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Grille d’analyse des exercices

Exercice | Question T Référence(s) | Commentaires/remarques

1. Ty : technique ancestrale. Pas listée dans les techniques de base.
2. Déf : pas de technique livrée. Revenir a la définition.

3. C: utilisation dun résultat de cours (théoreme, proposition, etc.)

4. | » | Question discriminante et plus difficile : demande raisonnement et enchainement de techniques.
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1 Classification des intégrales. Impropriétés

A) Intégrales classiques

m Définition 1 [Intégrale classique]
On appelle intégrale classique I'intégrale sur un segment [a, b] de toute fonction continue f sur [a, b].

H Remarque 1.
En particulier :1. b est réel, et 2. f est continue en b.

m Définition 2 [Fonction indicatrice d’un ensemble]
Si A est un sous-ensemble d’un ensemble E, la fonction indicatrice de A est la fonction notée 1, définie
par

R

B Remarque 2.
C’est une fonction qui ne prend que deux valeurs : O et 1.

m Définition 3 [Restriction d’une fonction & un ensemble]
Si f est une fonction de domaine de définition 2 et I C 9;, on appelle restriction de f a I la fonction :

1. notée f|,
2. de domaine de définition I,
3. définiepar: Vx el f(x)=f(x).

B) Intégrale généralisée d’une fonction continue sur [q, b|[.

m Définition 4 [Intégrale généralisée]
Toute intégrale qui n’est pas classique.

H Définition 5 [Impropriété d’une intégrale généralisée]
Soit f une fonction continue sur un intervalle [a, b[. Si b ne vérifie pas une deux conditions de la
Rem. 1, C’est-a-dire si :

1. b=+00,

2. ousi fi, pf Ne peut pas se prolonger par continuité en b, “

b
alors b s’appelle une impropriété de l'intégrale J f(t)dt.
a

a. Ou, dit autrement, fi, ,; N'est pas la restriction d’'une fonction d’une fonction g continue sur [a, b].

H Proposition 1 [absence d’impropriété]
Un point de continuité d’une fonction f ne peut étre une impropriété de I'intégrale de f.

m Définition 6 [Intégrale généralisée faussement impropre - fausse impropriété]

. . . /7 9 7 7’ 7 . 7 b .
Si f € ¢°([a, b[) est prolongeable par continuité en b, 'intégrale généralisée fa f(t)dt est dite faus-
sement impropre, et b est une fausse impropriété de I'intégrale. Sinon, elle est dite vraiment impropre.

H Remarque 3.
Il ne peut donc y avoir de fausse impropriété en un point de ;.
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C) Convergence de l'intégrale généralisée fabf(t)dt pour f € 6°([a, b[)

H Définition 7 ..... [Intégrales partielles associées & une intégrale généralisée - nature]
Soit f une fonction continue sur [a, b[. Les intégrales partielles sont les intégrales I(x) définies par :

Vx €la, b I(x):f F(t)dt.

H Remarque 4.
En tant qu'intégrales classiques, les intégrales partielles se manipulent sans précaution.

H Définition 8 .................... [Intégrale généralisée convergente - divergente - nature]
Soit f une fonction continue sur [a, b[. Avec les notations de la définition précédente :
b
1. On dit que I'intégrale généralisée J f(t)dt est convergente si lin}) I(x) existe dans R. Cette limite
a 2

b b X
est alors notée f f(t)dt : f f(t)dt := lin}jf f(t)dt.

2. Sinon, on dit que l'intégrale est divergente.

3. Etudier la nature d’une intégrale impropre, c’est déterminer si elle est convergente.

B Remarque 5.
Dans le cas ot f € €°(]a, b]), les mémes notions que précédemment se définissent pour le point a :

1. Le point a est une impropriété si a = —o0 ou lim f};, ) n'existe pas dans R.
t—a ’
>

2. Le point a est une fausse impropriété si f est prolongeable par continuité en a.

3. Les intégrales partielles sont définies par : Vx €Ja,b] I(x)= J f(t)dt.
X

b
4. Lintégrale généralisée J f(t)dt est convergente si lim I(x) existe dans R.
X—a
a >

D) Intégrale généralisée d’une fonction continue sur un intervalle sauf au plus en
un nombre fini de points

@ Comment faire si I'intégrale présente plusieurs impropriétés ?

Puisque f est continue sur un intervalle I sauf au plus en un y, '
nombre fini de points, on peut numéroter ses (possibles) points \ :
de discontinuité x; < x, <:-- < x, (n € N"). ! . [

1. On réduit le nombre d’'impropriétés (si possible) a étudier :

a) Exploiter les éventuelles propriétés de parité de I'in- b
p 8
tégrande pour cela. Prop 2. 5.7 LX‘J‘( 6 f9Ul\ \Q /\l‘lw ¢
b) Si f est nulle au voisinage [A,+00[ de +00, on
. _— L Lo [FO0
peut affirmer que I'intégrale généralisée fA f est
convergente, et nulle (par définition).

2. On détermine parmi les x; restants les vraies impropriétés

de f.
3. Les impropriétés s'étudient ensuite séparément : en pra-
tique, on fixe un intervalle arbitraire J = [a,x;[ ou

J =]x;, b] dont x; est I'unique impropriété de |'intégrale
de f sur J, et on suit ensuite T2.
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b i
2 Détermination de la nature d’une intégrale g(;‘n&ﬂ#isﬁﬁ‘ ‘fe ( “_a,u'_)
Aens de prus o

A) Qualification des intégrales

A. Statut de f B. Etude en b de f C. Qualification | D llfuture E. Dessin et réf.
b
de [ 'f(t)dt de [ f(t)dt
“ 4 Ny
e / :
1. f € 6°([a, b)) sans objet Classiaue converge 2 l
' i
o b
1
i) lim f(t) existe / .
b t:)b C|aa:]que COh\/c.E,\_
) b€ dans R C 0 —
2. f € ¢°([a,b]) P-m
. T Etude
ii) lfll,f(t) i e b est une vraie requise
;as AEa TR impropriété of 2
i) }i_r,r},f(t) existe b est une fausse
< . s converge
beR dans R impropriété
2b) b ¢ 7;
cor 1 . Etude
i) ll_r,l})f(t) nexiste b est une vraie requise
;as dans R impropriété of 2
b=o0 . s .
impropriété requise
cf. 2.
_*
o

Table 1 — Tableau de qualification d'une intégrale
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B Exercice 1.

Qualifier les intégrales des fonctions suivantes.

1.

4.

fi  RmrR 77
t — te !t 1=
0
fo + R— R N
t o 20t 2=
0
f3 10;1[— R
Vit(l—t)
fa 10;1]— R
et —1
t -
t
fs ]—o00;+00[— R
{o sit<1
t — 11 .
— sit>1
t2

B) Plan d’étude d’une intégrale généralisée

@ Comment étudier la nature d’une intégrale fabf pour f € 6°([a,b])?

1. On qualifie I'intégrale par la table 1, et ce, avant tout
calcul.

2. Si la qualification requiert une étude pour conclure sur la
nature (colonne D. du tableau de qualification) :

a) On peut essayer de reconnaitre le moment d'une loi

usuelle pour conclure. wsy QYQ\'PIA 6

i) Sinon on calcule les intégrales partielles I(x)
par les méthodes classiques du calcul intégral,
et on calcule la limite de I(x) par les méthodes
connues de calcul de Iimite._n K

b)

ii) On peut aussi opter pour les versions généra-

c) Sinon on analyse l'intégrande f.

i) Si f est positive au voisinage de b :

A. Oa calcule un équivalent de f et on utilise
B. Sinon, on utilise le M 3

ii) Sinon ou essaie de prouver |'absolue conver-
gence et on applique les méthodes de €) a la
fonction |f].

3. & Sauf pour 3A‘A.ou 3“‘1- et phrase d'usage qui
I"accompagne, on ne manipule jamais l'intégrale généra-
lisée avant d'avoir établi sa convergence.

lisées des méthodes de calcul intégral avec les

Lprécautions d'usage. . !\'w Atk 2 '3
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3 Outils d’éetude des intégrales généralisées

A) Version généralisée des techniques de calcul intégral

1. version généralisée de l'intégration par parties

@ Comment rédiger une IPP sur une intégrale généralisée ?

1.

Aprés avoir trouvé deux fonctions %! telles que f =u'v,
on écrit quelque chose comme :

«l'intégration par parties suivante est valide deés lors qu’on
aura montré que deux des trois quantités apparaissant
dans 'égalité existent dans R.»

Cas typique : étude de suites récurrentes (I,,) d'intégrales
généralisées. On montre par récurrence que I, est conver-
gente. Grace a I'IPP et I'hypothese de récurrence, on dé-
duit que I,,; converge en établissant la convergence du
terme tout intégré.

x39:1, ¢
— 2>
190

£;< looTH

B Exemple 1.

+00
Etude de J te tdt.
0

2. Version généralisée du changement de variables

B Théoreme 1

2. En cas de convergence, elles sont égales.

B Exemple 2.

+00

, 1 dt

Etude de J — . On pourra poser u = /t.
1

2t+4+ 4/t

......... [ Changement de variables ]
Soit ¢ une bijection strictement monotone et de classe ¢! de ]a, B[ sur ]a, b[ Alors :

b B
1. Les intégrales J f(t)dt et f f(p(t))¢’(t)dt sont de méme nature.

@ Comment rédiger un changement de variables sur fabf(t)dt

1.

Attention, un changement de variables ne transformera
jamais une intégrale impropre en une intégrale classique.
Au mieux, elle est faussement impropre. La nouvelle in-
tégrale impropre obtenue s'analysera avec les méthodes
listées précédemment.

On écrit quelque chose comme : «On dé-
finit  bien un  changement de variables  bi-
jectif  (dé)-croissant de classe €' de u €
[ a bien choisir pour avoir qqch de bijectif monotone !]
sur t € (a,b).» Ensuite on ajoute «On ne change ni la
nature ni valeur en cas de convergence de l'intégrale par
ce changement de variablesy
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B Exemple 3.

! dt 1+ sin(u) 15 i’
I=J;) E.OnposeratzT. & bJa 0}&—

| Exemplfog. ( MW

Etude de f t2e ' dt.
\ O\IM

—00

B Exemple 6.

+00 dr Al
Etude de f ' WA -

1+ t2

—00

B Exercice 2.

(Classique et récurrent : intégrales de Rlemann) & N MN J‘a-l'L

+00

dt
Soit a > 0 un réel. On pose I, = f —etJ, = f o Etudier la convergence de I,, et de J,,.
1

B) Outils spécifiques a I’étude d’intégrandes positives

1. Equivalents des intégrandes

BThéoreme 2 ................c.ciiiiiiiiiiiinnnns [Equivalents des intégrales de fonctions positives]

Soit I = [a, b[ un intervalle non vide, b € R et f, g deux fonctions positives continues sur I. On suppose

que :
{ £(©) ~ (o) ontrovolle
t— -

f(t) > 0 sur un voisinage de b. | &= L'/"Ah- Y‘ﬂ'ﬂd‘-

b
Alors les intégrales généralisées | f(t)dt et J g(t)dt sont de méme nature.

a

B Exemple 7

+00 1
Etude de ——— sur [0, +00].
o t2+cos’t

2. Théoreme de comparaison des intégrandes

si 'intégrande est positive, on peut utiliser le théoreme de comparaison des intégrales de fonctions
positives en travaillant avec I'intégrande.

B Théoréeme 3 ...... .[. OI\G(O ?M .. d‘/‘ CCJ\A’ TP ) ..... [Théoréme de comparaison]
Soit I =[a, b[ un 1nterva11e non vid R et f, g deux fonctions positives continues sur I. On suppose
que :
Veel 0<Zf(t)<gl(t).
Alors :
r b b
1. f diverge = f g diverge
J a a
r b
2. g converge = f f converge.
J a a
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B Exemple 8.
+00 1

Ftude de J ——dt.
1

t2 4+ cos? t

4 Absolue convergence

BDefinition O ... .. . e [Absolue convergence]
b

Lintégrale généralisée | f(t)dt est dite convergente si I'intégrale J |f (t)|dt est convergente.

a

BThéoremed .......... ... ... iy [ Condition suffisante de convergence]
Si l'intégrale généralisée de f est absoluement convergente, alors elle est convergente. De plus il est

vrai dans ce cas que :
b b
f(t)dt| < J |f(t)|dt

B Exemple 9.
sin(e")
t2+cos2t

f g(t)dt ou g(t):=
1

Se ramener a 'exemple précédent en remarquant que |g(t)| < f(t).

5 Propriétés fonctionnelles de l'intégrale généralisée

BProposition2 ................ ...l [Propriétés fonctionnelles de 1’intégrale]

1. Relation de Chasles. Ne peut s’utiliser sur une intégrale généralisée qu’apres avoir prouvé sa
convergence (et pas avant).

2. Structure vectorielle. I'ensemble des fonctions admettant une intégrale généralisée convergente
sur I est un espace vectoriel. Dées lors :

a) Linéarité. J Af +ug = AJ f+ ,uJ g. Utilisable des que deux des trois intégrales interve-
nant dans la relation sont convergentes.

b) Positivité et croissance. En cas de convergence des intégrales de f et g :

OSng:OSJfSJg

3. Inégalité triangulaire. En cas d’absolue convergence de l'intégrale de f, les termes apparaissant

dans la formule ont un sens et :
(A=

4. Nullité. Pour des intégrales de fonctions positives, mais pas forcément continues f f=0=f

est nulle sauf peut-étre en un nombre fini de points.

5. Parité. Si f est paire ou impaire, alors S = J fetT= f f sont de méme nature. En cas de

convergence, si f est paire : S = 2T, smonS 0.
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