
CH11 – Variables aléatoires discrètes
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Grille d’analyse des exercices

Exercice Question T Référence(s) Commentaires/remarques

1. T0 : technique ancestrale. Pas listée dans les techniques de base.

2. Déf : pas de technique livrée. Revenir à la définition.

3. C : utilisation d’un résultat de cours (théorème, proposition, etc.)

4. ? Question discriminante et plus difficile : demande raisonnement et enchaînement de techniques.

�
�

�
�
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1 Variable aléatoire discrète

A) Notions de base

� Remarque 1.
Les variables aléatoires finies (1ère année) sont un cas particulier de variables aléatoires discrètes.

� Définition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[V.A.R. discrète]
Toute variable aléatoire X telle que X (Ω) est au plus dénombrable.

� Remarque 2.
On peut donc indexer les éléments de X (Ω) sur un ensemble d’entiers :

X (Ω) = {x1, x2, . . . , xn, . . . n ∈ I} où I est une partie finie ou infinie de N.

� Exemple 1.

1. Les VAR définies sur un EPF sont des VAR discrètes (cf. Cours de première année.)

2. Si X est la VAR définie pour k ∈ N? par : P
�

X =
1
k

�

=
6
π2k2

, X est une VAR discrète (ici xn = 1/n, et n ∈ I = N?).

3. Les variables à densité ne sont pas des VAR discrètes.

� Théorème 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [S.Q.C.E associé à une V.A.R. discrète]
Si X est une VAR discrète et X (Ω) = {xn}n∈I , a alors les évènements [X = xn] pour n décrivant I forment
un SQCE appelé système quasi-complet d’évènements associé à X .

a. Souvent I = N, ou I = N? ou encore I = N \ {0,1, 2}, et xn = n.

� Définition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[Loi d’une var discrète]
Si X est une VAR discrète d’espace image X (Ω) = {xn}n∈I , la fonction définie sur X (Ω) par p(xk) =

P(X = xk) est une fonction de masse induisant une mesure de probabilité sur X (Ω) appelée loi de la
variable X .

� Exemple 2.
À quelle condition sur α on définit une variable aléatoire X sur Ω= N? en posant P(X = k) =

α

k(k+ 1)
pour k ∈ N? ?

2 Fonction de répartition d’une variable aléatoire discrète

� Remarque 3.
Les propriétés universelles des fonctions de répartition sont vérifiées À savoir : positivité, croissance, limites en ±∞.

A) Propriétés

� Proposition 1 . . . . . . . . . . . . . . . . . [Propriétés des fonctions de répartition de VAR discrètes]
Notons X (Ω) = {xn}n∈I . Pour tout réel t :

1. FX (t) =
∑

n∈I
xn≤t

P(X = xn).

2. En particulier, si X (Ω) = N :

a) FX (t) =
btc
∑

k=0

P(X = k).

b) Pour k > 0 :
P(X = k) = FX (k)− FX (k− 1). �

�
�
�
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� Remarque 4.
De façon générale, si on peut ordonner en une suite strictement croissante les éléments de X (Ω) = x1 < x2 < · · ·< xn . . .,
il est vrai que P(X = xk) = FX (xk)− FX (xk−1) en convenant que F(x0) = 0.

B) Obtention de la loi par la fonction de répartition

� Théorème 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[La fonction de répartition contient la loi]
La loi de X est déterminée par FX . En particulier, si deux variables ont même fonction de répartition,
elles ont même loi.
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L’amplitude de la discontinuité de FX au point xk vaut P(X = xk).

T1 Quand calculer FY pour obtenir la loi de Y ?

1. Typiquement pour calculer loi d’un maximum, c’est-à-dire,
si Y =max (X1, X2). En effet, on part de :

∀t ∈ R [max (X1, X2)≤ t] = [X1 ≤ t]∩ [X2 ≤ t].

Ce qui permet de calculer FY (t) en passant aux probas.
Souvent X1, X2 sont indépendantes, ce qui permet de sim-
plifier le calcul..

2. Ensuite on obtient la loi de X par prop. 2

3. Dans le cas d’un mininum, on utilise plutôt la fonction de
survie SY : t 7→ P(Y > t) = 1− FY (t), et on part de :

∀t ∈ R [min (X1, X2)> t] = [X1 > t]∩ [X2 > t].

4. Le raisonnement et le calcul sont identiques pour un maxi-
mum (ou minimum) d’un nombre fini n de variables aléa-
toires, puisque si t ∈ R :

[max (X1, X2, . . . , Xn)≤ t] = [X1 ≤ t]∩[X2 ≤ t]∩· · ·∩[Xn ≤ t].

.�
�

�
�
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T2 Comment calculer la loi d’une VAR Y donnée ?

1. Essayer de reconnaître une loi usuelle (cf.T4, par exemple).
2. On peut essayer de relier Y à une VAR X qui suit une loi

usuelle. Il faut alors être soigneux sur la détermination de
l’espace image de Y en fonction de celui de X .
3a. Déterminer l’espace image Y (Ω)

— On justifie que les valeurs extrêmes de Y sont
observables (c’est assez facile).

— On ajoute que les cas intermédiaires sont pos-
sibles.

3b. On calcule P(Y = k) pour k ∈ Y (Ω) avec T7. CH9

3 Lois usuelles de première année

A) Rappels terminologiques

� Définition 3 . . . . . . . . . . . . . . . . . . . . . . . . .[Épreuve de Bernoulli - succès - paramètre de succès]
Expérience aléatoire à l’issue de laquelle il n’y a que deux observations possibles. L’une de ces observa-
tions (privilégiée dans le contexte de l’expérience) s’appelle succès. La probabilité d’observer le succès
s’appelle paramètre de succès de l’épreuve.

� Définition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Schéma de Bernoulli - paramètres du schéma]
Répétitions (finies ou infinies) mutuellement indépendantes d’une même épreuve de Bernoulli p. Si les

répétitions sont en nombre fini N , le couple (N , p) s’appelle paramètres du schéma.

B) Lois usuelles de première année

Données. Une urne U contient n≥ 1 boules numérotées de 1 à n est indistingables au toucher, et une
proportion p de ces boules est blanche, et on pose q = 1− p.

Expérience Mesure Loi de X X (Ω) = P(X = k) = E(X ) V (X )
(k ∈ Ω)

1. On tire λ boules
au hasard succes-
sivement avec re-
mise

X compte le
nombre de boules
tirées

X  C (λ) {λ} P(X = λ) = 1 λ 0

2. On tire 1 une
boule au hasard

X vaut 0 si la cou-
leur observée est

X  B(p) {0,1} P(X = 0) = p p pq

noire, 1 sinon P(X = 1) = q

3. On tire 1 boule
au hasard

X mesure le nu-
méro de la boule
tirée

X  U (n) {1 . . . n} P (X = k) =
1
n

n+ 1
2

n2 − 1
12

4. On tire succes-
sivement avec re-
mise N boules

X mesure le
nombre de boules
blanches tirées

X  B (N , p) {0 . . . N} P (X = k) =
�n

k

�

pkqN−k
N p N pq

�
�

�
�
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4 Loi géométrique sur N?

A) Définition

� Définition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Loi géométrique GN?(p)]
On dit que X suit une loi géométrique (sur N?) de paramètre p ∈]0, 1[ si :

1. X (Ω) ⊂ N?.

2. ∀k ∈ N? P(X = k) = pqk−1 (où q = 1− p).

Dans ce cas on note X   GN?(p)

� Remarque 5.

1. La loi géométrique est la loi du nombre d’essais effectués pour obtenir le premier succès lors de répétitions
mutuellement indépendantes d’une même épreuve de Bernoulli de paramètre p.

2. Si X   GN?(p), la variable Y = X − 1 qui compte donc le nombre d’échecs avant le premier succès. On a donc
Y (Ω) = N et P(Y = k) = pqk.

B) Fonction de répartition

� Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[Fonction de répartition de la loi GN?(p)]
Si X   GN?(p), pour tout réel t :

FX (t) =

�

�

�

�

1− qbtc si t ≥ 1
0 sinon

en notant q = 1− p

C) Graphique

Lois GN?(p)
Fonction de masse
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D) Moments

� Théorème 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Moments de la loi GN? (p)]
Si X   GN?(p) alors X admet espérance et variance et :

1. E(X ) =
1
p

.

2. V (X ) =
q
p2

.

� Remarque 6.

En moyenne, le premier succés apparaît à un rang d’ordre
1
p

.

� Exercice 1.
Soit X , Y deux variables aléatoires indépendantes de loi géométrique sur N? de paramètres respectifs p, p′. Calculer la loi
de Z =min(X , Y ).

E) Simulation

1 def geom(p):
2 k = 1
3 while random ()>p: # Ce booléen vaut False avec probabilit é p
4 k+=1
5 return k

T3 Prouver qu’une VAR X suit une loi binomiale ou géométrique

1. Dans les deux cas, on commence par Identifier une épreuve
de Bernoulli (E), son succès et son paramètre de succès
p.

2. On précise que l’expérience liée à Y consiste en répéti-
tions mutuellement indépendantes de (E). La suite de
l’argumentation diffère suivant la loi qui nous intéresse :

a. Si X compte le nombre de succès observés sur un
nombre N fini de répétitions de (E) : X  B(N , p)

b. Si X mesure le temps d’apparition du 1er succès
en répétant (E), alors : X   G (p)

F) Propriétés complémentaires

� Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Absence de mémoire de la loi géométrique]
Si X   GN?(p) alors :

∀n ∈ N? ∀k ∈ N? P(X > n+ k|X > n) = P(X > k)

� Remarque 7.
Interprération : savoir qu’on a déjà fait n essais ne donne aucune information supplémentaire sur le fait d’obtenir un
succès k essais plus tard, puisque la relation de la proposition s’écrit :

∀n≥ 0 PX>n(X > n+ k) = PX>0(X > 0+ k)

�
�

�
�
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5 Loi de Poisson

A) Définition

� Définition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Loi de Poisson P (λ)]

On dit que X suit une loi de Poisson de paramètre λ > 0 si :

1. X (Ω) ⊂ N.

2. ∀k ∈ N P(X = k) = e−λ
λk

k!
.

Dans ce cas on note X  P (λ).

� Remarque 8.

1. La loi de Poisson est appelée la loi des évènements rares. En effet : elle compte approximativement le nombre
de succès lors d’un grand nombre de répétitions d’épreuves de Bernoulli mutuellement indépendantes à faible
paramètre de succès (uneB (n, p) avec p petit et n grand).

2. Il n’existe pas d’expérience simple (du style : tirage dans une urne) attachée à une variable aléatoire qui suivrait
une loi de Poisson.

3. Néanmoins, conformément au point 1., par exemple :

a) Le nombre d’accidents d’avion ayant eu lieu une année sur tous les vols peut être modélisé par une VAR

de Poisson.

b) Le nombre de personnes nées le même jour dans le lycée aussi.

� Exercice 2.

1. Proposer une expérience de tirage de boule dans une urne liée à une variable de loi GN? (p).

2. Compléter le tableau du 3.B) en ajoutant une ligne dédiée à la loi géométrique.

� Exercice 3.

1. Exprimer sous forme de somme de série le réel Sλ = eλ+ e−λ (on simplifiera au maximum la somme obtenue).

2. Soit λ > 0 et X  P (λ).
a) Soit A l’évènement : «la valeur observée de X est paire». Exprimer A en termes de X .

b) Calculer P(A).

B) Fonction de répartition

� Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[Fonction de répartition de la loi P (λ)]
Si X  P (λ) alors pour tout réel t :

FX (t) =

�

�

�

�

�

�

�

e−λ
btc
∑

k=0

λk

k!
si t ≥ 0

0 sinon

� Remarque 9.
Contrairement au cas de la loi géométrique, la fonction de répartition de la loi de Poisson n’a pas d’expression simple.

�
�

�
�
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C) Graphique

Lois de Poisson P (λ)
Fonction de masse
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� Remarque 10.
On peut remarquer que la fonction de masse se concentre autour des valeurs de k de qui sont de l’ordre de λ (à cause
des croissances comparées).

D) Moments

� Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Moments de la loi P (λ)]

Si X  P (λ) alors X admet espérance et variance et :

1. E(X ) = λ.

2. V (X ) = λ.

E) Simulation

Principe. Voir partie suivante.

1 from random import random
2 from numpy import exp
3 def Poisson ( lambada ):
4 k=0
5 p = exp(- lambada ) # Initialisation p_0
6 S = p # F_X(k) �

�
�
�
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7 r = random ()
8 while r>S:
9 k+=1

10 p*= lambada /k
11 S+=p # F_X(k+1)
12 return k

• Ligne 3 (cf. Rem.1 ) : on ne peut pas donner la fonction de masse en variable d’entrée. On calcule les
pk au fur et à mesure (ligne 10).

• ligne 10 : pour cela, on utilise le fait que la fonction de masse k 7→ pk vérifie : p0 = e−λ (ligne 5)

et ∀k ∈ N? pk = pk−1 ×
λ

k
.

� Remarque 11.

On peut aussi simplement simuler une loi binomiale de paramètres N = 100, p =
λ

100
, qui donne une bonne

approximation de la loi P (λ) d’après les théorèmes limite.

6 Simulation informatique d’une variable aléatoire discrète

A) Qu’est-ce que simuler une variable aléatoire discrète?

� Définition 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Simulation d’une variable aléatoire]
Si X est variable aléatoire d’espace image X (Ω) = {x i i ∈ I}, simuler X , c’est écrire une fonction f

telle que sur un grand nombre d’appels N de f (disons N≥ 100), f renvoie pour tout i ∈ I la valeur x[i]
avec une fréquence acceptablement proche de P(X = x i).

� Remarque 12.
Autrement dit, les valeurs observées à l’écran de f suivent la loi de X , ou dit autrement, se distribuent suivant la loi
de X .

B) Principe

Soit X une VAR discrète notons
X (Ω) = {x0 < x1 < . . . , xn < . . . } son
espace image et posons pk = P(X = xk).

1. Comme la série
∑

k≥0

pk converge et

que sa somme vaut 1, on peut par-
titionner l’intervalle [0,1[ en inter-
valles de Ik de longueur pk comme
sur la figure.

2. On tire un flottant r au hasard dans
[0, 1[ (on a représenté sur le dessin
un grand nombre de tirages suivant
une loi U (0,1)).

3. Simulation de X : comme la propor-
tion de flottants r tombant dans Ik
sur un grand nombre de tirages (dés-
sinés en hachures) est environ pk, on
décrète que si r tombe dans Ik, la va-
leur observée de X est alors xk.

p0 p1

• •
0 1

[ [ [ [ [ [•

rβ0 β1

I0 I1 I2 . . . Ik Ik+1 . . .

////////////////////////////////////////////////////////////////////////////////////////////////////

Noter que βn =
n
∑

k=0

pk = FX (xn)

�
�

�
�
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C) Implémentation

Code Python È

1 def simul(x,p)
2 """
3 entrées ( listes de flottants )
4 x = [x0 ,...] : X(Omega)
5 p = [p0 ,...] : fonc. de masse
6 sortie : une ré alisation de X
7 """
8 k=0
9 p = p[0]

10 S = p
11 r = random ()
12 while r>S:
13 k+=1
14 S+=p[k]
15 return x[k]

� Remarque 13.
Commentaires sur le script

• Ligne 1 : Si la VAR X prend un nombre fini de va-
leurs, la donnée exhaustive de la fonction de masse
p en variable d’entrée de simul(x,p) est possible
(voir Exple. 1).

• Lignes 12-14 : Sinon, on essaie dans la boucle while
de calculer les nombres p[k] par récurrence (voir la
simulation de la loi de Poisson en III E)).

� Exemple 3.
Simulation de X  B(2, 1/3) :

1 t = 1/3 # paramètres de la loi binomiale
2 s = 1-t
3 x = [0 ,1 ,2] # espace image de
4 p = [t**2 ,2*t*s,s**2] # loi de X
5 simul(x,p)

7 Moments des variables aléatoires discrètes

A) Moment d’ordre r d’une variable aléatoire

� Définition 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Moment d’ordre r : MX ,r]

La VAR X admet un moment d’ordre r si et seulement si la série
∑

x∈X (Ω)

x r P(X = x) est absolument

convergente, c’est-à-dire si la série
∑

x∈X (Ω)

|x |r P(X = x) est convergente. On pose alors :

MX ,r =
∑

x∈X (Ω)

x r P(X = x).

� Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[Existence de moments]

Soit r ∈ N?. Si X admet un moment d’ordre r, alors tous les moments d’ordre inférieur existent aussi.

B) Espérance d’une variable aléatoire discrète

� Définition 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Espérance]
La VAR X adme une espérance si et seulement si elle admet un moment d’ordre 1 MX ,1, et dans ce cas

E(X ) = MX ,1 =
∑

x∈X (Ω)

x P(X = x)

�
�

�
�
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� Proposition 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Propriétés fonctionnelles de l’espérance]
L’ensemble des VAR discrètes surΩ admettant un moment d’ordre 1 est un espace vectoriel et l’espérance
y est une forme linéaire positive et croissante. Précisément :

1. Si X , Y sont deux VAR discrètes sur Ω admettant une espérance, alors pour tous réels λ,µ, la
variable λX +µY admet une espérance et :

E(λX +µY ) = λE(X ) +µE(Y ).

En particulier :
E(λX +µ) = λE(X ) +µ.

2. Si X est à valeurs positives quasi-certainement, E(X )≥ 0.

3. Si X ≤ Y : E(X )≤ E(Y ).

4. Les grandeurs X et E(X ) sont dans les mêmes unités.

5. Si X possède une espérance, la variable notée X − E(X ), appelée variable centrée déduite de X ,
possède aussi une espérance, et celle-ci est nulle.

� Théorème 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Formule de transfert]
Soit f une fonction définie au moins sur X (Ω), et Y la VAR donée par Y = f (X ). Alors Y admet une
espérance si et seulement si la série

∑

x∈X (Ω)

| f (x)|P(X = x) converge absolument et dans ce cas :

E ( f (X )) =
∑

x∈X (Ω)

f (x)P(X = x)

T4 À quoi sert la formule de transfert ?

si Y s’exprime en termes d’une VAR X , mettons Y = f (X ), et
de loi connue, le thm. 4 nous donne le calcul de E(Y ) à l’aide
de la loi de X sans connaître celle de Y.

T5 Comment calculer l’espérance d’une VAR Y ?

1. Si on reconnaît une loi usuelle, E(Y ) est obtenu sans cal-
culs.

2. Si Y est une transformée affine d’une VAR X dont on
connaît l’espérance Y = aX + b, on utilise prop.7 1.

3. Sinon, T4., et les techniques d’étude de convergence des
séries à terme positifs (en cas de séries !).

C) Variance. Écart-type

� Proposition 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . [Existence de la variance et du moment d’ordre 2]
Soit X une VARD Sont équivalents :

1. X admet une variance.

2. X admet un moment d’ordre 2.�
�

�
�
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� Définition 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Variance - écart-type]

1. La variance de X est définie sous réserve d’existence par :

V (X ) = E
�

(X − E(X ))2
�

.

2. L’écart-type de X , noté σX est défini alors par

σX =
Æ

V (X ).

� Proposition 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Propriétés fonctionnelles de la variance]

1. (Positivité). V (X )≥ 0.

2. (Homogénéité.) Si X est exprimée en unités u, V (X ) est en unité u2, et σX en unités u.

3. (Homogénité et invariance par translation). Si a, b sont deux réels, aX + b admet une variance et :

V (aX + b) = a2V (X )

4. V (X ) = 0 si et seulement si X suit une loi quasi-certaine.

T6 Prouver l’existence de la variance

1. Si l’énoncé de demande de prouver l’existence de l’espé-
rance et de la variance, on peut prouver seulement l’exis-
tence du moment d’ordre 2 et conclure avec prop. 6 et
déf. 9

2. Par contraposition de prop. 6 : si le moment d’ordre 1
n’existe pas, cela prouve que la V.A.R. n’a ni espérance,
ni variance.

� Théorème 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Formule de Koenig]
Soit X une variable aléatoire discrète sur un espace probabilisé (Ω,T , P). Si X admet une variance, alors
X admet un moment d’ordre 2, une espérance et :

V (X ) = E(X 2)− E(X )2.

T7 Calculer la variance d’une VAR Y

1. Si on reconnaît une loi usuelle, V (Y ) est obtenu sans cal-
culs

2. Si Y est une transformée affine d’une VAR X dont on
connaît la variance, Y = aX + b, on utilise prop.9 3.

3. Sinon, on applique Thm. 5.

�
�

�
�
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