CH10 - Diagonalisation des matrices carrées

Pisee e senilions

Liste des techniques de base

Grille d’analyse des exercices

Exercice | Question 9 Référence(s) | Commentaires/remarques

1. T, : technique ancestrale. Pas listée dans les techniques de base.



2. Déf : pas de technique livrée. Revenir a la définition.
3. C: utilisation d’un résultat de cours (théoréme, proposition, etc.)

4. Question discriminante et plus difficile : demande raisonnement et enchainement de techniques.
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n=2 Matrice Ade taille2x2 | Actionde Asur.#,;(R) Spectre Sev propres de A
1 0
1. A= (O 1) (1} 8 = ./ﬂz,l(R)
1
2. A= ((2) 1) {5} &1 = Mo, (R)
2
(710 B &, =Vect((1,0)7),
3. A= ( O 2) { 1,2} gz :Vect((o’ 1)—|—)
1 1 k s 4 3 &, = Vect ((_1, 1)T) ,
«o(iy | ) | e mwaein
1 =2 _ 1+4/25T
5. A= 1 {_‘/z’ 1/5} g_ﬁ = Vect ((1, ‘/2_ ) )
2 1 &= Vect((l, %)T)
s 1
22 & =Vect((1,—1)7)
6. A=l {1,2} &, = Veet ((1.1)7)
2 2
cos(27”) —sm(
7. @

:
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Prérequis : résolution des systémes linéaires. Systémes de Cramer. Rang.

n > 1 est un entier fixé.

Les colonnes seront notées par des lettres grasses pour vous aider a vous y retrouver.

Notation. La matrice transposée d’une matrice M est notée M T (la notation 'M est désuette).

Bon a savoir

BThéoreme1 ......................ciiiiiiiiinn [Propriétés basiques de Uespace vectoriel 4, ; (K)]
(%)
0
Soit n € N*. Oon note pour tout entier sj € {1...n} : E; = 1 | « i,
0

1. La famille 8B, = (E4,...,E,)
est la base canonique de I'espace vectoriel ., ; (K).

2. La dimension de ., ; (K) est n.

3. La matrice des coordonnées de X sur %, est

4. Pour toute matrice A € .#,(K), Col; =A x E; est la j-éme colonne de A.

B Remarque 1.
Les espaces vectoriels K" et ./, ; (K) sont canoniquement isomorphes. Pour toute matrice A € ./, (K), I'application
fa : X — AX définit un endomorphisme de ./, ; (K).

1 Eléments propres d’une matrice carrée

A) Noyau d’'une matrice

BDéfinition 1 ... . ... .. [Noyau d’une matrice M]
Si M € #,(K), le noyau de M noté ker M est 'ensemble des colonnes X € .#, ; (K) solutions du
systéme linéaire matriciel homogeéne MX = 0 (ou sous forme réduite : (M|0))

B Remarque 2.
Le noyau d’'une matrice est constitué de colonnes.

m Exercice 1.
Donner la description mathématique de 'ensemble ker M.

EmProposition1 ........ ... . ...l [Structure vectorielle et dimension]
Soit M € ., (K).

1. ker M est un s-ev de ./, ; (K).
2. dimkerM +rg(M) =n.

En effet, ker M est 'ensemble des solutions d’un systeme linéaire homogene d’inconnue X € .#,, ; (K).

Hm Exercice 2.
1 1

SoitA=| 2 2 | Donner le noyau de A.
1 1
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m Calculer Ker M

En général, on a affaire a des matrices M de petit format (n < 4),

1. le calcul du rang de M donne rapidement la dimension d
de ker M (prop.1)

2. On peut chercher ensuite des combinaisons des colonnes
Col; de M nulles. En effet, mettons p.ex que I'on trouve
une combinaison comme : Col; + 2Col, —Col; = 0. Cela
signifie (Thm. 1, point 4).) que ME; +2ME,—ME; = 0.
Mais d'apres le calcul matriciel cette derniere combinaison
est aussi M x (Eg + 2E, —E;). Donc MU=0

| —

U
3. On en tire que U est dans ker M.

4. En trouvant d vecteurs libres par ce procédé, on obtient
rapidement une base de Ker M. Sur une copie, on écrit
quelque chose comme : «Comme dim Ker M = d, il suffit
d’en trouver d colonnes linéairement indépendantes pour
obtenir une base de Ker M .»

H Exercice 3.

Trouver une base de ker M ou M =

_
(o)W N \V)
N O W

B) Valeurs propres - vecteurs propres

H Définition2 ............. [valeur propre - vecteur propre - spectre d’une matrice carréel]
Soit A € ,, (K) une matrice carrée.

1. On appelle valeur propre de A tout scalaire A pour lequel la matrice A— AI,, n’est pas inversible.

2. Toute solution non nulle du systéme linéaire homogene (A— AI,|0) s’appelle vecteur propre de A
associé a la valeur propre A.

3. Le spectre de A est ’ensemble de ses valeurs propres. Il est noté o (A), ou sp(A), ou encore spec(A).

H Remarque 3.
Par définition de systeme de Cramer, A € o (A) si et seulement existe une solution X non nulle au systéme linéaire de
forme réduite (A— AI,,|0)

H Définition3 ............................. [Sous-espace propre associé a une valeur propre]
SiAe 4, (K), et A € (A), le sous-espace vectoriel de ./, ; (K) défini par : &, = ker (A— AI,) s'appelle
sous-espace propre de A associé a la valeur propre A.

B Remarque 4.

1. Le sous-espace propre de A associé a la valeur propre A est donc constitué de tous les vecteurs propres de A
associés a la valeur propre A.

2. Si on trouve une colonne X non nulle telle que AX = AX, alors on peut affirmer que A est valeur propre de
A, et que X est un vecteur propre associé. Cas classique : sur chaque ligne de A, la somme des coefficients est
toujours la méme, mettons s. Alors s est une valeur propre de Aet X =(1...1)" est vecteur propre associé.

H Exemple 1.

2 2
Trouver une valeur propre de M = (3 1)
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H Proposition2 ............................ [Structure vectorielle des sous-espaces propres]

1. &) estuns-ev de .4, ; (K) de dimension au moins 1
2. X € M, (K) est dans &, si et seulement si AX = AX.

@ Prouver que X est vecteur propre de A

1. On s’assure que X # 0.
2. On calcule AX.

3. Si cette derniére colonne est proportionnelle a X, cela per-
met de conclure, et on obtient si on ne le savait pas déja
que le coefficient de proportionnalité entre AX et X est
une valeur propre de A.

C) Détermination du spectre

BThEOreme 2 ... .. ... e e e [Obtention du spectre]
Soit A € ., (K), et pour tout scalaire A, notons Ay =A— Al . Alors :

1. A est une valeur propre de A si et seulement si rang(A,) < n.

2. Sin =2, les valeurs propres de A sont les racines du trindme A — P(A) = det(4; ). En particulier
A possede au plus deux valeurs propres distinctes.

3. Les valeurs propres d’'une matrice triangulaire sont ses coefficients diagonaux.

H Exercice 4.

1. Calculer les valeurs propres de A = (1 _1)

2 4
1 0 O
2. Méme question avecA=|6 2 0
5 4 0
BCorollaire 1 ... ... e [Spectre de la transposée]

Aet AT ont les mémes valeurs propres.

H Exemple 2.

2 3
A= (2 1) La somme des coeffs de chaque colonne de A fait 4. Ceci se traduit par ATY = 4Y ou

1
Y = (1) Ainsi, 4 est vp. de AT. Par Cor. 1, 4 est aussi vp de A.
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2 Etude des sous-espaces propres
A) Propriétés immédiates
BProposition3 ........ ... ... .. [Propriétés des sev propres &,]

SoitAe A, (K) et A € o(A). Alors

1. &, est un sev de dimension au moins 1, et si A & o(A), alors &, = {0}.
a) AX = 2AX & Xe & (X:colonne!)

2. AX = AX
b) { X #£0

3. Le noyau de A est &, et donc A n’est pas inversible si et seulement si 0 € o (A).

& X est vecteur propre de A pour la valeur propre A

4, xx* rg (A— AI,) + dim(&,) = n. En particulier, dim &, vaut le nombre de variables libres du
systeme linéaire homogéne de forme réduite (A— AI,,|0)

5. X &, = VYkeN AX = AKX, En particulier : X € & = AX € &,

B) Valeurs propres et indépendance linéaire

BMCorollaire 2 ....... ... .. [Intersection des sous-espaces propres]
Deux sous-espaces propres associés a des valeurs propres distinctes n’ont que le vecteur nul comme
vecteur en commun.

MCorollaire 3 .......... .. [Sert dans tous les exercices]
En juxtaposant des bases (ou simplement des familles libres) de sous-espaces propres deux a deux
distincts d’'une matrice, on obtient encore une famille de colonnes libre.

BCorollaire 4 ....... ... ... .. e [Somme des dimensions ]
La somme des dimensions des sous-espaces propres d’'une matrice n x n ne peut dépasser n.

B Remarque 5.
en effet, les bases d’'un sev sont les familles libres de ce sev de plus grand cardinal.

HBCorollaire 5 ............... . [Nombre maximal de vp distinctes]
SiAe ., (K), alors A possede au plus n valeurs propres distinctes.

3 Diagonalisation des matrices carrées

A) Rappel sur les matrices semblables

BDéfinition 4 ... ... .. [Matrices semblables]
Soit A et P deux matrices carrées de ., (K) (n = 1). On dit que A et B sont semblables si il existe une
matrice P de .#, (K) inversible telle que P~ AP = B.

B Remarque 6.

Il n’est pas spécilement facile de prouver que deux matrices données sont semblables en général, car la propriété «
étre semblable a» est existentielle.

H Exercice 5.
Soit n € N*, et a € K. Trouver toutes les matrices semblables a al,.
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B) Matrice diagonalisable

BDéfinition S ... ... .. [Diagonalisabilité]

A e M, (K) est diagonalisable si elle est semblable a une matrice diagonale :

3P € ., (K) inversible t.q P~AP est diagonale.

H Exemple 3.
Toute matrice diagonale D est diagonalisable. En effet, en prenant P = I,,, qui est inversible, ona : P"'\DP =D : D
est semblable a elle-méme, qui est diagonale.

B Remarque 7.
Une matrice A ne possédant qu'une seule valeur propre A est diagonalisable si et seulement si A est semblable a AI,,.
Or d’apres I'exercice 5, la seule matrice semblable a AI,, est AI,,. D’ou : A est diagonalisable a une seule valeur propre
ssi A est diagonale.

og 7~

C) Criteres de diagonalisabilité

M Théoreme3 ............................. [Condition nécessaire et suffisante de la diagonalisabilité]

Soit A une matrice de ., (K). Sont équivalents :
1. A est diagonalisbale.
2. La somme des dimensions des sev propres de A vaut au moins n.

3. La somme des dimensions des sev propres de A vaut n.

HCorollaire6 ........................ [Condition suffisante de diagonalisabilité ]
SiA € #,, (K) admet exactement n valeurs propres distinctes alors :

1. Aest diagonalisable.

2. Les sous-espaces propres de A sont de dimension 1.

H Remarque 8.
Dans tous les cas, on obtient une matrice P inversible diagonalisant A en juxtaposant des bases de chaque s-ev propre
de A.

BMThEOreme 4 ... i e [Théoréme spectral]
Si Ae A, (R) est symétrique réelle (c-a-d AT = A) alors :

1. Aest diagonalisable.

2. Les sous-espaces propres de A sont deux a deux orthogonaux.

H Remarque 9.

1. En juxtaposant des bases orthonormées de chaque sous-espace propre, on obtient une matrice P, diagona-
lisant A. La matrice P, vérifie donc dans ce cas particulier :

{ pt = pf

*

P7lAP, est diagonale

2. Z Attention, méme si A est symétrique, la matrice P obtenue par juxtaposition de bases de chaque sous-espace
propre ne vérifie pas P~! = P'. Pour cela, il faut s’assurer que 'on a choisi dans chaque sous-espace propre
des bases orthonormées.

H Exercice 6.

-5 6 4
Diagonaliser si c’est possible A=|—4 5 4
2 -2 =3
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@ Calculer le rang d’'une matrice 3 x 3

Si M € 5 (K), et si on a par pivot partiel :

k%

M ~ B ,

O O|R

alors rg(M) = rg((a)) + rg(B). Or, le rang de la matrice (a)
est 1 ssi a # 0 (et O sinon), tandis que le rang de B est 2 ssi
son déterminant est non nul (puisque B est de taille 2 x 2). En
particulier, si a # 0, rg(M)< 3 ssi det B=0.

@ Comment diagonaliser une matrice A€ ./, (K)?

1. On commence calculer le spectre de A., c-a-d. par recher-
cher les valeurs propres de A. Il y en a qui sont évidentes
parfois. Notamment :

— Sirg(A) < n, 0 est valeur propre de A. (prop. 3,3.).

— Si la somme des coefficients des lignes (ou des co-

b)

d)

lonnes) de A sont toutes égales, cette somme est
une valeur propre en introduisant la colonne U =

(1...1)".

Si I'énoncé nous en a fait calculer ou suggérer, il
n'est peut-étre pas nécessaire de se lancer dans le
déploiment complet de la méthode (par exemple une
colonne X introduite dans I'énoncé est peut-étre un
vecteur propre. En calculant AX, on peut obtenir une
valeur propre, et X est un vecteur propre associé!).

Si on a remarqué que A est symétrique réelle, on
peut affirmer qu'elle est diagonalisable.

Si A posséde n valeurs propres distinctes, alors on
peut affirmer que A est diagonalisable (Cor. 6) et
méme que les sev propres sont tous de dimension 1.

Si la somme des dimensions des sev-propres est > n,
diagonalisable. Exemple : A est une matrice 3 x 3.
On détecté deux valeurs propres a, f3, et A— 15 est
de rang 1.

Si la somme des dimensions des sev-propres est < n,
on peut affirmer que A n'est pas diagonalisable.

3. Si A est diagonalisable, pour chaque valeur propre A de
A : On calcule une base %, du sev propre &, associé en
remontrant le systéme (A—AI,|0), ou avec T1 qu’on peut
méme appliquer sur A—AI, échelonnée si on n’a pas
modifié I'ordre des colonnes durant le pivot.

4. En juxtaposant les 9, dans une matrice P, on obtient une
matrice inversible telle que P~'AP est diagonale (il est
inutile de calculer P71, ni de calculer le produit PlAP ).
La diagonale est remplie avec les A dans le méme ordre
que celui dans lequel les bases 9B, on été juxtaposées.
Chaque A est répété sur la diagonale dim &, fois.
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4 Applications de la diagonalisation

A) Méthode générale

@ Etablir un résultat pour une matrice diagonalisable

Si on cherche & établir un résultat (R) relatif 3 une matrice A
donnée :
1. On établit d'abord le résultat (R) pour une matrice D
diagonale quelconque au lieu de A.

2. On diagonalise A en une matrice D a travers une matrice
P. Ou alors, si les calculs ne sont pas demandés, on se
contente de prouver que A est diagonalisable.

3. On déduit ensuite le résultat (R) pour la matrice A en
passant par D grace a la relation A= PDP™!

Cette technique est appliquée dans les 4 applications qui suivent.

1 A .. (1 0
),etP AP—D,ouD—(O _1)

H Exemple 4.

. 3
La matrice A= (

4 :g) est diagonalisable par P = (1

1 2

B) Application 1: calcul des puissances d’une matrice

H Exemple 5.
A savoir faire. Calcul de A™ ot m € N.

1. On calcule d’abord D™ pour toute matrice D diagonale (ce qui est facile).
2. On diagonalise A a travers P, de sorte que D = P~'AP est diagonale.
3. On montre par récurrence que D™ = P~1A™P.

4. On revient au probléme initial par : A™ = PD™P~L,

m Exercice 7.
Calculer A" pour tout entier n, ou A est la matrice 'exemple 4.

C) Application 2: Résolution de systemes différentiels linéaires a coefficients constants
Méme principe pour un systéme différentiel :

dx
T =K X(0) €ty (K).

1. On résout d’abord Y/ = DY (inconnue : Y), ol D est diagonale. Ce qui est facile.

2. On diagonalise A qui est alors semblable a D qui est une matrice diagonale.

3. On revient au probléme initial en sandwichant par B,P~! convenablement : la derniére équation
équivaut & PY' = PDP~!PY, et apres avoir vérifié que PY' = (PY)/, les solutions sont les X = PY, ol
Y sont les solutions du probléme 1.. Noter que le calcul de P! n’est jamais utile ici!

Hm Exercice 8.
Trouver les fonction t — x(t) et t — y(t) définies sur R telles que :

{x’ = 3x—2y
/

y' = 4x-—-3y
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D) Application 3 : recherche des matrices commutant avec une matrice donnée

Hm Exercice 9.
Trouver toutes les matrices qui commutent avec la matrice A de 'exemple 4.

H Exemple 6.
Soit A € ., (K). Si on cherche les matrices carrées M telles que AM = MA :
1. On résout a la main par calcul ND = DN (inconnue : N) pour une matrice diagonale D.
2. On cherche (si possible) une matrice P inversible telle que D = P'AP est diagonale.

3. On revient au probléme initial en sandwichant par B,P~! convenablement :

DN =ND << PDP 'PNP~'=pNP'PDP!
& AM=MA ouM =PNP L.

Les solutions de AM = MA sont donc les matrices M = PNP™! ol N sont les solutions du probléme
1..

E) Application 4 : Désentrelacement de suites linéairement couplées

m Exercice 10.
Calculer explicitement les termes généraux des suites (u,) et (v,) définies par :

Uy = 3u,—2v,
VnEN{ Vny1 = 4un_3vn
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