
TD 14 : applications linéaires, diagonalisation

Exercice 117
On travaille dans la base canonique (e1, e2, e3, e4) de R4.

1. Matrice de f dans la base canonique.
Les colonnes de la matrice sont les coordonnées des images des vecteurs de base :

f(e1) = e2 − e3, f(e2) = −2e2 + 2e3, f(e3) = e1 + e4, f(e4) = e1 + e2 − e3 + e4.

Ainsi

A = Mat
B

(f) =


0 0 1 1
1 −2 0 1
−1 2 0 −1
0 0 1 1

 .

2. Im f et Ker f .
Image. Les colonnes de A sont

C1 =


0
1
−1
0

 , C2 =


0
−2
2
0

 = −2C1, C3 =


1
0
0
1

 , C4 =


1
1
−1
1

 = C3 + C1.

Donc Im f = Vect(C1, C3) = Vect(e2 − e3, e1 + e4) et dim(Im f) = 2.

Im f = Vect
(
e2 − e3, e1 + e4

)
, dim(Im f) = 2 .

Noyau. Résolvons AX = 0 avec X = (x1, x2, x3, x4)
⊤. Le système associé vaut

x3 + x4 = 0,

x1 − 2x2 + x4 = 0,

−x1 + 2x2 − x4 = 0,

x3 + x4 = 0,

les deux équations du milieu étant équivalentes. Posons x2 = s et x4 = t. Alors

x1 = 2s− t, x3 = −t,

et
X = s (2, 1, 0, 0)⊤ + t (−1, 0,−1, 1)⊤.

Ainsi Ker f = Vect
(
(2, 1, 0, 0), (−1, 0,−1, 1)

)
et dim(Ker f) = 2.

Ker f = Vect
(
(2, 1, 0, 0), (−1, 0,−1, 1)

)
, dim(Ker f) = 2 .

(On vérifie bien le théorème du rang : dim(Im f) + dim(Ker f) = 2 + 2 = 4.)1
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Exercice 118
1. Linéarité. Chaque coordonnée de fm(x, y, z) est une forme linéaire en (x, y, z) :

t = 1 · x+ (m− 1) · y+0 · z, u = 2x− 2y+2mz, v = 0 · x+1 · y− 4 · z, w = 0 · x+0 · y+2m · z.

Donc fm(αX + βY ) = αfm(X) + βfm(Y ) pour tous α, β ∈ R et X,Y ∈ R3.

fm est linéaire.

2. Matrice dans les bases canoniques. Les colonnes sont fm(e1), fm(e2), fm(e3) :

fm(e1) = (1, 2, 0, 0), fm(e2) = (m− 1,−2, 1, 0), fm(e3) = (0, 2m,−4, 2m).

Am =


1 m− 1 0
2 −2 2m
0 1 −4
0 0 2m

 .

3. Noyau et image selon m. On résout Am (x, y, z)⊤ = 0, soit
x+ (m− 1)y = 0,

2x− 2y + 2mz = 0,

y − 4z = 0,

2mz = 0.

Cas m ̸= 0. De 2mz = 0 on tire z = 0, puis y = 0 et x = 0.

Ker fm = {(0, 0, 0)}, dim Ker fm = 0.

Les colonnes C1 = (1, 2, 0, 0), C2 = (m− 1,−2, 1, 0) sont indépendantes, et C3 = (0, 2m,−4, 2m) n’est
combinaison de C1, C2 que si m = 0 (impossible ici), d’où le rang 3.

Im fm = Vect
(
C1, C2, C3

)
, dim Im fm = 3.

Cas m = 0. Le système devient 
x− y = 0,

2x− 2y = 0,

y − 4z = 0,

0 = 0,

d’où y = 4z et x = 4z. On paramètre par z ∈ R :

Ker f0 = {(4z, 4z, z) | z ∈ R} = Vect(4, 4, 1), dim Ker f0 = 1.

Ici C1 = (1, 2, 0, 0), C2 = (−1,−2, 1, 0), et C3 = (0, 0,−4, 0) = −4C1 − 4C2, donc

Im f0 = Vect
(
(1, 2, 0, 0), (−1,−2, 1, 0)

)
, dim Im f0 = 2.

4. Injectivité, surjectivité, isomorphie.

fm est injective ⇐⇒ Ker fm = {0} ⇐⇒ m ̸= 0.

Comme fm : R3 → R4 a rang ≤ 3, il n’est jamais surjectif sur R4 (quel que soit m).

fm n’est surjective pour aucune valeur de m.

En particulier, entre espaces de dimensions différentes, fm n’est jamais un isomorphisme.

fm n’est isomorphisme pour aucune valeur de m.
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Exercice 119
1. Endomorphisme de R3[X]. Pour P ∈ R3[X], on a P ′ ∈ R2[X], donc (X + 1)P ′ ∈ R3[X] et

f(P ) = P −(X+1)P ′ ∈ R3[X] (stabilité). La dérivation et les opérations polynomiales étant linéaires,
pour P,Q ∈ R3[X] et α, β ∈ R,

f(αP + βQ) = (αP + βQ)− (X + 1)(αP ′ + βQ′) = αf(P ) + βf(Q).

f est un endomorphisme de R3[X].

2. Noyau de f . f(P ) = 0 ⇐⇒ P = (X + 1)P ′. Alors(
P

X + 1

)′
=

(X + 1)P ′ − P

(X + 1)2
= 0,

donc P

X + 1
est constante : il existe c ∈ R tel que P = c(X + 1). Ainsi

Ker f = Vect(X + 1), dim Ker f = 1.

3. Image de f . Sur la base canonique (1, X,X2, X3),

f(1) = 1,

f(X) = X − (X + 1) · 1 = −1,

f(X2) = X2 − (X + 1) · 2X = −X2 − 2X,

f(X3) = X3 − (X + 1) · 3X2 = −2X3 − 3X2.

Un système générateur de Im f est donc {1, −X2 − 2X, −2X3 − 3X2}, qui est libre (les coefficients
des puissances 1, X,X2, X3 s’annulent uniquement pour la combinaison triviale). Par le théorème du
rang (ou par cette base explicite),

Im f = Vect
(
1, −X2 − 2X, −2X3 − 3X2

)
, dim(Im(f)) = 3.

4. Bilan.

Ker f = Vect(X + 1) (droite vectorielle), Im f est un sous-espace de R3[X] de dimension 3.

Exercice 120
On travaille dans M2(R) avec

A =

(
2 0

1 2

)
, φ : M2(R) → M2(R), φ(M) = AM −MA.

1. Linéarité. Pour α, β ∈ R et M,N ∈ M2(R),

φ(αM + βN) = A(αM + βN)− (αM + βN)A = α(AM −MA) + β(AN −NA) = αφ(M) + βφ(N).

φ est un endomorphisme de M2(R).
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2. Matrice de φ dans la base canonique. Dans la base (E11, E12, E21, E22),

φ(E11) = AE11 − E11A =

(
0 0
1 0

)
= E21,

φ(E12) = AE12 − E12A =

(
−1 0
0 1

)
= −E11 + E22,

φ(E21) = 0,

φ(E22) = AE22 − E22A =

(
0 0
−1 0

)
= −E21.

La matrice (les colonnes sont les coordonnées des images) est

[φ](Eij) =


0 −1 0 0
0 0 0 0
1 0 0 −1
0 1 0 0

 .

3. Kerφ et Imφ. Pour M =

(
a b
c d

)
,

φ(M) = AM −MA =

(
−b 0

a− d b

)
.

Ainsi φ(M) = 0 si et seulement si b = 0 et a = d. On obtient

Kerφ =
{(a 0

c a

)
: a, c ∈ R

}
= Vect(I2, E21) , dim Kerφ = 2.

L’image est l’ensemble des matrices de la forme
(
−b 0
t b

)
avec b, t ∈ R, donc

Imφ = Vect(−E11 + E22, E21) , dim Imφ = 2.

En particulier, φ n’est ni injective (noyau non nul) ni surjective (rang = 2 < 4).

4. Puissances φ2 et φ3. D’après φ(M) =

(
−b 0

a− d b

)
, en réappliquant φ,

φ2(M) =

(
0 0

−2b 0

)
= −2bE21, φ3(M) = 02.

Donc
φ3 = 0 (nilpotent d’ordre 3), φ2 ̸= 0 et Imφ2 = Vect(E21).

Exercice 121
1. Endomorphisme de E = C∞(R;R). Pour tout f ∈ E, on a f ′ ∈ E (stabilité). La dérivation est

linéaire :
D(αf + βg) = (αf + βg)′ = αf ′ + βg′ = αD(f) + βD(g).

D est un endomorphisme de E.

Son noyau est l’ensemble des fonctions de dérivée nulle, donc les fonctions constantes :

KerD = {x 7→ c | c ∈ R} ̸= {0} donc D n’est pas injectif.

Pour tout g ∈ E, la fonction F : x 7→
∫ x
0 g(t) dt est de classe C∞ et vérifie F ′ = g.

D est surjectif sur E.
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2. On considère
F =

{
x 7→ (ax+ b) ex + (cx+ d) e2x

∣∣ (a, b, c, d) ∈ R4
}
.

(a) F est un sous-espace vectoriel, base et dimension. F est stable par combinaison linéaire.
Une base naturelle est

B = (x 7→ ex, x 7→ xex, x 7→ e2x, x 7→ xe2x), dimF = 4.

Démonstration de la liberté : si αex + βxex + γe2x + δxe2x = 0 pour tout x, alors ex(α+ βx) =
−e2x(γ+ δx). En divisant par ex, et le membre de droite est ex multiplié par un polynôme affine ;
l’égalité pour tout x impose γ = δ = 0, puis α = β = 0.

(b) La restriction DF est un endomorphisme de F . Pour f(x) = (ax+ b)ex + (cx+ d)e2x,

f ′(x) =
(
a+ (ax+ b)

)
ex +

(
c+ 2(cx+ d)

)
e2x =

(
(b+ a) + ax

)
ex +

(
(2d+ c) + 2cx

)
e2x ∈ F.

Donc DF : f 7→ f ′ est linéaire et F -stable.

DF est un endomorphisme de F.

(c) Matrice de DF dans B. On a

DF (e
x) = ex, DF (xe

x) = ex + xex,

DF (e
2x) = 2e2x, DF (xe

2x) = e2x + 2xe2x.

Ainsi, dans B = (ex, xex, e2x, xe2x),

[DF ]B =


1 1 0 0
0 1 0 0
0 0 2 1
0 0 0 2

 .

(d) Injectivité et surjectivité de DF . De la matrice triangulaire supérieure ci-dessus, les valeurs
diagonales 1, 1, 2, 2 sont non nulles ; on peut aussi résoudre explicitement

DF (f) = 0 ⇐⇒


b+ a = 0,

a = 0,

2d+ c = 0,

2c = 0,

⇐⇒ a = b = c = d = 0.

Donc KerDF = {0} et, comme dimF = 4, on a dim ImDF = 4.

DF est injectif et surjectif sur F (donc bijectif).

Exercice 122
On considère

A =

(
1 1

1 −1

)
, f : M2(R) → M2(R), f(M) = AM.

1. Endomorphisme. Pour tout α, β ∈ R et M,N ∈ M2(R),

f(αM + βN) = A(αM + βN) = αAM + βAN = αf(M) + βf(N).

De plus, AM ∈ M2(R) pour tout M . f est un endomorphisme de M2(R).
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2. Diagonalisabilité de f .
On commence par déterminer les valeurs propres de A en résolvant (A−λI2)u = 0 avec λ paramètre :

(A− λI2) =

(
1− λ 1

1 −1− λ

)
,

{
(1− λ)x+ y = 0,

x+ (−1− λ)y = 0.

De la première équation, y = (λ− 1)x. En reportant dans la seconde :

x+ (−1− λ)(λ− 1)x = 0 ⇐⇒ 1 + (−1− λ)(λ− 1) = 0 ⇐⇒ 2− λ2 = 0.

Ainsi λ = ±
√
2 . Des vecteurs propres associés (par exemple) sont

u1 =

(
1√
2− 1

)
∈ Ker(A−

√
2 I2), u2 =

(
1

−
√
2− 1

)
∈ Ker(A+

√
2 I2).

Construisons maintenant des vecteurs propres de f dans M2(R). Si u ∈ R2 vérifie Au = λu, alors

f
(
u 0

)
= A

(
u 0

)
=
(
Au 0

)
=
(
λu 0

)
= λ

(
u 0

)
,

et de même f
(
0 u

)
= λ

(
0 u

)
. En particulier, en prenant u1, u2 ci-dessus, on obtient quatre matrices

eigenvecteurs de f :
M1 =

(
u1 0

)
, M2 =

(
0 u1

)
(valeur propre

√
2),

M3 =
(
u2 0

)
, M4 =

(
0 u2

)
(valeur propre −

√
2).

Ces quatre matrices sont linéairement indépendantes (les colonnes non nulles n’occupent pas les mêmes
positions et u1, u2 sont indépendants). Elles forment donc une base de M2(R) constituée de vecteurs
propres de f .

f est diagonalisable, avec valeurs propres
√
2 et −

√
2 (chacune de multiplicité 2).

Exercice 123
1. Endomorphisme de Rn[X]. Pour P,Q ∈ Rn[X] et α, β ∈ R,

g(αP + βQ) = (X − 1)(αP ′ + βQ′)− (αP + βQ) = αg(P ) + βg(Q).

La dérivation envoie Rn[X] dans Rn−1[X], puis la multiplication par X−1 remonte dans Rn[X]. Ainsi
g(Rn[X]) ⊂ Rn[X] et g est linéaire.

g est un endomorphisme de Rn[X].

2. Polynômes Pk = (X − 1)k et diagonalisabilité.
(a) On a P ′

k = k(X − 1)k−1. Donc

g(Pk) = (X − 1)P ′
k − Pk = (X − 1) k(X − 1)k−1 − (X − 1)k = (k − 1) (X − 1)k.

g(Pk) = (k − 1)Pk pour tout k ∈ [[0, n]].

(b) La famille
(
P0, . . . , Pn

)
=
(
1, (X−1), . . . , (X−1)n

)
est une base de Rn[X]. Chaque Pk est vecteur

propre de g pour la valeur propre (k − 1), qui sont toutes deux à deux distinctes. Ainsi Rn[X]
admet une base de vecteurs propres de g.

g est diagonalisable dans la base
(
1, (X − 1), . . . , (X − 1)n

)
, Sp(g) = {−1, 0, 1, . . . , n− 1}.

3. Automorphisme ? Pour n ≥ 1, g(P1) = g(X − 1) = 0, donc (X − 1) ∈ Ker g et g n’est pas injectif ni
bijectif. Pour n = 0, l’espace est Vect(1) et g(1) = −1 · 1, donc g est un isomorphisme.

g est un automorphisme si et seulement si n = 0; pour n ≥ 1, Ker g = Vect(X − 1).
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Exercice 124
1. Endomorphisme de E = Kn[X]. Pour tout P ∈ E, on a P ′′ ∈ Kn−2[X] (par convention Km[X] =

{0} si m < 0). Alors (X2 − 1)P ′′ ∈ Kn[X], donc u(E) ⊂ E. La dérivation et la multiplication par un
polynôme étant linéaires,

u(αP + βQ) = (X2 − 1)(αP ′′ + βQ′′) = αu(P ) + βu(Q).

u est un endomorphisme de Kn[X].

2. Diagonalisabilité de u.
Si n ≤ 1, u est l’endomorphisme nul qui est diagonalisable .
Sinon, n ≥ 2 :
Pour k ∈ [[2, n]], on calcule

u(Xk) = (X2 − 1)
(
k(k − 1)Xk−2

)
= k(k − 1)Xk − k(k − 1)Xk−2.

De plus, u(1) = u(X) = 0.
Dans la base (1, X, . . . ,Xn), la matrice de u est triangulaire supérieure, de diagonale

λ0 = 0, λ1 = 0, λ2 = 2, λ3 = 6, λ4 = 12, . . . , λn = n(n− 1).

Ainsi les valeurs propres sont

Sp(u) ⊂ {0, 2, 6, 12, . . . , n(n− 1), . . .}

Toutes les valeurs propres non nulles sont associées à des sous-espaces propres au moins de dimension
1, et 0 a pour sous espace propre associé K1[X], de dimension 2, donc la somme des sous-espaces
propres est plus grande ou égale à la dimension de E, ce qui prouve que u est diagonalisable .

Exercice 125
On considère l’espace vectoriel E = C0(R;R) et l’application

T : E −→ E, (T (f))(x) =

∫ x

0
t f(t) dt.

1. Dérivabilité de T (f). La fonction t 7→ t f(t) est continue sur R si f ∈ E. Par le théorème fondamental
de l’analyse,

(T (f))′(x) = x f(x) pour tout x ∈ R.

(T (f))′(x) = x f(x) et T (f) ∈ C1(R) ⊂ E .

2. T est un endomorphisme de E et T est injectif. Pour α, β ∈ R, f, g ∈ E,

T (αf + βg)(x) =

∫ x

0
t [αf(t) + βg(t)] dt = αT (f)(x) + βT (g)(x),

et l’item 1 assure T (f) ∈ E. Donc T est linéaire et stable sur E :

T est un endomorphisme de E .

Si T (f) = 0, alors (T (f))′(x) = 0 pour tout x. Par l’item 1, cela donne x f(x) = 0 pour tout x. Ainsi
f(x) = 0 pour tout x ̸= 0, puis par continuité f(0) = 0. Donc f ≡ 0 et

T est injectif .
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3. (a) Non-surjectivité. Pour tout f ∈ E, on a (T (f))′(x) = x f(x), d’où (T (f))′(0) = 0. Ainsi toute
fonction de l’image de T est de classe C1 et vérifie g′(0) = 0. La fonction h : x 7→ x appartient à
E mais h′(0) = 1, donc h /∈ ImT .

T n’est pas surjectif sur E .

(b) Dimension de E. Un endomorphisme injectif est aussi bijectif lorsqu’il opère sur un espace de
dimension finie donc E n’est pas de dimension finie.

E est de dimension infinie .


