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Grille d’analyse des exercices

Exercice Question T Référence(s) Commentaires/remarques

1. T0 : technique ancestrale. Pas listée dans les techniques de base.

2. Déf : pas de technique livrée. Revenir à la définition.

3. C : utilisation d’un résultat de cours (théorème, proposition, etc.)

4. ? Question discriminante et plus difficile : demande raisonnement et enchaînement de techniques.
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1 Généralités

A) Ce qu’est une série

� Définition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Série numérique, terme général d’une série]

— C’est un nouveau type d’objet. Ce n’est ni un nombre, ni une suite.

— Un objet de type série est noté :
∑

n≥n0

un.

Dans cette notation :

1. (un)n≥n0
est une suite réelle ou complexe.

2. n0 est la rang initial de la série, souvent n0 = 0, 1 ou 2. C’est aussi le rang initial de la suite (un).

3. un s’appelle dans ce contexte Le terme général de la série. C’est également le terme général de la
suite (un)n≥n0

.

� Définition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Somme partielle d’une série]

Si
∑

n≥n0

un, est une série, la suite (Sn)n≥n0
de terme général Sn =

n
∑

k=n0

uk s’appelle suite des sommes

partielles de la série
∑

n≥n0

un. Le nombre Sn s’appelle somme partielle (de rang n) de la série
∑

n≥n0

un.

� Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Lien entre t.g et somme partielle d’une série]
Pour la série
∑

n≥n0

un : ∀n> n0 Sn−1 + un = Sn

B) Convergence d’une série

� Définition 3 . . . . . . . . . . [Convergence d’une série - somme d’une série - nature d’une série]
Avec les notations des définitions précédentes :

— La série est dite convergente si la suite (Sn)n≥n0
est convergente.

— La limite ` de cette suite s’appelle la somme de la série et se note `=
+∞
∑

k=n0

uk

— Si une série ne converge pas, on dit qu’elle est divergente.

— Étudier la nature d’une série, c’est déterminer si elle est convergente ou divergente.

� Exemple 1.

1. La série
∑

n≥0

(−1)n est divergente.

2. La série
∑

n≥0

(1/2)n est convergente, car la suite des sommes partielles tend vers 2. Ainsi, la série
∑

n≥0

(1/2)n a

pour somme 2. On écrit donc
+∞
∑

n=0

�

1
2n

�

= 2

�
�

�
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T1 Séries télescopiques

Ce sont les séries du type
∑

k≥n0

uk pour lesquelles le t.g est de la

forme uk = vk+1 − vk.
1. Comme les sommes partielles se calculent simplement par

telescopage (en effet : ∀n≥ p : Sn = uv+1 − vn0
︸︷︷︸

constante

),

2. on conclut de 1. que la suite (Sn)n≥p des sommes partielles
converge si et seulement si la suite (vn) converge, et dans
ce cas, la somme de la série est : S = ( lim

n→+∞
vn)− uv0

.

C) Série tronquée

� Définition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[Troncature d’une série]

Si
∑

n≥n0

un est une série, et n1 ≥ n0, la série
∑

n≥n1

un s’appelle une troncature de la série.

� Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Invariance de la nature par troncature]
Une série et une troncature de celle-ci sont de même nature.

� Exemple 2.

Les séries
∑

n≥2

1
n!

et
∑

n≥0

1
n!

sont de même nature.

� Remarque 1.

Ceci permet de considérer le terme général d’une série à partir d’un certain rang. Cela simplifie l’étude, notamment
lorsque l’on a identifié le t.g. comme une combinaison linéaire de t.g. de séries connues.

�
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T2 Calcul de troncature

En général une série est distincte de sa troncature.
1. P.ex, Les séries

∑

n≥0

un et
∑

n≥2

un sont distinctes.

a) Toutefois, il existe un lien entre leurs sommes par-
tielles respectives (Sn)n≥0 et (S′n)n≥2 puisque :

∀n≥ 2 Sn = u0+· · ·+un = u0+u1+u2 + · · ·+ un
︸ ︷︷ ︸

présent car n≥2

= u0+u1+S′n

b) Les sommes de ces séries sont distinctes :

∞
∑

n=0

un
1. a)
= (u0 + u1) +

∞
∑

n=2

un

2. Noter que troncature 6= glissement d’indice. P.ex :
∑

n≥0

1
n!
︸ ︷︷ ︸

ma série

6=
∑

n≥2

1
n!
︸ ︷︷ ︸

troncature de ma série

mais
∑

n≥0

1
n!
︸ ︷︷ ︸

ma série

glissement
=

d’indice

∑

n≥2

1
(n− 2)!
︸ ︷︷ ︸

c’est encore ma série

D) Structure vectorielle de l’ensemble des séries

� Définition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[Combinaison linéaire de séries]

Si
∑

n≥n0

un et
∑

n≥n0

vn sont deux séries et a, b deux scalaires on définit la série notée a
∑

n≥n0

un + b
∑

n≥n0

vn

comme la série
∑

n≥n0

(aun + bvn).

� Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[structure vectorielle]

1. L’ensemble S des séries numériques est un R−espace vectoriel.

2. L’ensemble S0 des séries convergentes en est un sous-espace vectoriel de S .

� Remarque 2.

La somme d’une série convergente définit sur S0 une forme linéaire, puisque si
∑

n≥n0

un et
∑

n≥n0

vn sont dans S0, alors :

∀(a, b) ∈ R2
+∞
∑

k=n0

(aun + bvn) = a
+∞
∑

k=n0

un + b
+∞
∑

k=n0

vn

E) Séries de références

Servent tout le temps dans les exercices�
�

�
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� Théorème 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Séries géométriques]

1. La série géométrique
∑

k≥0

qk converge si et seulement si |q|<1. Dans ce cas :

+∞
∑

k=0

qk =
1

1− q
.

Il en est de même pour la série de t.g. qk+1, (ou qk+2 etc).

2. Les séries géométriques dérivées
∑

k≥1

kqk−1 et
∑

k≥2

k(k − 1)qk−2 sont convergentes si et seulement

si |q|< 1. Dans ce cas :

+∞
∑

k=1

kqk−1 =
+∞
∑

k=0

kqk−1 =
1

(1− q)2
. (1)

+∞
∑

k=2

k(k− 1)qk−2 =
+∞
∑

k=1

k(k− 1)qk−2 =
+∞
∑

k=0

k(k− 1)qk−2 =
2

(1− q)3
. (2)

� Remarque 3.
Ne pas confondre :

— Suite géométrique :

— Série géométrique :

— Somme de termes consécutifs d’une série géométrique :

— Somme d’une série géométrique :

T3 Calcul de la somme d’une série géométrique tronquée

1. On écrit la somme sous forme développée :

S =
+∞
∑

k=p

qk−k0 = qp−k0 + qp+1−k0 + . . .

2. a) Si le premier terme de la somme ainsi développé
vaut 1 : on a une série géométrique complète et
S =

1
1− q

.

b) Sinon on factorise le premier terme de S pour se
ramener au cas 2. a) :

S = qp−k0( 1+ q+ q2 + . . .
︸ ︷︷ ︸

série géométrique complète

) = qp−k0 ×
1

1− q
.

� Exemple 3.

Calculer S =
+∞
∑

n=3

�

1
2

�n+1

� Définition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Séries exponentielles]

Ce sont les séries
∑

n≥0

xn

n! �
�

�
�
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� Théorème 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Série exponentielle]

Pour tout réel x , la série de terme général un =
xn

n!
converge et :

∀x ∈ R
+∞
∑

n=0

xn

n!
= ex . En particulier

+∞
∑

n=0

1
n!
= e et

+∞
∑

n=0

(−1)n

n!
=

1
e

� Définition 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Série harmonique]

C’est la série
∑

n≥1

1
n

.

� Théorème 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Séries zêta]

1. La série harmonique diverge vers +∞. Il en est de même pour la série
∑

n≥1

1
n+ 1

(Prop.2).

2. La série
∑

n≥1

1
n2

est convergente. Il en est de même pour la série
∑

n≥1

1
(n+ 1)2

(Prop.2).

� Exemple 4.

Nature la série
∑

n≥0

n2

n!
, et calcul de la somme le cas échéant.

2 Étude de la convergence des séries

A) Condition nécessaire de convergence

� Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . [Condition nécessaire de convergence d’une série]
Pour qu’une série soit convergente, il faut que son terme général converge vers 0. La réciproque est
fausse (ça ne suffit pas !).

� Exemple 5.
A Le t.g. de la série harmonique converge vers 0, mais la série harmonique diverge (Thm. 3)

� Définition 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[série grossièrment divergente]
Série dont le terme général ne tend pas vers 0. Elle est divergente par contraposition de la prop.4.

B) Condition suffisante de convergence

� Définition 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Absolue convergence]
La série
∑

k≥n0

uk est dite absolument convergente si la série
∑

k≥n0

|uk| est convergente.

� Théorème 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Cond. suffisante de convergence]
Si une série converge absolument, alors elle converge. La réciproque est fausse.

� Remarque 4.
Ceci incite à porter une attention particulière à l’étude des séries à termes positifs.

� Exemple 6.

La série
∑

n≥1

(−1)k+1

k
est convergente mais non absolument convergente.

�
�

�
�
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3 Séries à termes positifs

A) Convergence monotone

� Théorème 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Cv monot.]
Si la série
∑

k

uk est à termes positifs, elle converge si et seulement si la suite des sommes partielles

est majorée. Sinon, la série diverge vers +∞.

B) Équivalents

� Théorème 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [équivalents]
Deux séries à termes positifs de termes généraux équivalents sont de même nature.

A On applique ce théorème en travaillant sur les termes généraux, pas les séries, ni les sommes
partielles.

� Exemple 7.

Montrer que la série de terme général uk = ln
�

1+
1

4k2

�

converge.

C) Théorème de comparaison

� Théorème 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [CCSATP]
Si à partir d’un certain rang p (souvent p = 1, 2) : 0≤ uk ≤ vk alors :

1. si la série
∑

k

vk converge, la série
∑

k

uk aussi. Dans ce cas, on a de plus la relation suivante sur

les sommes des séries :
+∞
∑

k=p

uk ≤
+∞
∑

k=p

vk

2. si la série
∑

k

uk diverge, la série
∑

k

vk aussi.

A On applique ce théorème en travaillant sur les termes généraux, pas les séries, ni les sommes
partielles.

� Exemple 8.

1. a) Montrer que pour tout entier k ≥ 1
p

k+ 1−
p

k =
1

p
k+
p

k+ 1
.

b) En déduire la nature de la série
∑

k≥1

1
p

k
.

2. Étudier la nature de
∑

k≥1

1
k1/3

.

�
�

�
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T4 Comment étudier la nature d’une série ?

1. Si le t.g. ne tend pas vers 0 : grossière divergence. Fin.
2. Sinon : reconnaître :

a) le t.g. d’une série de référence ou une combinaison
linéaire de t.g. de séries de nature connue.

b) sinon : le moment d’une variable aléatoire discrète.
c) sinon : une série télescopique,

3. Sinon : calculer les sommes partielles Sn si ce sont des
sommes qu’on sait calculer T0, et étudier la nature de la
suite (Sn).

4. Sinon : examiner le signe du t.g. :
a) Si le terme général de la série est positif :

i) chercher un équivalent du t.g. et utiliser les sé-
ries de référence.

ii) sinon, utiliser le CCSATP sur le t.g..
b) Sinon : étudier l’ absolue convergence de la série

pour se ramener à un t.g. positif.
— A On ne travaille jamais sur autre chose que le t.g.(sauf

situation 3.)
— Dans les calculs, on ne manipule jamais la série elle-

même.
— Dans les calculs ,on n’introduit jamais la somme de la

série avant d’avoir prouvé sa convergence par les méthodes
1-4.

T5 Comment calculer la somme d’une série ?

1. Reconnaître le moment d’une variable aléatoire discrète
(et appliquer éventuellement la formule de Koenig).

∑

n≥0

n2

n!
.

2. Calcul explicite des sommes partielles si ce sont des
sommes usuelles, notamment T1. Attention aux tronca-
tures T2.

3. Écrire le t.g comme CL de t.g. de séries de sommes
connues.

(n2 + n)x2n q=x2

= n(n− 1)qn + 2nqn

n2+n=n2−n+2n=n(n−1)+2n
= q2 n(n− 1)qn−2

︸ ︷︷ ︸

connu

+2q nqn−1

︸ ︷︷ ︸

connu

�
�

�
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T6 Comparaison avec une intégrale pour l’étude de
∑

n≥p

f (n)

Si f est une fonction décroissante positive, pour prouver la
convergence de

∑

n≥p

f (n) :

1. On fixe un rang k ≥ p, et par décroissance de f :
∀t ∈ [k− 1, k] 0≤ f (k)≤ f (t).

2. Donc par croissance de l’intégrale :

∀k ≥ p 0≤ uk ≤
∫ k

k−1

f (t)dt.

3. Enfin, en sommant les inégalités précédentes de k = p à
k = n (n≥ p étant entier fixé), par relation de Chasles :

∀n≥ p 0≤ Sn ≤
∫ n

p−1

f (t)dt.

4. Si on sait majorer cette dernière intégrale par un réel in-
dépendant de n, cela établit la convergence de la série.

Rem. On peut aussi établir la divergence de la série en mino-
rant les sommes partielles par une intégrale tendant vers +∞
avec n.

� Exemple 9.

Convergence de
∑

k≥1

1
ks

pour s > 1.

t
f
7→

1
t s

k− 1
R

k

1

f (k)

1. Par décroissance sur R?+ de t
f
7→

1
t s

:

∀k ≥ 2 ∀t ∈ [k− 1, k] 0≤
1
ks
≤

1
t s

2. puis par croissance de l’intégrale :

0≤
1
ks
︸︷︷︸

Aire du rectangle R=1× f (k)

≤
∫ k

k−1

dt
t s

3. et enfin par sommation de k = 2 à k = n et par la relation de Chasles :

∀n≥ 2 0≤
n
∑

k=2

1
ks
≤
∫ n

1

dt
t s

. D’où par primitivation :

∀n≥ 2 0≤
n
∑

k=2

1
ks
≤

1
s− 1

�

1−
1

ns−1

�

≤
1

s− 1
.

4. Les sommes partielles de la série sont majorées par 1/(s− 1).
Comme la série est à termes positifs, elle converge.

�
�
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