
CH10 – Diagonalisation des matrices carrées

Plan du chapitreListe des définitions

Liste des techniques de base

Grille d’analyse des exercices

Exercice Question T Référence(s) Commentaires/remarques

1. T0 : technique ancestrale. Pas listée dans les techniques de base.

1



2

2. Déf : pas de technique livrée. Revenir à la définition.

3. C : utilisation d’un résultat de cours (théorème, proposition, etc.)

4. ? Question discriminante et plus difficile : demande raisonnement et enchaînement de techniques.

�
�

�
�

Lycée Chateaubriand, Rennes
Classe de BB

2 2025-2026
MY Patel cbna



3

n= 2 Matrice A de taille 2 x 2 Action de A surM2,1(R) Spectre Sev propres de A

1. A=

�

1 0
0 1

�

A
→ {1} E1 =M2,1(R)

2. A=





1
2

0

0
1
2





A
→

§

1
2

ª

E 1
2
=M2,1(R)

3. A=

�

−1 0
0 2

�

A
→ {−1,2}

E−1 = Vect
�

(1,0)T
�

,
E2 = Vect

�

(0,1)T
�

4. A=

 

1 1
1
2

1
2

!

A
→

§

0,
3
2

ª E0 = Vect
�

(−1, 1)T
�

,
E 3

2
= Vect

�

(2,1)T
�

5. A=

 

1 −2

−
1
2
−1

!

A
→

�

−
p

2,
p

2
	 E−p2 = Vect

�

(1, 1+
p

2
2 )T

�

Ep2 = Vect
�

(1, 1−
p

2
2 )T

�

6. A=









3
2

1
2

1
2

3
2









A
→ {1,2}

E1 = Vect
�

(1,−1)T
�

E2 = Vect
�

(1,1)T
�

7. A=





cos
�2π

7

�

− sin
�2π

7

�

sin
�2π

7

�

cos
�2π

7

�





A
→ ∅

�
�

�
�
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• Prérequis : résolution des systèmes linéaires. Systèmes de Cramer. Rang.

• n≥ 1 est un entier fixé.

• Les colonnes seront notées par des lettres grasses pour vous aider à vous y retrouver.

• Notation. La matrice transposée d’une matrice M est notée MT (la notation tM est désuette).

Bon à savoir

� Théorème 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Propriétés basiques de l’espace vectorielMn,1 (K)]

Soit n ∈ N?. Oon note pour tout entier s j ∈ {1 . . . n} : E j =























0
...
0
1
0
...
0























← ième,

1. La familleBc = (E1, . . . ,En)
est la base canonique de l’espace vectorielMn,1 (K).

2. La dimension deMn,1 (K) est n.

3. La matrice des coordonnées de X surBc est

4. Pour toute matrice A∈Mn(K), Col j = A× E j est la j-ème colonne de A.

� Remarque 1.
Les espaces vectoriels Kn etMn,1 (K) sont canoniquement isomorphes. Pour toute matrice A ∈Mn (K) , l’application
fA : X 7→ AX définit un endomorphisme deMn,1 (K).

1 Éléments propres d’une matrice carrée

A) Noyau d’une matrice

� Définition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Noyau d’une matrice M]
Si M ∈ Mn (K), le noyau de M noté ker M est l’ensemble des colonnes X ∈ Mn,1 (K) solutions du

système linéaire matriciel homogène MX= 0 (ou sous forme réduite : (M |0))

� Remarque 2.�� ��TYP Le noyau d’une matrice est constitué de colonnes.

� Exercice 1.
Donner la description mathématique de l’ensemble ker M .

� Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Structure vectorielle et dimension]
Soit M ∈Mn (K).

1. ker M est un s-ev deMn,1 (K).

2. dimker M + rg(M) = n.

En effet, ker M est l’ensemble des solutions d’un système linéaire homogène d’inconnue X ∈Mn,1 (K) .

� Exercice 2.

Soit A=

 

1
2

1
2

1 1

!

Donner le noyau de A.

�
�

�
�
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T1 Calculer Ker M

En général, on a affaire à des matrices M de petit format (n≤ 4),
1. le calcul du rang de M donne rapidement la dimension d

de ker M (prop.1)
2. On peut chercher ensuite des combinaisons des colonnes

Col j de M nulles. En effet, mettons p.ex que l’on trouve
une combinaison comme : Col3 + 2Col2 − Col1 = 0. Cela
signifie (Thm. 1, point 4).) que ME3+2ME2−ME1 = 0.
Mais d’après le calcul matriciel cette dernière combinaison
est aussi M × (E3 + 2E2 − E1)

︸ ︷︷ ︸

U

. Donc MU= 0

3. On en tire que U est dans ker M .
4. En trouvant d vecteurs libres par ce procédé, on obtient

rapidement une base de Ker M . Sur une copie, on écrit
quelque chose comme : «Comme dim Ker M = d, il suffit
d’en trouver d colonnes linéairement indépendantes pour
obtenir une base de Ker M .»

� Exercice 3.

Trouver une base de ker M ou M =





1 2 3
1 4 5
1 6 7





B) Valeurs propres - vecteurs propres

� Définition 2 . . . . . . . . . . . . . [valeur propre - vecteur propre - spectre d’une matrice carrée]
Soit A∈Mn (K) une matrice carrée.

1. On appelle valeur propre de A tout scalaire λ pour lequel la matrice A−λIn n’est pas inversible.

2. Toute solution non nulle du système linéaire homogène (A−λIn|0) s’appelle vecteur propre de A
associé à la valeur propre λ.

3. Le spectre de A est l’ensemble de ses valeurs propres. Il est noté σ(A), ou sp(A), ou encore spec(A).

� Remarque 3.
Par définition de système de Cramer, λ ∈ σ(A) si et seulement existe une solution X non nulle au système linéaire de
forme réduite (A−λIn|0)

� Définition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Sous-espace propre associé à une valeur propre]
Si A∈Mn (K), et λ ∈ σ(A), le sous-espace vectoriel deMn,1 (K) défini par : Eλ = ker (A−λIn) s’appelle
sous-espace propre de A associé à la valeur propre λ.

� Remarque 4.

1. Le sous-espace propre de A associé à la valeur propre λ est donc constitué de tous les vecteurs propres de A
associés à la valeur propre λ.

2. Si on trouve une colonne X non nulle telle que AX = λX, alors on peut affirmer que λ est valeur propre de
A, et que X est un vecteur propre associé. Cas classique : sur chaque ligne de A, la somme des coefficients est
toujours la même, mettons s. Alors s est une valeur propre de A et X= (1 . . . 1)T est vecteur propre associé.

� Exemple 1.

Trouver une valeur propre de M =
�

2 2
3 1

�

�
�

�
�
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� Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Structure vectorielle des sous-espaces propres]

1. Eλ est un s-ev deMn,1 (K) de dimension au moins 1

2. X ∈Mn,1 (K) est dans Eλ si et seulement si AX= λX.

T2 Prouver que X est vecteur propre de A

1. On s’assure que X 6= 0.

2. On calcule AX.

3. Si cette dernière colonne est proportionnelle à X, cela per-
met de conclure, et on obtient si on ne le savait pas déjà
que le coefficient de proportionnalité entre AX et X est
une valeur propre de A.

C) Détermination du spectre

� Théorème 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Obtention du spectre]
Soit A∈Mn (K), et pour tout scalaire λ, notons Aλ = A−λIn . Alors :

1. λ est une valeur propre de A si et seulement si rang(Aλ)< n.

2. Si n = 2, les valeurs propres de A sont les racines du trinôme λ 7→ P(λ) = det(Aλ). En particulier
A possède au plus deux valeurs propres distinctes.

3. Les valeurs propres d’une matrice triangulaire sont ses coefficients diagonaux.

� Exercice 4.

1. Calculer les valeurs propres de A=
�

1 −1
2 4

�

2. Même question avec A=





1 0 0
6 2 0
5 4 0





� Corollaire 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Spectre de la transposée]
A et AT ont les mêmes valeurs propres.

� Exemple 2.

A=

�

2 3
2 1

�

La somme des coeffs de chaque colonne de A fait 4. Ceci se traduit par ATY = 4Y où

Y =

�

1
1

�

. Ainsi, 4 est vp. de AT. Par Cor.1, 4 est aussi vp de A.

�
�

�
�
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2 Étude des sous-espaces propres

A) Propriétés immédiates

� Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[Propriétés des sev propres Eλ]
Soit A∈Mn (K) et λ ∈ σ(A). Alors

1. Eλ est un sev de dimension au moins 1, et si λ 6∈ σ(A), alors Eλ = {0} .

2.
a) AX= λX ⇔ X ∈ Eλ (X : colonne !)

b)

�

AX= λX
X 6= 0

⇔ X est vecteur propre de A pour la valeur propre λ

3. Le noyau de A est E0, et donc A n’est pas inversible si et seulement si 0 ∈ σ(A).
4. ? ? ? rg (A−λIn) + dim(Eλ) = n. En particulier, dim Eλ vaut le nombre de variables libres du

système linéaire homogène de forme réduite (A−λIn|0)
5. X ∈ Eλ⇒∀k ∈ N AkX= λkX. En particulier : X ∈ Eλ⇒ AX ∈ Eλ

B) Valeurs propres et indépendance linéaire

� Corollaire 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Intersection des sous-espaces propres]
Deux sous-espaces propres associés à des valeurs propres distinctes n’ont que le vecteur nul comme
vecteur en commun.

� Corollaire 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Sert dans tous les exercices]
En juxtaposant des bases (ou simplement des familles libres) de sous-espaces propres deux à deux
distincts d’une matrice, on obtient encore une famille de colonnes libre.

� Corollaire 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Somme des dimensions]
La somme des dimensions des sous-espaces propres d’une matrice n× n ne peut dépasser n.

� Remarque 5.
en effet, les bases d’un sev sont les familles libres de ce sev de plus grand cardinal.

� Corollaire 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Nombre maximal de vp distinctes]
Si A∈Mn (K), alors A possède au plus n valeurs propres distinctes.

3 Diagonalisation des matrices carrées

A) Rappel sur les matrices semblables

� Définition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Matrices semblables]
Soit A et P deux matrices carrées deMn (K) (n ≥ 1). On dit que A et B sont semblables si il existe une

matrice P deMn (K) inversible telle que P−1AP = B.

� Remarque 6.
Il n’est pas spécilement facile de prouver que deux matrices données sont semblables en général, car la propriété «
être semblable à» est existentielle.

� Exercice 5.
Soit n ∈ N?, et α ∈ K. Trouver toutes les matrices semblables à αIn.�
�

�
�
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B) Matrice diagonalisable

� Définition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Diagonalisabilité]

A∈Mn (K) est diagonalisable si elle est semblable à une matrice diagonale :

∃P ∈Mn (K) inversible t.q P−1AP est diagonale.

� Exemple 3.
Toute matrice diagonale D est diagonalisable. En effet, en prenant P = In, qui est inversible, on a : P−1DP = D : D
est semblable à elle-même, qui est diagonale.

� Remarque 7.
Une matrice A ne possédant qu’une seule valeur propre λ est diagonalisable si et seulement si A est semblable à λIn.
Or d’après l’exercice 5, la seule matrice semblable à λIn est λIn. D’où : A est diagonalisable à une seule valeur propre
ssi A est diagonale.

C) Critères de diagonalisabilité

� Théorème 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Condition nécessaire et suffisante de la diagonalisabilité]

Soit A une matrice deMn (K). Sont équivalents :

1. A est diagonalisbale.

2. La somme des dimensions des sev propres de A vaut au moins n.

3. La somme des dimensions des sev propres de A vaut n.

� Corollaire 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Condition suffisante de diagonalisabilité]
SiA∈Mn (K) admet exactement n valeurs propres distinctes alors :

1. A est diagonalisable.

2. Les sous-espaces propres de A sont de dimension 1.

� Remarque 8.
Dans tous les cas, on obtient une matrice P inversible diagonalisant A en juxtaposant des bases de chaque s-ev propre
de A.

� Théorème 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[Théorème spectral]
Si A∈Mn (R) est symétrique réelle (c-à-d AT = A) alors :

1. A est diagonalisable.

2. Les sous-espaces propres de A sont deux à deux orthogonaux.

� Remarque 9.
1. En juxtaposant des bases orthonormées de chaque sous-espace propre, on obtient une matrice P? diagona-

lisant A. La matrice P? vérifie donc dans ce cas particulier :
§

P−1
? = PT

?

P−1
? AP? est diagonale

2. A Attention, même si A est symétrique, la matrice P obtenue par juxtaposition de bases de chaque sous-espace
propre ne vérifie pas P−1 = PT. Pour cela, il faut s’assurer que l’on a choisi dans chaque sous-espace propre
des bases orthonormées.

� Exercice 6.

Diagonaliser si c’est possible A=





−5 6 4
−4 5 4
2 −2 −3





�
�

�
�
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T3 Calculer le rang d’une matrice 3× 3

Si M ∈M3 (K), et si on a par pivot partiel :

M ∼





α ∗ ∗
0 B
0



 ,

alors rg(M) = rg((α)) + rg(B). Or, le rang de la matrice (α)
est 1 ssi α 6= 0 (et 0 sinon), tandis que le rang de B est 2 ssi
son déterminant est non nul (puisque B est de taille 2× 2). En
particulier, si α 6= 0, rg(M)< 3 ssi det B = 0.

T4 Comment diagonaliser une matrice A∈Mn (K) ?

1. On commence calculer le spectre de A., c-à-d. par recher-
cher les valeurs propres de A. Il y en a qui sont évidentes
parfois. Notamment :
— Si rg(A)< n, 0 est valeur propre de A. (prop. 3,3.).
— Si la somme des coefficients des lignes (ou des co-

lonnes) de A sont toutes égales, cette somme est
une valeur propre en introduisant la colonne U =
(1 . . . 1)T.

— Si l’énoncé nous en a fait calculer ou suggérer, il
n’est peut-être pas nécessaire de se lancer dans le
déploiment complet de la méthode (par exemple une
colonne X introduite dans l’énoncé est peut-être un
vecteur propre. En calculant AX, on peut obtenir une
valeur propre, et X est un vecteur propre associé !).

2. a) Si on a remarqué que A est symétrique réelle, on
peut affirmer qu’elle est diagonalisable.

b) Si A possède n valeurs propres distinctes, alors on
peut affirmer que A est diagonalisable (Cor. 6) et
même que les sev propres sont tous de dimension 1.

c) Si la somme des dimensions des sev-propres est ≥ n,
diagonalisable. Exemple : A est une matrice 3 × 3.
On détecté deux valeurs propres α, β , et A−β I3 est
de rang 1.

d) Si la somme des dimensions des sev-propres est < n,
on peut affirmer que A n’est pas diagonalisable.

3. Si A est diagonalisable, pour chaque valeur propre λ de
A : On calcule une base Bλ du sev propre Eλ associé en
remontrant le système (A−λIn|0), ou avec T1 qu’on peut
même appliquer sur A−λIn échelonnée si on n’a pas
modifié l’ordre des colonnes durant le pivot.

4. En juxtaposant les Bλ dans une matrice P, on obtient une
matrice inversible telle que P−1AP est diagonale (il est
inutile de calculer P−1, ni de calculer le produit P−1AP ).
La diagonale est remplie avec les λ dans le même ordre
que celui dans lequel les bases Bλ on été juxtaposées.
Chaque λ est répété sur la diagonale dim Eλ fois.

�
�

�
�
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4 Applications de la diagonalisation

A) Méthode générale

T5 Établir un résultat pour une matrice diagonalisable

Si on cherche à établir un résultat (R) relatif à une matrice A
donnée :

1. On établit d’abord le résultat (R) pour une matrice D
diagonale quelconque au lieu de A.

2. On diagonalise A en une matrice D à travers une matrice
P. Ou alors, si les calculs ne sont pas demandés, on se
contente de prouver que A est diagonalisable.

3. On déduit ensuite le résultat (R) pour la matrice A en
passant par D grâce à la relation A= PDP−1

Cette technique est appliquée dans les 4 applications qui suivent.

� Exemple 4.

La matrice A=
�

3 −2
4 −3

�

est diagonalisable par P =
�

1 1
1 2

�

, et P−1AP = D, où D =
�

1 0
0 −1

�

B) Application 1 : calcul des puissances d’une matrice

� Exemple 5.
À savoir faire. Calcul de Am où m ∈ N.

1. On calcule d’abord Dm pour toute matrice D diagonale (ce qui est facile).

2. On diagonalise A à travers P, de sorte que D = P−1AP est diagonale.

3. On montre par récurrence que Dm = P−1AmP.

4. On revient au problème initial par : Am = PDmP−1.

� Exercice 7.
Calculer An pour tout entier n, où A est la matrice l’exemple 4.

C) Application 2 : Résolution de systèmes différentiels linéaires à coefficients constants

Même principe pour un système différentiel :

dX
dt
= AX X(t) ∈Mn,1 (K) .

1. On résout d’abord Y′ = DY (inconnue : Y), où D est diagonale. Ce qui est facile.

2. On diagonalise A qui est alors semblable à D qui est une matrice diagonale.

3. On revient au problème initial en sandwichant par P, P−1 convenablement : la dernière équation
équivaut à PY′ = PDP−1PY, et après avoir vérifié que PY′ = (PY)′, les solutions sont les X= PY, où
Y sont les solutions du problème 1.. Noter que le calcul de P−1 n’est jamais utile ici !

� Exercice 8.
Trouver les fonction t 7→ x(t) et t 7→ y(t) définies sur R telles que :

§

x ′ = 3x − 2y
y ′ = 4x − 3y

�
�

�
�
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D) Application 3 : recherche des matrices commutant avec une matrice donnée

� Exercice 9.
Trouver toutes les matrices qui commutent avec la matrice A de l’exemple 4.

� Exemple 6.

Soit A∈Mn (K). Si on cherche les matrices carrées M telles que AM = MA :

1. On résout à la main par calcul N D = DN (inconnue : N) pour une matrice diagonale D.

2. On cherche (si possible) une matrice P inversible telle que D = P−1AP est diagonale.

3. On revient au problème initial en sandwichant par P, P−1 convenablement :

DN = N D ⇔ PDP−1PN P−1 = PN P−1PDP−1

⇔ AM = MA où M = PN P−1.

Les solutions de AM = MA sont donc les matrices M = PN P−1 où N sont les solutions du problème
1..

E) Application 4 : Désentrelacement de suites linéairement couplées

� Exercice 10.
Calculer explicitement les termes généraux des suites (un) et (vn) définies par :

∀n ∈ N
§

un+1 = 3un − 2vn
vn+1 = 4un − 3vn

�
�

�
�
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