TD 14 : applications liné¢aires, diagonalisation

Exercice 117

On travaille dans la base canonique (e1, es, e3,e4) de R,

1. Matrice de f dans la base canonique.
Les colonnes de la matrice sont les coordonnées des images des vecteurs de base :

fler) =e2—e3, fl(ea) = —2ea+2e3, f(es) =e1+eq, fles) =e1+e2—e3+ ey

Ainsi
0 0 1 1
-2 0 1
A=Mat(f)=| o ( 3
0 0 1 1
2. Im f et Ker f.
Image. Les colonnes de A sont
0 0 1 1
1 -2 0 1
Ch = BEE Cy = 9 :—201, C3 = ol Cy = 1 = C3+ C4.
0 0 1 1

Donc Im f = Vect(Cy,C3) = Vect(ez — e3, e1 + e4) et dim(Im f) = 2.

Imf:Vect(eg—eg, €1+64)7 dim(Im f) =2 |

Noyau. Résolvons AX = 0 avec X = (x1, 29,3, 24) . Le systéme associé vaut

x3+ x4 =0,

r1 — 2x9 + x4 =0,
—x1 + 229 — 14 = 0,
r3+ x4 =0,

les deux équations du milieu étant équivalentes. Posons xo = s et x4 = t. Alors
T =28 —t, T3 = —t,

et
X =5(2,1,0,0)" +¢(-1,0,—1,1)".

Ainsi Ker f = Vect((2,1,0,0), (=1,0,—1,1)) et dim(Ker f) = 2.

Ker f = Vect((2,1,0,0), (=1,0,—1,1)), dim(Ker f) =2 |

(On vérifie bien le théoreme du rang : dim(Im fl) +dim(Ker f) =2+2=4.)



Exercice 118

1. Linéarité. Chaque coordonnée de f,(z,y, z) est une forme linéaire en (z,y, z) :

t=1-z4+(m—-1)-y+0-2, wu=2x—-2y+2mz, v=0-z+1-y—4-z, w=0-24+0-y+2m-z.
Donc f(aX + BY) = afm(X) + Bfm(Y) pour tous a, 5 € Ret X,V € R?,

‘ fm est linéaire. ‘

2. Matrice dans les bases canoniques. Les colonnes sont f,,(e1), fm(€2), fm(es3) :

fm(el) = (1>2>O>0)a fm(eQ) = (m - 17 _27110)7

fm(es) = (0,2m, —4,2m).

1 m-—1

2 -2
Am = 0 1
0

0
2m
—4
2m

3. Noyau et image selon m. On résout A, (x,y,z)" = 0, soit

z+(m—1)y =0,
20 — 2y +2mz =0,

y—4z =0,

2mz = 0.

Cas m # 0. De 2mz = 0 on tire z =0, puis y = 0 et x = 0.

| Ker f,n = {(0,0,0)}, dimKer f,, = 0. |

Les colonnes C; = (1,2,0,0), Co = (m —1,—-2,1,0) sont indépendantes, et C5 = (0,2m, —4,2m) n’est
combinaison de C1,Cy que si m = 0 (impossible ici), d’ou le rang 3.

Im fm = Vect(Cl, 02, Cg), dim Im fm =3.

Cas m = 0. Le systéme devient

z—y=0,

20 — 2y =0,
y—4z2 =0,
0=0,

d’ou y = 4z et £ = 4z. On parametre par z € R :

‘ Ker fo = {(42,4z,2) | z € R} = Vect(4,4,1), dimKer fy = 1.‘

Ici Cy = (1,2,0,0), Cy = (—1,-2,1,0), et C3 = (0,0, —4,0) = —4C; — 4C5, donc

Im fo = Vect((1,2,0,0), (—=1,-2,1,0)), dimIm fo = 2.

4. Injectivité, surjectivité, isomorphie.

‘ fm est injective <= Ker f,,, = {0} < m # 0.‘

Comme f,, : R®> — R* a rang < 3, il n’est jamais surjectif sur R* (quel que soit m).

‘ fm 1’est surjective pour aucune valeur de m. ‘

En particulier, entre espaces de dimensions différentes, f,, n’est jamais un isomorphisme.

’ fm n’est isomorphisme pour aucune valeur de m. ‘




Exercice 119
1. Endomorphisme de Rj3[X]. Pour P € R3[X], on a P’ € Ry[X], donc (X + 1)P" € R3[X] et
f(P)=P—(X+1)P" € R3[X] (stabilité). La dérivation et les opérations polynomiales étant linéaires,
pour P,Q € R3[X] et a, 5 € R,

flaP + BQ) = (aP + Q) — (X + 1)(aP" + BQ") = af (P) + Bf(Q).

‘ f est un endomorphisme de R3[X]. ‘

2. Noyau de f. f(P)=0 < P = (X +1)P'. Alors

(X +1)2 7

(ijr1>’ _X+1pP P

donc est constante : il existe ¢ € R tel que P = ¢(X + 1). Ainsi

X+1

‘ Ker f = Vect(X +1), dimKer f =1. ‘

3. Image de f. Sur la base canonique (1, X, X2, X3),

Un systéme générateur de Im f est donc {1, —X? — 2X, —2X3 — 3X?}, qui est libre (les coefficients
des puissances 1, X, X2, X3 g’annulent uniquement pour la combinaison triviale). Par le théoréme du
rang (ou par cette base explicite),

Im f = Vect(1, —X? - 2X, —2X°® —3X?), dim(Im(f)) = 3.

4. Bilan.

‘ Ker f = Vect(X + 1) (droite vectorielle), Im f est un sous-espace de R3[X] de dimension 3.

Exercice 120

On travaille dans #2(R) avec
2 0
4= (1 2)’ p:Mo(R) = M2(R), o(M) =AM — MA.

1. Linéarité. Pour a, 8 € R et M,N € JMM2(R),

o(aM + BN) = A(aM + N) — (aM + BN)A = a(AM — MA) + B(AN — NA) = ap(M) + Bp(N).

‘ ¢ est un endomorphisme de M2 (R). ‘




2. Matrice de ¢ dans la base canonique. Dans la base (F11, E12, Fo1, F22),

0 0
o(En) =AEn — EpjA= <1 0> = Fhoy,

-1 0
o(E12) = AE12 — E12A = < 0 1> = —Ey1 + Ea,
p(E21) =0,

0 0
p(E2) = AEy — EnA=| g) = ~Ea

La matrice (les colonnes sont les coordonnées des images) est

0 -1 0 O
~lo 0o 0 o0
0 1 0 O

3. Kery et Im . Pour M = (CCL Z),

a—d b
Ainsi ¢(M) = 0 si et seulement si b =0 et a = d. On obtient

@MH:AM—MA:(_b %.

C

Kerp = {<a 2) D a,c € R} = Vect(lz, F21), dimKeryp = 2.

L’image est ’ensemble des matrices de la forme <_t 2) avec b,t € R, donc

‘ Imp = Vect(—E11 + E9, E91), dimIme = 2. ‘

En particulier, ¢ n’est ni injective (noyau non nul) ni surjective (rang = 2 < 4).

4. Puissances ¢? et ¢3. D’aprés p(M) = (a__b d 2), en réappliquant ¢,

0O O
con= (5, 0) =2 San-0

Donc

©® =0 (nilpotent d’ordre 3), 2 # 0 et Imp? = Vect(Ey).

Exercice 121

1. Endomorphisme de F = €*°(R;R). Pour tout f € FE, on a f' € E (stabilité). La dérivation est
linéaire :
D(af + Bg) = (af + Bg)" = af' + By = aD(f) + BD(g).

‘ D est un endomorphisme de F. ‘

Son noyau est I’ensemble des fonctions de dérivée nulle, donc les fonctions constantes :

‘ KerD ={z+ c|ce R} # {0} donc D n’est pas injectif. ‘

Pour tout g € E, la fonction F' : z +— fox g(t) dt est de classe € et vérifie F/ = g.

‘ D est surjectif sur F. ‘




2. On considere

(a)

F:{m»—>(ax+b)ex+(cx+d)62x | (a,b,c,d)eR4}.

F' est un sous-espace vectoriel, base et dimension. I’ est stable par combinaison linéaire.
Une base naturelle est

B = (x> €%, x> xe®, T X, x> ze’®),

Démonstration de la liberté : si ae® + Sze® + ve?® + §ze?® = 0 pour tout x, alors e(a + Bz) =

—e2%(y+ 6x). En divisant par e*, et le membre de droite est e* multiplié par un polynome affine ;
I’égalité pour tout x impose y =9 =0, puis o = § = 0.

La restriction Dy est un endomorphisme de F. Pour f(z) = (az + b)e® + (cx + d)e?*,
f'(@) = (a+ (az +b))e” + (c+2(ca + d))e% = ((b+a)+az)e” + ((2d+c) + 201‘)62$ e F.

Donc Dp : f +— f/ est linéaire et F-stable.

‘ Dpr est un endomorphisme de F. ‘

Matrice de Dy dans %. On a

Dp(e®) = e”, Dp(ze®) = e* + ze”,

Dp(e**) = 2e**, Dp(xe*™) = e** 4 2ze™.

Ainsi, dans B = (e%, ze®, e2*, xe?®),

[DFla =

SO O =
S O ==
oNn OO
N = OO

Injectivité et surjectivité de Dp. De la matrice triangulaire supérieure ci-dessus, les valeurs
diagonales 1,1,2,2 sont non nulles; on peut aussi résoudre explicitement

b+a=0,
a=0,
2d+c¢ =0,
2¢ =0,

Dp(f)=0 < < a=b=c=d=0.

Donc Ker Dp = {0} et, comme dim F' =4, on a dimIm Dp = 4.

’ Drp est injectif et surjectif sur F' (donc bijectif). ‘

Exercice 122

On consideére

A—G _11> FiMa(R) = Ma(R), f(M) = AM.

1. Endomorphisme. Pour tout o, 5 € R et M, N € /2(R),

f(aM + BN) = A(aM + BN) = aAM + BAN = af (M) + Bf(N).

De plus, AM € J2(R) pour tout M. ‘ f est un endomorphisme de 2(R). ‘




2. Diagonalisabilité de f.
On commence par déterminer les valeurs propres de A en résolvant (A — Al2)u = 0 avec A parametre :

(1= 1 (1-XNz+y=0,
(A_Mz)_< 1 —1—)\>’ {x—i—(—l—)\)y:().

De la premiére équation, y = (A — 1)z. En reportant dans la seconde :

T+ (-1 -MNA=1D)z=0 <= 1+(-1-N)A-1)=0 < 2-)12=0.

Ainsi | A = £v/2 |. Des vecteurs propres associés (par exemple) sont

uy = (\[1_1) cKer(A—V2Dh), u= (_\/%_1) € Ker(A+V21D).

Construisons maintenant des vecteurs propres de f dans #2(R). Si u € R? vérifie Au = \u, alors
f(u 0) :A(u O) = (Au 0) = ()\u 0) = )\(u 0),

et de méme f (0 u) = )\(0 u) En particulier, en prenant w, us ci-dessus, on obtient quatre matrices
eigenvecteurs de f :

M; = (u1 0) , My = (0 ul) (valeur propre \@),
Mz = (uz 0), My=(0 ug) (valeur propre — V?2).

Ces quatre matrices sont linéairement indépendantes (les colonnes non nulles n’occupent pas les mémes
positions et uy, ug sont indépendants). Elles forment donc une base de A2(R) constituée de vecteurs
propres de f.

f est diagonalisable, avec valeurs propres V2et —V2 (chacune de multiplicité 2).

Exercice 123

1. Endomorphisme de R,[X]. Pour P,Q € R,,[X] et o, 8 € R,
g(aP + Q) = (X — 1)(aP' + Q') — (aP + Q) = ag(P) + Bg(Q).

La dérivation envoie R,,[X] dans R,,—1[X], puis la multiplication par X —1 remonte dans R,,[X]. Ainsi
9(R,[X]) C R, [X] et g est linéaire.

‘ g est un endomorphisme de R,,[X]. ‘

2. Polynémes P, = (X — 1)* et diagonalisabilité.
(a) On a P, = k(X — 1)k, Donc

gP)=(X-1)P-P.=(X-DEX -1 (X -1DF=(k-1)(X -1

‘ 9(Py) = (k—1) P, pour tout k € [0,n]. ‘

(b) La famille (Py,...,P,) = (1,(X—1),...,(X —1)") est une base de R,,[X]. Chaque Py est vecteur
propre de g pour la valeur propre (k — 1), qui sont toutes deux a deux distinctes. Ainsi R, [X]
admet une base de vecteurs propres de g.

g est diagonalisable dans la base (1, (X —-1),..., (X — 1)”), Sp(g) ={-1,0,1,...,n— 1}.

3. Automorphisme ? Pour n > 1, g(P1) = g(X — 1) =0, donc (X — 1) € Kerg et g n’est pas injectif ni
bijectif. Pour n = 0, I’espace est Vect(1) et g(1) = —1 -1, donc g est un isomorphisme.

g est un automorphisme si et seulement si n = 0; pour n > 1, Kerg = Vect(X — 1). ‘




Exercice 124

1. Endomorphisme de E = K,,[X]. Pour tout P € E, on a P” € K,,_»[X]| (par convention K,,[X] =
{0} si m < 0). Alors (X2 — 1)P" € K,,[X], donc u(E) C E. La dérivation et la multiplication par un
polynéme étant linéaires,

uw(aP + Q) = (X* = 1)(aP” + BQ") = au(P) + Bu(Q).

‘ u est un endomorphisme de K,,[X]. ‘

2. Diagonalisabilité de u.

Sin <1, u est 'endomorphisme nul qui est ‘diagonalisable ‘

Sinon, n > 2 :
Pour k € [2,n], on calcule

wXF) = (X% 1) (k(k — )X*2) = k(k - 1) X* — k(k—1) X2

De plus, u(1) = u(X) = 0.
Dans la base (1, X, ..., X"™), la matrice de u est triangulaire supérieure, de diagonale

)\0:0, )\1:0, )\2:2, )\3:67 )\4:12, coey )\n:n(n—l)

Ainsi les valeurs propres sont

\ Sp(u) € {0,2,6,12,...,n(n—1),...} \

Toutes les valeurs propres non nulles sont associées a des sous-espaces propres au moins de dimension
1, et 0 a pour sous espace propre associé K;[X], de dimension 2, donc la somme des sous-espaces

propres est plus grande ou égale a la dimension de E, ce qui prouve que u est ‘diagonalisable .

Exercice 125
On considere I'espace vectoriel E = 6°(R;R) et application
x
TiE-— B (T()&) = / LF(t) dt.
0
1. Dérivabilité de T'(f). La fonction ¢ — ¢ f(t) est continue sur R si f € E. Par le théoréme fondamental

de I'analyse,
(T(f)) (z) =z f(x) pour tout = € R.

(T(F)) (z) =z f(z) et T(f) € €' (R) C E |.

2. T est un endomorphisme de F et T est injectif. Pour o, 8 € R, f,g € E,

T(af + 5o)(e) = [ “tlaf(t) + Ba(t) dt = oT(£)(x) + BT(9) ),

et l'item 1 assure T'(f) € E. Donc T est linéaire et stable sur E :

‘ T est un endomorphisme de F ‘

Si T(f) =0, alors (T'(f))'(z) = 0 pour tout z. Par Iitem 1, cela donne z f(x) = 0 pour tout z. Ainsi
f(x) = 0 pour tout = # 0, puis par continuité f(0) = 0. Donc f =0 et

‘ T est injectif ‘




3.

(a) Non-surjectivité. Pour tout f € E, on a (T'(f))'(z) =z f(z), d’ou (T'(f))'(0) = 0. Ainsi toute
fonction de I'image de T est de classe 6! et vérifie ¢’(0) = 0. La fonction h : x — z appartient a
E mais h'(0) =1, donc h ¢ ImT'.

‘ T n’est pas surjectif sur £ ‘

(b) Dimension de E. Un endomorphisme injectif est aussi bijectif lorsqu’il opére sur un espace de
dimension finie donc E n’est pas de dimension finie.

FE est de dimension infinie |




