
TD 12 : intégrales généralisées

Exercice 99

1. I1 =

∫ +∞

0
x e−x2

dx.

Convergence et calcul par intégrales sur un segment. Pour R > 0, poser I1(R) =
∫ R
0 x e−x2

dx. Une
primitive sur [0, R] est −1

2e
−x2 , donc

I1(R) =
1

2

(
1− e−R2)

.

La fonction R 7→ I1(R) est croissante et bornée par 1
2 , donc l’intégrale impropre converge, et

I1 = lim
R→+∞

I1(R) =
1

2
.

2. I2 =

∫ +∞

−∞

| arctanx|
1 + x2

dx.

Pour R > 0, poser

I2(R) =

∫ R

−R

| arctanx|
1 + x2

dx = 2

∫ R

0

arctanx

1 + x2
dx.

Changement de variable x = tan t avec t ∈
[
0, arctanR

]
; alors dx =

dt

cos2 t et 1 + x2 =
1

cos2 t , d’où

I2(R) = 2

∫ arctanR

0
t dt = (arctanR)2.

La limite limR→+∞(arctanR)2 =
(
π
2

)2 existe, donc l’intégrale impropre converge et

I2 =
π2

4
.

3. I3 =

∫ +∞

0

1

x2 − x+ 1
dx.

Pour R > 0, poser

I3(R) =

∫ R

0

dx

x2 − x+ 1
=

∫ R

0

dx(
x− 1

2

)2
+
(√

3
2

)2 =
2√
3

[
arctan

(
2x− 1√

3

)]R
0

.

Ainsi
I3(R) =

2√
3

(
arctan

(
2R− 1√

3

)
+

π

6

)
.

La limite limR→+∞ I3(R) =
2√
3

(
π
2 + π

6

)
=

4π

3
√
3

existe, donc

I3 =
4π

3
√
3
=

4π
√
3

9
.

1
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4. I4 =

∫ +∞

1

arctanx

x2
dx.

Pour R > 1, poser

I4(R) =

∫ R

1

arctanx

x2
dx.

Intégration par parties sur [1, R] avec u = arctanx, dv = x−2dx (du =
dx

1 + x2
, v = −1

x
) :

I4(R) =

[
−arctanx

x

]R
1

+

∫ R

1

dx

x(1 + x2)
.

On a alors ∫ R

1

dx

x(1 + x2)
=

1

2

∫ R2

1

dt

t(1 + t)
=

1

2
[ln t− ln(1 + t)]R

2

1 =
1

2
ln
(

2R2

1 +R2

)
.

Donc
I4(R) = −arctanR

R
+

π

4
+

1

2
ln
(

2R2

1 +R2

)
.

Les deux limites lim
R→+∞

arctanR

R
= 0 et lim

R→+∞
ln
(

2R2

1 +R2

)
= ln 2 existent, d’où la convergence de

l’intégrale impropre et

I4 =
π

4
+

ln 2

2
.

5. I5 =

∫ 1

0

lnx√
1− x

dx.

Pour ε ∈]0, 1[, poser

I5(ε) =

∫ 1

ε

lnx√
1− x

dx.

Changement de variable t =
√
1− x (x = 1− t2, dx = −2t dt) : quand x va de ε à 1, t va de

√
1− ε à

0. Alors

I5(ε) = 2

∫ √
1−ε

0
ln(1− t2) dt = 2

∫ √
1−ε

0

(
ln(1− t) + ln(1 + t)

)
dt.

Pour a ∈ [0, 1[,∫ a

0
ln(1− t) dt = (1− a) ln(1− a)− a,

∫ a

0
ln(1 + t) dt = (1 + a) ln(1 + a)− a.

Avec a =
√
1− ε,

I5(ε) = 2
(
(1− a) ln(1− a)− a+ (1 + a) ln(1 + a)− a

)
.

En faisant tendre ε vers 0 (donc a tend vers 1), on utilise (1−a) ln(1−a) tend vers 0 et (1+a) ln(1+a)
tend vers 2 ln 2. On obtient

I5 = lim
ε→0

I5(ε) = 4(ln 2− 1) .

Exercice 100
Soit a > 0 et, pour n ∈ N,

In =

∫ +∞

0
xne−ax dx.
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1. Convergence. Pour R > 0, poser

In(R) =

∫ R

0
xne−ax dx.

Pour n = 0,

I0(R) =

∫ R

0
e−ax dx =

1

a

(
1− e−aR

)
,

et limR→+∞ I0(R) = 1
a existe.

Pour n ≥ 1, intégration par parties sur [0, R] avec u = xn, dv = e−ax dx (du = nxn−1dx, v = − 1
ae

−ax) :

In(R) =

[
−1

a
xne−ax

]R
0

+
n

a

∫ R

0
xn−1e−ax dx = −1

a
Rne−aR +

n

a
In−1(R).

Le terme de bord Rne−aR tend vers 0 lorsque R tend vers +∞ (l’exponentielle l’emporte sur toute
puissance), et limR→+∞ In−1(R) existe par récurrence sur n. Ainsi limR→+∞ In(R) existe pour tout n,
donc

In converge pour tout n ∈ N.

2. Relation de récurrence entre In et In+1. En repartant de l’intégration par parties sur [0, R] avec
u = xn+1, dv = e−ax dx,

In+1(R) = −1

a
Rn+1e−aR +

n+ 1

a
In(R).

En faisant tendre R vers +∞ (le terme de bord tend vers 0), on obtient

In+1 =
n+ 1

a
In (n ∈ N).

3. Formule explicite. On a déjà I0 = lim
R→+∞

I0(R) =
1

a
. Par récurrence, la relation précédente donne

I1 =
1

a
I0 =

1

a2
, I2 =

2

a
I1 =

2!

a3
, . . . ,

et, en général,

In =
n!

an+1
(n ∈ N).

Exercice 101
Soit n ∈ N∗. On pose

In =

∫ +∞

0

e−x

n+ x
dx et Jn =

∫ +∞

0

e−x

(n+ x)2
dx.

1. Convergence de In. Pour R > 0, poser

In(R) =

∫ R

0

e−x

n+ x
dx.

On a, pour tout x ≥ 0, e−x

n+ x
≤ e−x

n
. Donc

0 ≤ In(R) ≤ 1

n

∫ R

0
e−x dx =

1

n

(
1− e−R

)
≤ 1

n
.

La fonction d’intégration étant positive, R 7→ In(R) est croissante et bornée, la limite limR→+∞ In(R)
existe. On note

In = lim
R→+∞

In(R) (convergence) .
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2. Limite de (In)n≥1. Pour tout n ≥ 1,

0 ≤ In =

∫ +∞

0

e−x

n+ x
dx ≤ 1

n

∫ +∞

0
e−x dx =

1

n
.

Ainsi In tend vers 0 lorsque n tend vers +∞, et même nIn ≤ 1.

lim
n→+∞

In = 0 .

3. Convergence de Jn et relation In =
1

n
− Jn. Pour R > 0, poser

Jn(R) =

∫ R

0

e−x

(n+ x)2
dx.

Intégration par parties sur [0, R] pour In(R) avec

u =
1

n+ x
, dv = e−x dx

(
du = − dx

(n+ x)2
, v = −e−x

)
:

In(R) =
[
− e−x

n+ x

]R
0
−
∫ R

0
(−e−x)

(
− dx

(n+ x)2

)
=

1

n
− e−R

n+R
− Jn(R).

Donc, pour tout R > 0,

In(R) =
1

n
− e−R

n+R
− Jn(R) .

Par ailleurs, 0 ≤ Jn(R) ≤ 1

n2

∫ R
0 e−x dx ≤ 1

n2
. La fonction d’intégration étant positive, R 7→ Jn(R) est

croissante et bornée, donc limR→+∞ Jn(R) existe. On note cette limite Jn. En faisant tendre R vers

+∞ dans l’égalité précédente (le terme e−R

n+R
tend vers 0), on obtient

In =
1

n
− Jn .

En particulier,
0 ≤ nJn ≤ 1

n
=⇒ nJn tend vers 0,

d’où
nIn = 1− nJn tend vers 1.

Ainsi
In ∼ 1

n
lorsque n tend vers +∞ .

Exercice 102
Soit n ∈ N∗. On pose

In =

∫ +∞

0

dx

(1 + x2)n
et Jn =

∫ +∞

−∞

dx

(1 + x2)n
.

1. Convergence de In. Pour R > 0, poser

In(R) =

∫ R

0

dx

(1 + x2)n
.
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Changement de variable x = tan t avec t ∈ [0, arctanR]. Alors dx = dt
cos2 t et 1 + x2 = 1

cos2 t , d’où

In(R) =

∫ arctanR

0
cos2n−2 t dt.

La fonction t 7→ cos2n−2 t est continue sur [0, π2 ], et arctanR tend vers π
2 lorsque R tend vers +∞. Par

continuité de la fonction primitive u 7→
∫ u
0 cos2n−2 t dt, la limite limR→+∞ In(R) existe et

In =

∫ π/2

0
cos2n−2 t dt < +∞ .

2. Relation In − In+1 (intégration par parties). Pour R > 0,

In(R)− In+1(R) =

∫ R

0

x2

(1 + x2)n+1
dx.

Poser u = x, dv =
x dx

(1 + x2)n+1
. Alors du = dx et

v =

∫
x dx

(1 + x2)n+1
=

1

2

∫
(1 + x2)−n−1 d(1 + x2) = − 1

2n
(1 + x2)−n.

Sur [0, R], l’intégration par parties donne

In(R)− In+1(R) =
[
− x

2n
(1 + x2)−n

]R
0
+

1

2n

∫ R

0
(1 + x2)−n dx =

1

2n
In(R) − R

2n
(1 +R2)−n.

En faisant tendre R vers +∞, le terme de bord R

2n
(1 +R2)−n tend vers 0, donc

In − In+1 =
1

2n
In ⇐⇒ In+1 =

2n− 1

2n
In .

3. Formule explicite de In. On a d’abord

I1 = lim
R→+∞

∫ R

0

dx

1 + x2
=

[
arctanx

]+∞

0
=

π

2
.

Par récurrence à partir de l’item 2,

In =
2n− 3

2n− 2
· 2n− 5

2n− 4
· · · 1

2
I1 =

π

2

n−1∏
k=1

2k − 1

2k
.

On peut écrire, pour tout n ≥ 1,

In =
π

2

(2n− 2)!

2 2n−2
(
(n− 1)!

)2 .
4. Étude de Jn. Pour R > 0,

Jn(R) =

∫ R

−R

dx

(1 + x2)n
= 2

∫ R

0

dx

(1 + x2)n
= 2 In(R).

La limite limR→+∞ Jn(R) existe donc et vaut 2In, soit

Jn = 2In = π
(2n− 2)!

2 2n−2
(
(n− 1)!

)2 .



6

Exercice 103
On pose, pour n ∈ N∗,

In =

∫ π/2

0

sin
(
(2n− 1)x

)
sinx

dx.

1. Existence. Pour ε ∈]0, π/2[, poser

In(ε) =

∫ π/2

ε

sin
(
(2n− 1)x

)
sinx

dx.

Notons fn(x) =
sin

(
(2n− 1)x

)
sinx

pour x ∈]0, π/2]. Au voisinage de 0,

sin
(
(2n− 1)x

)
= (2n− 1)x+ o(x), sinx = x+ o(x),

d’où
lim
x→0

sin
(
(2n− 1)x

)
sinx

= 2n− 1.

On prolonge fn par continuité en 0 en posant fn(0) = 2n − 1 : ainsi fn est continue sur [0, π/2]. Par
conséquent, la limite lim

ε→0
In(ε) existe et

In = lim
ε→0

In(ε) =

∫ π/2

0
fn(x) dx .

2. Différence In+1 − In.

In+1 − In =

∫ π/2

0

sin
(
(2n+ 1)x

)
− sin

(
(2n− 1)x

)
sinx

dx =

∫ π/2

0
2 cos(2nx) dx =

[
sin(2nx)

n

]π/2
0

= 0.

In+1 − In = 0 .

3. Valeur de In. L’item précédent montre que (In)n est constante. On calcule I1 =

∫ π/2

0

sinx

sinx
dx =

π

2
.

Donc, pour tout n ∈ N∗,
In =

π

2
.

Exercice 104
On pose

I =

∫ π/2

0
ln(sinx) dx, J =

∫ π/2

0
ln(cosx) dx.

1. Convergence de
∫ π/2

0
lnx dx.

Pour ε ∈]0, π/2[, poser

A(ε) =

∫ π/2

ε
lnx dx =

[
x lnx− x

]π/2
ε

=
π

2
ln
(π
2

)
− π

2
− ε ln ε+ ε.

Comme ε ln ε tend vers 0 lorsque ε tend vers 0, la limite limε→0A(ε) existe. Ainsi∫ π/2

0
lnx dx est une intégrale impropre convergente.
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2. Étude de g(x) = ln(sinx)− lnx sur ]0, π/2] et convergence de I.
Pour ε ∈]0, π/2[, poser

G(ε) =

∫ π/2

ε
g(x) dx.

On a
g(x) = ln

(sinx

x

)
,

sinx

x
tend vers 1 quand x tend vers 0,

donc g(x) tend vers 0 lorsque x tend vers 0. On prolonge g par continuité en posant g(0) = 0 ; alors g

est continue sur [0, π/2] et la limite limε→0G(ε) =
∫ π/2
0 g(x) dx existe. Écrire

I =

∫ π/2

0
lnx dx+

∫ π/2

0
g(x) dx

montre que I est une intégrale impropre convergente (le premier terme converge par l’item 1, le second
est une intégrale sur un segment d’une fonction continue).

3. (a) Deux calculs de I + J et conclusion.
Première écriture (par décalage dans J). Pour ε ∈]0, π/2[, poser

S(ε) =

∫ π/2

ε
ln(sinx) dx+

∫ π/2

ε
ln(cosx) dx.

Dans le second terme, faire le changement de variable t = x+ π
2 (alors cosx = sin t, x ∈ [ε, π/2]

donne t ∈ [π/2 + ε, π]) :

S(ε) =

∫ π/2

ε
ln(sinx) dx+

∫ π

π/2+ε
ln(sin t) dt =

∫ π−ε

ε
ln(sinu) du.

En faisant tendre ε vers 0, on obtient

I + J = lim
ε→0

S(ε) =

∫ π

0
ln(sinu) du.

Seconde écriture (formule d’angle double sur un segment tronqué). Pour ε ∈]0, π/2[,

S(ε) =

∫ π/2

ε
ln
(

sinx cosx
)
dx =

∫ π/2

ε

(
ln 1

2
+ ln(sin 2x)

)
dx =

(
π
2 − ε

)
ln 1

2
+

1

2

∫ π

2ε
ln(sinu) du,

où l’on a posé u = 2x. D’où

lim
ε→0

S(ε) =
π

2
ln 1

2
+

1

2

∫ π

0
ln(sinu) du.

En comparant avec la première écriture,

I + J =
π

2
ln 1

2
+

1

2
(I + J) =⇒ I + J = −π ln 2.

(b) Égalité I = J et valeurs. Sur [0, π/2], le changement de variable t = π
2 − x donne

J =

∫ π/2

0
ln(cosx) dx =

∫ π/2

0
ln(sin t) dt = I,

donc 2I = I + J = −π ln 2, d’où
I = J = − π

2
ln 2.


