignes constantes = 2 donc λ = 2 est valeur propre, vecteur propre (1, 1)⊤.
La trace vaut 3 ⇒, on devine que la seconde valeur propre est 1.

(A− I)

(
x

y

)
= 0 ⇒ 2x− y = 0 ⇒ Ker(A− I2) = Vect

(
1

2

)
.

Sp(A) = {1, 2}, A diagonalisable, P =

(
1 1
2 1

)
, D = diag(1, 2).

1
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2. A =

(
−5 3
−6 4

)
.

Sommes de lignes constantes = −2 donc λ = −2 est valeur propre, vecteur propre (1, 1)⊤.
La trace vaut −1 donc l’autre valeur propre est 1.

(A− I)

(
x

y

)
= 0 ⇒ −6x+ 3y = 0 ⇒ Ker(A− I2) = Vect

(
1

2

)
.

Sp(A) = {−2, 1}, A diagonalisable, P =

(
1 1
1 2

)
, D = diag(−2, 1).

3. A =

2 3 2
0 −1 −2
0 0 1

 (triangulaire supérieure).

Lecture directe : Sp(A) = {2,−1, 1}. Sous-espaces propres :

Ker(A− 2I3) = Vect(1, 0, 0), Ker(A+ I3) = Vect(1,−1, 0), Ker(A− I3) = Vect(1,−1, 1).

Sp(A) = {2,−1, 1}, A diagonalisable, P =

1 1 1
0 −1 −1
0 0 1

 , D = diag(2,−1, 1).

4. A =

−5 6 4
−4 5 4
2 −2 −3

.

Tests ±1 :
(A− I)(1, 1, 0)⊤ = 0 ⇒ λ = 1.
(A+ I)(1, 0, 1)⊤ = 0 ⇒ λ = −1.
La trace vaut −3 donc on devine que la troisième valeur propre vaut −3 (et (A+3I)(−1,−1, 1)⊤ = 0).

Ker(A− I3) = Vect(1, 1, 0), Ker(A+ I3) = Vect(1, 0, 1), Ker(A+ 3I3) = Vect(−1,−1, 1).

Sp(A) = {1,−1,−3}, A diagonalisable, P =

1 1 −1
1 0 −1
0 1 1

 , D = diag(1,−1,−3).

5. On considère

A =

 1 3 2

0 −2 −2
−3 9 8


Objectif : mettre en évidence, par pivots sur A − λI3 (sans déterminant), les valeurs de λ pour
lesquelles rg(A− λI3) < 3.

Étape 1 — Écriture de A− λI3.

A− λI3 =

1− λ 3 2
0 −2− λ −2
−3 9 8− λ

 .

Étape 2 — Élimination de la première colonne sans division. Remplaçons la troisième ligne
par

L3 ← (1− λ)L3 + 3L1.
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On obtient 1− λ 3 2
0 −2− λ −2
0 9(2− λ) 14− 9λ+ λ2

 .

Étape 3 — Annulation de l’« entrée pivot » en colonne 2, toujours sans division. Posons

L3 ← (−2− λ)L3 − 9(2− λ)L2.

Alors la colonne 2 de L3 devient nulle, et la colonne 3 devient

(−2− λ)
(
14− 9λ+ λ2

)
− 9(2− λ)(−2) = −

(
λ3 − 7λ2 + 14λ− 8

)
= −(λ− 1)(λ− 2)(λ− 4).

Ainsi une forme échelonnée (sans divisions) est1− λ 3 2
0 −2− λ −2
0 0 −(λ− 1)(λ− 2)(λ− 4)

 .

Conclusion. Le rang de A−λI3 est strictement inférieur à 3 si et seulement si (λ−1)(λ−2)(λ−4) = 0.
Donc

Sp(A) = {1, 2, 4} .

Sous-espaces propres Ker(A− λI3) et diagonalisabilité.

• λ = 1 : A − I3 =

 0 3 2
0 −3 −2
−3 9 7

. Des équations 3y + 2z = 0, −3x + 9y + 7z = 0 on tire

(x, y, z) = (t,−2t, 3t).
Ker(A− I3) = Vect(1,−2, 3) .

• λ = 2 : A − 2I3 =

−1 3 2
0 −4 −2
−3 9 6

. Des équations −4y − 2z = 0, −x + 3y + 2z = 0 on tire

(x, y, z) = (s,−s, 2s).
Ker(A− 2I3) = Vect(1,−1, 2) .

• λ = 4 : A − 4I3 =

−3 3 2
0 −6 −2
−3 9 4

. Des équations −6y − 2z = 0, −3x + 3y + 2z = 0 on tire

(x, y, z) = (−u, u,−3u), donc (x, y, z) = (u,−u, 3u) après changement de signe.

Ker(A− 4I3) = Vect(1,−1, 3) .

Les trois valeurs propres sont distinctes et l’on a trois sous-espaces propres de dimension 1 en somme
directe : A est diagonalisable. En prenant

P =

 1 1 1

−2 −1 −1
3 2 3

 (colonnes = vecteurs propres pour 1, 2, 4), D = diag(1, 2, 4),

on a
P−1AP = D .
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6. A =

 1 4 2
2 3 2
−4 −8 −5

.

La somme de chaque colonne vaut −1, ce qui permettait de deviner que −1 est valeur propre (via A⊤).
Pour λ = −1, on constate que rg(A+ I3) = 1 < 3, donc on résout (A+ I3)X = 0 :

A+ I3 =

 2 4 2
2 4 3
−4 −8 −4

 ⇒ Ker(A+ I3) = Vect((−2, 1, 0), (−1, 0, 1))

À l’aide de la trace, on devine que 1 est la dernière valeur propre et par résolution d’un système on
trouve : (A− I3)(−1,−1, 2)⊤ = 0

Finalement :

Sp(A) = {1,−1,−1}, A diagonalisable, P =

−1 −2 −1
−1 1 0
2 0 1

 , D = diag(1,−1,−1).

7. A =

 1 −1 0
1 3 0
−1 −3 1

.

Valeur propre évidente grâce à la 3e colonne : AE3 = 1 · E3, donc Ker(A− I3) = Vect(0, 0, 1).
Recherche de λ tel que rg(A− λI3) diminue.
En observant le bloc 2 x 2 en haut à gauche on remarque que,

rg(A− 2I) = rg

−1 −1 0
1 1 0
−1 −3 −1

 = 2

Par résolution d’un système : Ker(A− 2I3) = Vect(1,−1, 2)
Le calcul de la trace semble indiquer que la dernière valeur propre serait aussi 2, ce qui impose alors
que A ne serait pas diagonalisable, puisque la dimension des deux sous espaces-propres trouvés a une
somme de 2 et non 3.
Cependant, cet argument de trace n’est pas admissible avec le programme de BCPST, il convient donc
de procéder avec des calculs de pivots.

Objectif : exhiber, par des pivots sur A−λI3 (sans déterminant), les λ pour lesquels rg(A−λI3) < 3.

Étape 1 — Écriture de A− λI3.

A− λI3 =

1− λ −1 0
1 3− λ 0
−1 −3 1− λ

 .

Étape 2 — Annulation de la première colonne sans division. Posons

L2 ← (1− λ)L2 − L1, L3 ← (1− λ)L3 + L1.

On obtient 1− λ −1 0

0 (1− λ)(3− λ) + 1 0

0 3λ− 4 (1− λ)2

 =

1− λ −1 0

0 (λ− 2)2 0

0 3λ− 4 (1− λ)2

 .
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Étape 3 — Annulation de l’entrée (3, 2) sans division. Posons

L3 ← (λ− 2)2 L3 − (3λ− 4)L2.

Alors la 2e composante de L3 devient nulle, et la composante (3, 3) vaut

(λ− 2)2(1− λ)2.

On a donc une forme échelonnée (au sens du rang) :1− λ −1 0
0 (λ− 2)2 0
0 0 (λ− 2)2(1− λ)2

 .

Conclusion sur le rang. Le rang de A− λI3 est strictement inférieur à 3 si et seulement si

(λ− 2)2(1− λ)2 = 0 ⇐⇒ λ ∈ {1, 2}.

Ainsi
Sp(A) = {1, 2, 2} .

Sous-espaces propres Ker(A− λI3) et diagonalisabilité.
• Pour λ = 1,

A− I3 =

 0 −1 0
1 2 0
−1 −3 0

 ⇒

{
−y = 0

x+ 2y = 0
⇒ y = 0, x = 0, z libre.

Donc
Ker(A− I3) = Vect(0, 0, 1) (dim = 1).

• Pour λ = 2,

A− 2I3 =

−1 −1 0
1 1 0
−1 −3 −1

 ⇒

{
−x− y = 0

−2y − z = 0
⇒ x = −y, z = −2y.

On peut prendre y = 1, d’où un générateur (−1, 1,−2), équivalent à (1,−1, 2). Donc

Ker(A− 2I3) = Vect(1,−1, 2) (dim = 1).

Comme dim Ker(A − I3) = 1 et dim Ker(A − 2I3) = 1, on ne peut extraire que 2 vecteurs propres
indépendants au total.

A n’est pas diagonalisable (dim Ker(A− I3) + dim Ker(A− 2I3) = 2 < 3).

Exercice 85
On travaille dans M3(R) avec

M =

1 0 1

1 2 −1
0 0 2

 .
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1. Calcul de M2 − 3M + 2I3.

M2 =

1 0 1
1 2 −1
0 0 2

1 0 1
1 2 −1
0 0 2

 =

1 0 3
3 4 −3
0 0 4

 .

Donc

M2 − 3M =

1 0 3
3 4 −3
0 0 4

−
3 0 3
3 6 −3
0 0 6

 =

−2 0 0
0 −2 0
0 0 −2

 = −2I3,

et par suite
M2 − 3M + 2I3 = 03 .

2. Valeurs propres et sous-espaces propres.
L’égalité précédente montre que M est annulée par le polynôme P (X) = (X − 1)(X − 2). Par le lien
polynôme annulateur / spectre, on en déduit

Sp(M) ⊂ {1, 2} .

Cherchons les sous-espaces propres (et vérifions que 1 et 2 sont bien valeurs propres).
◃ Pour λ = 1,

M − I3 =

0 0 1

1 1 −1
0 0 1

 .

Le système (M − I3)X = 0 donne z = 0 et x+ y = 0. Ainsi

Ker(M − I3) = Vect
(
(1,−1, 0)

)
(dim = 1).

◃ Pour λ = 2,

M − 2I3 =

−1 0 1

1 0 −1
0 0 0

 .

Le système (M − 2I3)X = 0 impose z = x et ne contraint pas y. Ainsi

Ker(M − 2I3) = Vect
(
(1, 0, 1), (0, 1, 0)

)
(dim = 2).

Comme les deux noyaux sont non triviaux, on a bien

Sp(M) = {1, 2} .

3. Diagonalisabilité.
La somme des dimensions des sous-espaces propres vaut 1 + 2 = 3 (dimension totale). Donc M est
diagonalisable. En prenant comme colonnes de P une base de vecteurs propres, par exemple

P =
[
(1,−1, 0) (1, 0, 1) (0, 1, 0)

]
=

 1 1 0

−1 0 1

0 1 0

 , D = diag(1, 2, 2),

on obtient
P−1MP = D .
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Exercice 86
On définit, pour n ∈ N,

Xn =

un
vn
wn

 , Xn+1 = AXn, où A =

−5 6 4
−4 5 4
2 −2 −3

 , X0 =

1
1
2

 .

1. Mise sous forme matricielle.

A =

−5 6 4
−4 5 4
2 −2 −3

 , Xn+1 = AXn

2. Diagonalisation de A.
On teste d’abord λ = 1 et λ = −1 en résolvant (A− λI3)X = 0.
◃ λ = 1. On obtient :

Ker(A− I3) = Vect
(
(1, 1, 0)

)
◃ λ = −1. On obtient :

Ker(A+ I3) = Vect
(
(1, 0, 1)

)
◃ La trace vaut tr(A) = −5 + 5 − 3 = −3. Comme la somme des valeurs propres vaut la trace, la
troisième valeur propre vérifie 1 + (−1) + λ3 = −3, donc on devine que −3 est valeur propre. On le
vérifie avec un système à résoudre et :

Ker(A+ 3I3) = Vect
(
(−1,−1, 1)

)
Ainsi

Sp(A) = { 1, −1, −3 } .

Les trois sous-espaces propres sont de dimension 1 et engendrent R3, donc A est diagonalisable. En
choisissant pour colonnes des vecteurs propres associés (dans l’ordre 1,−1,−3),

P =
[
(1, 1, 0) (1, 0, 1) (−1,−1, 1)

]
=

1 1 −1
1 0 −1
0 1 1

 , D = diag(1,−1,−3),

on a
P−1AP = D .

Une inversion par pivots donne

P−1 =

−1 2 1
1 −1 0
−1 1 1

 .

3. Calcul de An. Pour n ∈ N,

An = P Dn P−1 avec Dn = diag
(
1, (−1)n, (−3)n

)
.

En posant b = (−1)n et c = (−3)n, un calcul matriciel donne

An =

b+ c− 1 2− b− c 1− c
c− 1 2− c 1− c
b− c c− b c

 .

4. Formules explicites pour un, vn, wn. On a Xn = AnX0 avec X0 = (1, 1, 2)⊤.
En utilisant la matrice ci-dessus (ou la décomposition sur la base propre),

un = 3− 2(−3)n, vn = 3− 2(−3)n, wn = 2(−3)n (n ∈ N) .
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Exercice 87
On travaille dans M3(R) avec

A =

 1 3 2

0 −2 −2
−3 9 8

 .

1. Diagonalisation de A.
Recherche des valeurs propres par réduction de rang (sans déterminant). On considère

A− λI3 =

1− λ 3 2
0 −2− λ −2
−3 9 8− λ

 .

En effectuant des opérations de lignes (sans division) :

L3 ← (1− λ)L3 + 3L1 =⇒

1− λ 3 2
0 −2− λ −2
0 9(2− λ) 14− 9λ+ λ2

 .

Puis
L3 ← (−2− λ)L3 − 9(2− λ)L2,

ce qui donne une forme échelonnée dont l’entrée (3, 3) vaut

−(λ− 1)(λ− 2)(λ− 4).

Donc rg(A− λI3) < 3 si et seulement si (λ− 1)(λ− 2)(λ− 4) = 0. Ainsi

Sp(A) = {1, 2, 4} .

Sous-espaces propres. On résout (A− λI3)X = 0 pour chaque λ.

• λ = 1 : A − I3 =

 0 3 2
0 −3 −2
−3 9 7

 donne 3y + 2z = 0 et −3x + 9y + 7z = 0, d’où Ker(A − I3) =

Vect(1,−2, 3).

• λ = 2 : A− 2I3 =

−1 3 2
0 −4 −2
−3 9 6

 donne −4y − 2z = 0 et −x+ 3y + 2z = 0, d’où Ker(A− 2I3) =

Vect(1,−1, 2).

• λ = 4 : A− 4I3 =

−3 3 2
0 −6 −2
−3 9 4

 donne −6y− 2z = 0 et −3x+3y+2z = 0, d’où Ker(A− 4I3) =

Vect(1,−1, 3).

Ker(A− I3) = Vect(1,−2, 3), Ker(A− 2I3) = Vect(1,−1, 2), Ker(A− 4I3) = Vect(1,−1, 3).

Comme la somme des dimensions vaut 3, A est diagonalisable. En posant (dans l’ordre 1, 2, 4)

P =

 1 1 1

−2 −1 −1
3 2 3

 , D = diag(1, 2, 4),

on a
A = PDP−1 .
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2. Système différentiel X ′ = AX et changement de variables.
On pose

X =

x
y
z

 , Y = P−1X =

u
v
w

 .

Alors
Y ′ = P−1X ′ = P−1AX = P−1AP Y = DY,

soit le système découplé
u′ = u, v′ = 2v, w′ = 4w .

Donc, pour des constantes réelles C1, C2, C3,

u(t) = C1e
t, v(t) = C2e

2t, w(t) = C3e
4t.

En revenant à X = PY ,

X(t) = C1e
t

 1
−2
3

+ C2e
2t

 1
−1
2

+ C3e
4t

 1
−1
3

 .

Autrement dit,
x(t) = C1e

t + C2e
2t + C3e

4t,

y(t) = −2C1e
t − C2e

2t − C3e
4t,

z(t) = 3C1e
t + 2C2e

2t + 3C3e
4t.

Exercice 88
On note an, bn, cn les probabilités d’être, au jour n, dans A,B,C, et

Xn =

an
bn
cn

 .

1. Matrice de transition.
• Depuis A : le Loup va en B avec probabilité 1.
• Depuis B : il ne reste pas en B, et P(A | B) = 2P(C | B) avec somme 1, d’où P(A | B) = 2

3 ,
P(C | B) = 1

3 .
• Depuis C : il ne reste pas en C, et P(A | C) = 2P(B | C), d’où P(A | C) = 2

3 , P(B | C) = 1
3 .

Avec Xn+1 = M Xn (vecteur-colonne), les colonnes de M sont les lois de transition depuis A,B,C :

M =

0 2
3

2
3

1 0 1
3

0 1
3 0

 , Xn+1 = M Xn.

2. Valeurs propres et sous-espaces propres par pivots sur (M − λI3)X = 0.
On écrit

M − λI3 =

−λ 2
3

2
3

1 −λ 1
3

0 1
3 −λ

 .

Réduction (sans divisions) pour λ tel que λ ≠ 0 et λ2 ̸= 2
3 .

L2 ← λL2 + L1  

−λ 2
3

2
3

0 2
3 − λ2 λ+2

3
0 1

3 −λ

 .
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Posons S = 3L3 = (0, 1,−3λ), puis

L3 ←
(
2
3 − λ2

)
S − L2  L3 = (0, 0, 13(9λ

3 − 7λ− 2)).

Ainsi, pour ces λ, on a rang < 3 si et seulement si 9λ3 − 7λ− 2 = 0, c’est-à-dire

(λ− 1)
(
λ+ 1

3

)(
λ+ 2

3

)
= 0 .

Les cas particuliers λ = 0 ou λ2 = 2
3 se traitent directement et donnent rang 3 (systèmes de Cramer),

donc ne fournissent pas de valeur propre supplémentaire.
On résout maintenant (M − λI3)X = 0 pour chaque racine.
◃ λ = 1.

M − I3 =

−1 2
3

2
3

1 −1 1
3

0 1
3 −1

 .

La troisième équation donne b = 3c, puis la seconde donne a+ 1
3(b+ c) = 0⇒ a = 8

3c. Ainsi

Ker(M − I3) = Vect
(
(8, 9, 3)

)
.

◃ λ = −1
3 .

M + 1
3I3 =

1
3

2
3

2
3

1 1
3

1
3

0 1
3

1
3

 .

La troisième équation donne b = −c, la seconde impose a = 0. Donc

Ker
(
M + 1

3I3

)
= Vect

(
(0, 1,−1)

)
.

◃ λ = −2
3 .

M + 2
3I3 =

2
3

2
3

2
3

1 2
3

1
3

0 1
3

2
3

 .

La troisième équation donne b = −2c, puis la seconde impose a = c. Donc

Ker
(
M + 2

3I3

)
= Vect

(
(1,−2, 1)

)
.

En résumé,

Sp(M) =
{
1, −1

3 , −
2
3

}
, et les sous-espaces propres sont ceux ci-dessus.

3. Diagonalisabilité et forme de MnX0.
Les trois valeurs propres sont distinctes, donc M est diagonalisable. Si b = (V1, V2, V3) est une base de
vecteurs propres de M associée à 1,−1

3 ,−
2
3 , et si X0 = α1V1 + α2V2 + α3V3, alors

MnX0 = α1 V1 + α2

(
−1

3

)n
V2 + α3

(
−2

3

)n
V3.
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4. Limite de Xn.
Des questions précédentes, on dispose d’une base de vecteurs propres (V1, V2, V3) associée aux valeurs
propres 1, −1

3 , −
2
3 , et d’une décomposition

Xn = α1 V1 + α2

(
−1

3

)n
V2 + α3

(
−2

3

)n
V3.

Invariance de la somme des coordonnées.
Les colonnes de M somment à 1, donc pour tout vecteur colonne X = (x1 x2 x3)

⊤, la somme des
coordonnées de MX est la même que celle de X.
Il s’ensuit que an+bn+cn est constant en n, et comme c’est une probabilité totale : ∀n, an+bn+cn = 1

Conséquence pour les vecteurs propres non associés à 1.
Si V est un vecteur propre tel que MV = λV avec λ ̸= 1, alors la somme des coordonnées de V , notée
Σ(V ), vérifie

Σ(V ) = Σ(MV ) = Σ(λV ) = λΣ(V ).

Donc (1− λ)Σ(V ) = 0 et, puisque λ ̸= 1, alors Σ(V ) = 0.
Ainsi, les coordonnées de V2 et V3 somment à 0, tandis que Σ(V1) ̸= 0 (par exemple, avec V1 = (8, 9, 3),
alors Σ(V1) = 20).
Passage à la limite.
Comme

∣∣−1
3

∣∣ < 1 et
∣∣−2

3

∣∣ < 1,(
−1

3

)n
V2 tend vers 0 et

(
−2

3

)n
V3 tend vers 0 quand n tend vers +∞.

Donc Xn converge vers α1 V1.
Or la somme des coordonnées est conservée et vaut toujours 1, d’où, à la limite,

1 = Σ(Xn) tend vers Σ(α1V1) = α1Σ(V1) = α1 · 20,

ce qui impose α1 =
1

20
. Ainsi,

lim
n→+∞

Xn =
1

20
(8, 9, 3) =

(
2

5
,
9

20
,
3

20

)
.

lim an =
2

5
, lim bn =

9

20
, lim cn =

3

20

L’alpage le plus sûr est donc C (probabilité limite la plus faible 3
20).


