CHS8 - Séries numériques
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Grille d’analyse des exercices

Exercice | Question 0 Référence(s) | Commentaires/remarques

1. Ty : technique ancestrale. Pas listée dans les techniques de base.
2. Déf : pas de technique livrée. Revenir a la définition.
3. C: utilisation d’'un résultat de cours (théoreme, proposition, etc.)

4. Question discriminante et plus difficile : demande raisonnement et enchainement de techniques.
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1 Généralités
A) Ce qu’est une série

mDéfinition1 ........... ...l [Série numérique, terme général d’une série]

— C’est un nouveau type d’objet. Ce n’est ni un nombre, ni une suite.
— Un objet de type série est noté : Z u,.
n=ng,
Dans cette notation :
1. (Up)pzn, est une suite réelle ou complexe.
2. n, est la rang initial de la série, souvent n, = 0, 1 ou 2. C’est aussi le rang initial de la suite (u,,).

3. u, sappelle dans ce contexte Le terme général de la série. C’est également le terme général de la
suite (Up)p>n,-

EDéfinition 2 ... ... .. ... .. [Somme partielle d’une série]

n
Si Z up, est une série, la suite (S,)p>p, de terme général S, = Z u; s’appelle suite des sommes

n=ng, k=ngq

partielles de la série Z u,. Le nombre S,, s’appelle somme partielle (de rang n) de la série Z Up,.

n=ng n=ng

H Proposition1 ............................. [Lien entre t.g et somme partielle d’une série]
Pour la série Z u,: VYn>ny S,1+u,=S,

n=ng,

B) Convergence d’une série

H Définition 3 .......... [Convergence d’une série - somme d’une série - nature d’une série]
Avec les notations des définitions précédentes :

— La série est dite convergente si la suite (S,,),,>,, est convergente.
+00
— La limite £ de cette suite s’appelle la somme de la série et se note £ = Z Uy
k:no

— Si une série ne converge pas, on dit qu’elle est divergente.

— Etudier la nature d’une série, c’est déterminer si elle est convergente ou divergente.
H Exemple 1.

1. La série » (—1)" est divergente.
g

n=0

2. La série Z(l /2)" est convergente, car la suite des sommes partielles tend vers 2. Ainsi, la série Z(l/ 2)" a

n=0 n=>0
o +00o 1
pour somme 2. On écrit donc Z — |=2
n=0 2"

Lycée Chateaubriand, Rennes
Classe de B} 2025-2026
MY Patel EO®S0




m Séries télescopiques

Ce sont les séries du type E u; pour lesquelles le t.g est de la
k>n,
forme uy = vi 1 — V.
1. Comme les sommes partielles se calculent simplement par
telescopage (en effet : Yn>p: S,=u,;y— v, ),
~—~—
constante
2. on conclut de 1. que la suite (S,),>, des sommes partielles
converge si et seulement si la suite (v,) converge, et dans
ce cas, la somme de la sérieest : S=( lim v,)—u, .
n—+o0o o

C) Série tronquée

HDEfiNItioN 4 ... [Troncature d’une série]

Si E u, est une série, et n; > ng, la série E u, s'appelle une troncature de la série.
n=ng nzn;

B Proposition2 .......... .. ...l [Invariance de la nature par troncature]
Une série et une troncature de celle-ci sont de méme nature.

H Exemple 2.

(. 1 1 A
Les séries Z —' et Z —' sont de méme nature.
n>2 n=>0 n

B Remarque 1.

Ceci permet de considérer le terme général d’une série a partir d’un certain rang. Cela simplifie '’étude, notamment
lorsque I'on a identifié le t.g. comme une combinaison linéaire de t.g. de séries connues.
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@ Calcul de troncature

En général une série est distincte de sa troncature.

1. P.ex, Les séries Zun et Zun sont distinctes.

n=0 n=2

a) Toutefois, il existe un lien entre leurs sommes par-
tielles respectives (S,)0 €t (S) )2 puisque :

Yn>2 S, =up+ - 4u, =uptu+uy + - +u, = ugtu;+S,
| S

présent car n>2

b) Les sommes de ces séries sont distinctes :

00 1.q) 00
.a

z u, = (u0+ul)+ z Uy

n=0 n=2

2. Noter que troncature # glissement d'indice. P.ex :

1 1 . 1 glissement 1
Z = # - mais - = Z —
= =n! son! dindice 4= (n—2)
—— —— —— | ——
ma série troncature de ma série ma série c’est encore ma série
D) Structure vectorielle de I'ensemble des séries
EDéfinition5 ... ... [Combinaison linéaire de séries]

Si Z u, et Z v, sont deux séries et a, b deux scalaires on définit la série notée a Z u, +b Z Y

n=ng n=ng nzng nzng
comme la série E (au,, + bv,).
n=ng,
BProposition3 ... ... ... [structure vectorielle]

1. L'ensemble ¥ des séries numériques est un R—espace vectoriel.

2. L'ensemble ., des séries convergentes en est un sous-espace vectoriel de .

B Remarque 2.

La somme d’une série convergente définit sur &, une forme linéaire, puisque si E u, et E v, sont dans &, alors :

nzng nzng
+00 +00 +00
Y(a,b) € R? Z(aun+bvn)=a Z u,+b Z Vy
k=n, k=n, k=n,

E) Séries de références

Servent tout le temps dans les exercices
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BThéoreme 1 ... . ... i e [Séries géométriques)

1. La série géométrique Z q* converge si et seulement si |q|<1. Dans ce cas :

k=0
+00 § 1
2.4 =1
k=0 q
1l en est de méme pour la série de t.g. ¢<*1, (ou ¢**2 etc).

2. Les séries géométriques dérivées Z kgk! et Z k(k —1)g*~2 sont convergentes si et seulement

k=1 k>2
si |q| < 1. Dans ce cas :
Skt = 3k
qu—l — q (1)
pa T (1—qr CI)2
+00 5
D k(k—1)¢*? = Zk(k 1)q*? Zk(k—l)qk iyt @
k=2 k=1 k=0 (1-9)

B Remarque 3.
Ne pas confondre :

— Suite géométrique :
— Série géométrique :
— Somme de termes consécutifs d'une série géométrique :

— Somme d’une série géométrique :

@ Calcul de la somme d’une série géométrique tronquée

1. On écrit la somme sous forme développée :

+00
S= qu_ko =qP ko 4 gPH R0 4
k=p

2. a) Si le premier terme de la somme ainsi développé

vaut 1 : on a une série géométrique compléte et
1

1—q’
b) Sinon on factorise le premier terme de S pour se
ramener au cas 2. a) :

S=q¢"M( 1+q+q*+... ):qp_k0><1 .
%/_/ - q
série géométrique compléte
[ | Exemple 3
n+1
Calculer S = Z ( )
n=3
BDéfinition 6 ........ ... .. ... [Séries exponentielles]
Ce sont les séries Z —

n>0
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BThEoreme 2 ... . [Série exponentielle]

Ve 7. Ve 7 X
Pour tout réel x, la série de terme général u,, = — converge et :
n!

+o00 X" +o00 1 +o00 (_1)11 1
oy - _ _1
¥x R Eo—n! = e”. En particulier Eo—n! =e et E =
n= n=

!
~ nl e
B Définition 7 ... .. .. . [Série harmonique]
- 1
C’est la série Z —.
n>1 n
BTREOrEME B ... . i e [Séries zéta]

. . . A (s 1
1. La série harmonique diverge vers +00. Il en est de méme pour la série Z —— (Prop.2).
n>1

. 1 n .. 1
2. La série Z — est convergente. Il en est de méme pour la série Z —— — (Prop.2).
= n2 =1 (n+1)2

H Exemple 4.

. n” s
Nature la série Z - et calcul de la somme le cas échéant.
n>0

2 Etude de la convergence des séries

A) Condition nécessaire de convergence

H Proposition4 ........................... [Condition nécessaire de convergence d’une série]
Pour qu'une série soit convergente, il faut que son terme général converge vers 0. La réciproque est
fausse (ca ne suffit pas!).

B Exemple 5.
2 Le t.g. de la série harmonique converge vers 0, mais la série harmonique diverge (Thm. 3)

mDéfinition 8 ...... ... ... .. [série grossiérment divergente]
Série dont le terme général ne tend pas vers 0. Elle est divergente par contraposition de la prop. 4.

B) Condition suffisante de convergence

BDEfinition 9 ... .. ... . e e [Absolue convergencel
La série Z u; est dite absolument convergente si la série Z |uy| est convergente.

k>nq k>ng
BThéoremed ... ... ... . [Cond. suffisante de convergence]

Si une série converge absolument, alors elle converge. La réciproque est fausse.

B Remarque 4.
Ceci incite a porter une attention particuliere a '’étude des séries a termes positifs.

H Exemple 6.

. (_1)k+1 )
La série Z ———— est convergente mais non absolument convergente.

n>1
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3 Séries a termes positifs

A) Convergence monotone

BTREOrEME B ... ... e [Cv monot. ]
Si la série Zuk est a termes positifs, elle converge si et seulement si la suite des sommes partielles
k

est majorée. Sinon, la série diverge vers +00.

B) Equivalents
BThEoreme B ... .. ... ... i e e [équivalents]
Deux séries a termes positifs de termes généraux équivalents sont de méme nature.

& 0On applique ce théoréme en travaillant sur les termes généraux, pas les séries, ni les sommes
partielles.

H Exemple 7.

1
Montrer que la série de terme général u; =In (1 + 4?) converge.

C) Théoreme de comparaison

B TREOrEME 7 ... . e e e [CCSATP]
Si a partir d’un certain rang p (souvent p =1,2) : 0 < uy < vy alors :

1. sila série E Vv converge, la série E uy aussi. Dans ce cas, on a de plus la relation suivante sur

k k
+00 +00
les sommes des séries : Z up < Z Vi
k=p k=p

2. sila série Z uy diverge, la série Z V} aussi.
k k

& On applique ce théoréme en travaillant sur les termes généraux, pas les séries, ni les sommes
partielles.

H Exemple 8.

1
1. a) Montrer que pour tout entier k > 1 vk +1—+vk= ——————.
) anep JRiVRil
1
b) En déduire la nature de la série —.
) L
2. FEtudier 1 d L
. Etudier la nature de Z PAYER

k>1
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@ Comment étudier la nature d’une série?

1. Sile t.g. ne tend pas vers O : grossiére divergence. Fin.
2. Sinon : reconnaitre :

a) le t.g. d'une série de référence ou une combinaison
linéaire de t.g. de séries de nature connue.

b) sinon : le moment d’une variable aléatoire discréte.
€) sinon : une série télescopique,

3. Sinon : calculer les sommes partielles S, si ce sont des
sommes qu’on sait calculer T0, et étudier la nature de la
suite (S,).

4. Sinon : examiner le signe du t.g. :
a) Si le terme général de la série est positif :

i) chercher un équivalent du t.g. et utiliser les sé-
ries de référence.

if) sinon, utiliser le CCSATP sur le t.g..
b) Sinon : étudier I' absolue convergence de la série
pour se ramener a un t.g. positif.
— & On ne travaille jamais sur autre chose que le t.g.(sauf
situation 3.)

— Dans les calculs, on ne manipule jamais la série elle-
méme.

— Dans les calculs ,on n'introduit jamais la somme de la
série avant d'avoir prouvé sa convergence par les méthodes
1-4.

@ Comment calculer la somme d’une série?

1. Reconnaitre le moment d'une variable aléatoire discrete
(et appliquer éventuellement la formule de Koenig).

n2

|
n>0 n

2. Calcul explicite des sommes partielles si ce sont des
sommes usuelles, notamment T1. Attention aux tronca-

tures T2.
3. Ecrire le t.g comme CL de t.g. de séries de sommes
connues.
2 2n q:_xZ _ n n
(n® +n)x = n(n—1)q" + 2ngq

n?+n=n’~n+2n=n(n—1)+2n

¢*n(n—1)q"*+2qnqg""!
| S — ~—~—

connu connu
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@ Comparaison avec une intégrale pour I'étude de Zf(n)

n=p

Si f est une fonction décroissante positive, pour prouver la

convergence de Zf(n) :

n=p

1. On fixe un rang k > p, et par décroissance de f :
Vtelk—1,k] 0<f(k)<f(t).

2. Donc par croissance de l'intégrale :

k
Vk=p 0<u, SJ f(t)de.
k-1

3. Enfin, en sommant les inégalités précédentes de k =p a
k=n (n>= p étant entier fixé), par relation de Chasles :

VYn>p ossnsf f(t)de.
p—1

4. Si on sait majorer cette derniére intégrale par un réel in-
dépendant de n, cela établit la convergence de la série.

Rem. On peut aussi établir la divergence de la série en mino-

rant les sommes partielles par une intégrale tendant vers +00

avec n.

H Exemple 9.

1
Convergence de Z P pour s > 1.
k>1

f(k)I

1
Par décroissance sur R}, de t i) = :
1 1
Vk>2 Vtel[k—1,k] 0<—<—
ks ts

puis par croissance de I'intégrale :

k
0< 1 < f de
ks ts
~~— k=1

Aire du rectangle R=1x f (k)
et enfin par sommation de k =2 & k = n et par la relation de Chasles :

n n
1 dt
¥n>2 0<> o S J —- Dol par primitivation :
k=2 1

1 1 1 1
Yn>2 Oﬁkzzzgfs_—l(l—ns_l)ﬁs_—l.

Les sommes partielles de la série sont majorées par 1/(s —1).

Comme la série est a termes positifs, elle converge.
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