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e Revoir la fiche de révisions de sup sur les applications linéaires de KP dans K".
e E F sont des K-espaces vectoriels, de dimension finie ou non.

e Les vecteurs (c-a-d. les éléments de E ou F) seront notés par des lettres grasses.

1 Définitions générales
A) Terminologie

H Définition1 ................... [Y(E,F),%(E), endomorphisme, isomorphisme, automorphisme]

1. Z(E,F) : ensemble des applications linéaires de E dans F.
2. Si f € Z(E,F) est bijective, f s’appelle un isomorphisme.
3. Y(E)=%(E,E). Un élément de Z(E) s’appelle un endomorphisme.

4. Un isomorphisme de Z(E) s’appelle un automorphisme.

B) Application linéaire

BDéfinition 2 ... ... ... e [Application linéaire]
Une application f : E — F entre deux K-ev est linéaire si pour tous vecteurs u,vde Eet A €K:

flu+Av) = f(u) + Af (V).

Ce qui signifie que I'image d’une combinaison linéaire quelconque est la combinaison linéaire des
images.

B Proposition 1 ... .. . e [Opérations]

1. Une combinaison linéaire d’applications linéaires est linéaire : £ (E, F) est un espace vectoriel.
2. Une composée d’applications linéaires est linéaire.

3. Siune application linéaire est bijective, sa bijection réciproque aussi.

B Exemple 1.
Exemples universels, et donc triviaux (on retrouve ces applications linéaires dans tous les espaces vectoriels que I'on
veut) :

1. L’application nulle
0 : E—F
x—0
est linéaire.

2. Lidentité de E :

X—X

est linéaire.

3. Soit A € K. Lhomothétie de rapport A de E :

AMld; : E—E a“roup((k’/a‘“
X — AX fQU» PN +0

aussi.
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C) Exemples classiques d’applications linéaires

e Dans les espaces vectoriels de fonctions

Mg : E—E

1. Multiplication par une fonction g donnée : Sig€ E = ¢°(I) : £ s of

Cg : E— E

2. Composition a droite par une fonction g donnée : Sige E = 6°(I) : fsfog

3. Dérivation des fonctions (k € N*, ou k = oo mais avec dans ce dernier cas la convention

k—1=00):

¢ (D—€ (D)
f - £
e Dans les espaces vectoriels de polynomes
1. Composition a droite par un polyndme Q donné : Si Q € K[ X ] est fixé :
To : K[X]—K[X]
P —PoQ J& S5 Qk

(cas classique : Q =X+ 1, et dans ce cas To(P) =P(X+ 1) Yoo L\Qobu* 07

2. La multiplication par un polynome Q fixé : ( G\DL

Mg, : K[X]—K[X]
P — QP

3. La dérivation des polynémes :
D : R[X]—R[X]
P —» P

(ici, I = R et D est la restriction de d/dx a R[X] € €°° (R)).

m Montrer qu’une application f est linéaire/un endomorphisme

1. On applique dans la plupart des cas la Déf. 2.
2. Souvent, les applications linéaires f étudiées sont des FOUA Q_?

combinaisons linéaires et composées de ces applications
classiques. On peut donc au lieu d'appliquer Déf.2 a f,
se contenter d'établir que ces dernieres sont linéaires par Po, un oile /\Ol.l/*
Déf. 2 et on utilise Prop. 1. din (PA@WNS

3. Si on doit prouver en plus que f est un endomorphisme
de E, on ne doit pas oublier de prouver si u est un vecteur
de E, alors f (u) est aussi dans E.

H Exercice 1.
Montrer que les applications suivantes sont linéaires :

1. f;: P — X2P’ + 3P (de R[X] dans lui-méme).
2. f,: P+~ X?P’+3P (de R,[X] dans Ry[X]).
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D) Noyau - injectivité

B DfiNitioN B ... . e e [Noyau]
Sif € 4(E,F), ker f et 'ensemble des solutions u € E de I'’équation linéaire homogéne

(H)  f(w)=0.

H Remarque 1.

1. L’équation (H) est une équation linéaire vectorielle, c’est-a-dire que I'inconnue est un vecteur.

2. Ainsikerf ={ueE | f(u)=0}.

BProposition 2 ... ... ... [Propriétés du noyaul
Soit f € 4(E,F).

1. ker f est un sev de E.

2. f estinjective si et seulement si la seule solution de I'équation f (u) = 0 est 0, c-a-d si et seulement

si ker f = {0}.
3. f est injective si et seulement si pour tout second membre v € F, I'équation f (u) = v a au plus
une seule solution. poveq .

@ Calculer le noyau de f € ¥ (E,F)

1. La recherche du noyau consiste par définition en la réso-
lution de I'équation linéaire homogene f(u = 0 (soit un
systeme linéaire, soit une équation différentielle linéaire
homgene, la recherche de polynémes, de matrices etc.)

2. Sion est en dimension finie et que |'on dispose de bases de
E et F, on peut analyser matriciellement le noyau T14-7.

3\
J

B Exemple 2.
Soit E = R3[X], et f : P — P’. Déterminer le noyau de f. Etudier I'injectivité de f.

@ Montrer que f € 4(E,F) est injective

On calcule le noyau T14-2 et on prouve que la seule solution
de I'équation f(u) =0 est u= 0. Matriciellement ( T14-2 2. ),
cela revient a prouver que la matrice de f est de rang p avec les
notations de T14-6

H Exercice 2.
1. Soit T : €*° (R) > ¢*° (R),y — y’—2y. Déterminer le noyau de T.

E) Image - surjectivité

mDéfinitiond ....... ... .. ... [Image d’une application linéaire]
Si f € 4(E,F), Im f .t I'ensemble valeurs prises par f : Imf = {f(u) ue€E}. porowm .
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BProposition 3 ........ .. ... e [Propriétés de 1’image]
Soit f € %(E,F).

1. Im f est un sev de F.
2. f estsurjective si et seulement si Im f = F.

3. f estsurjective si et seulement si pour tout second membre v € F, '’équation f(u) = v a au moins
une solution u dans E.

m Calculer I'image de f € 4(E,F)

1. La recherche d'une base de I'image n'est pas immédiate
en générale, ni forcément simple car cet ensemble est [pa-
ram).

2. Néanmoins, si on est en dimension finie et que I'on dispose
de bases, on peut analyser matriciellement I'image T14-7.

B Exemple 3.

Dans E = R3[X], si f : P— P’, f n’est pas surjective puisque si P € E le degré de f(P) est au plus 2, donc I’équation
f(P) = Q n’a pas de solution dans E pour le second membre Q = X3 par exemple.

F) Bijectivite

B DEfinitioNn S ... ... e [Bijectivité]
f € ¥(E, F) est bijective si elle est injective et surjective.

2 Cas de la dimension finie

A) Matrice d’une application linéaire sur des bases

m Définition 6 ................... [Matrice d’une application linéaire sur des bases données]
Soit E, F deux espaces vectoriels de dimension finie respectivement p et n. Soit f € ¥ (E,F), B =
(el, .. ,ep), et Br = (f;,...,f,), des bases respectives de E et F. La matrice de f sur les bases %, By
est la matrice dont la j-eme colonne est celle des coordonnées du vecteur f (e;) décomposé sur la base

B
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m Ecrire la matrice A de f € ¥ (E,F) sur des bases données
1. On applique Déf. 6 Pour cela, avec les notations de
Déf. 6 :

a) La matrice posséde p colonnes et n lignes.

b) On calcule f(eq),...,f(ep).
¢) On décompose ce qui vient d'étre calculé sur %B;.

2. On recopie les coordonnées obtenues sur cette décompo-
sition en colonnes, ce qui donne la matrice cherchée :

(e1) f(e ) décomposé
sur les vecteurs

f1
Matg 4, (f)=

m Exemple 4. ool a et (Jauﬁ e C duk lﬁ"‘D(\ )

Si A :R,[X]— R,[X] est définie par : A(P) =P (X + 1) —P, donner sa matrice A sur les bases canoniques.

BCorollaire 1 ...... ... e [Egalité de deux app. lin]
Deux applications linéaires ayant les mémes matrices sur des bases données sont égales.

H Définition7 ................. [Application linéaire canoniquement associée & une matrice ]
Inversement , si A € .4, ,(K), A peut étre vue comme la matrice de I'application linéaire f € £ (K",K")
dont la matrice sur les bases canoniques est A.

B) Analyse matricielle du noyau

BTG OremMe 2 ... [Base du noyau ]
Avec les notations de Déf . 6 Un systeme d’équations du noyau de f, et donc une base de ce dernier (en
coordonnées) s’obtient a partir du systeme linéaire (A|0), et f est injective ssi rg A= p.

B Exemple 5.
Calculer le noyau de A de 'Exemple 4.

C) Analyse matricielle de I'image

BThEoreme 3 ... e [Base de l'image]
Avec les notations de Déf .6, une famille génératrice de I'image de f est donnée (en coordonnées)
par les colonnes de A. En extrayant de cette famille une famille libre, on en tire une base de I'image de
f, et f est surjective ssi rg A=n.

B Exemple 6.
Reprenons Exple 4. Déterminer L'image de A.

D) Rang. Théoréeme du rang

mDéfinition8 ........ ... ... [Rang d’une application linéaire]
Le rang d’'une application linéaire est la dimension de son image.
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BThEOoremMe 4 ... e [Calcul du rang]
Avec les notations de la définition Déf. 6, le rang de f est celui de A.

B TREOremMe S ... [Théoréme du rang]
Si E est de dimension finie, et si f € £ (E,F), alors Imf est de dimension finie et :

dimker f +rgf = dimE.

@ Noyau d’une matrice de petit format

Les combinaisons linéaires de colonnes permettent rapidement
de trouver des vecteurs du noyau. Cette technique, combinée au
théoreme du rang, permet rapidement de trouver une base du

noyau.

@ Traitement matriciel des applications linéaires

1. On écrit la matrice de F sur des bases bien choisies ou
données avec T14-5

2. Calcul du noyau : utiliser Thm. 1
3. Calcul de I'image : utiliser Thm. 2

4. = Dans les deux cas, ne pas oublier de reconvertir en
vecteurs dans la réponse finale les colonnes calculées, qui
ne sont que les coordonnées des vecteurs sur les bases
de travail, et pas les vecteurs eux-mémes. On conclura
toujours en écrivant : «en revenant aux vecteurs :...» et on
controlera que les vecteurs écrits sont bien des vecteurs :

— de E pour le calcul du noyau.

— de F pour le calcul de I'image.

B Exemple 7.

Dans le précédent exemple, on voit que A(1) = 0, donc 1 est dans le noyau de 'endomrphisme A. Comme A est
visiblement de rang 2, A est de rang 2 (Thm. 5). Avec le théoreme du rang, ker A est de dimension 3—2 = 1. Comme
on a trouvé un vecteur non nul du noyau, il en constitue une base donc une base de ker A est la famille (1).

M Théoreme6 ................................ [ Caractérisation des isomorphismes en dimension finie]

Soit E, F deux espaces vectoriels de dimension finie et f € £ (E,F).

1. SidimE > dimF, f ne peut étre injective.
2. SidimE <dimF, f ne peut étre surjective.
3. SidimE =dimF, sont équivalents :

a) f est injective.

b) f est surjective.

c) f est bijective.
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3 Changement de base entre espaces de dimension finie

BThéoréme 7 ...........oo i i [ Formule du changement de base]
Soit f un endomorphisme d’un espace vectoriel E de dimension finie n > 0, dont % et %’ sont deux
bases. Soit A (resp. A’) la matrice de f sur la base % (resp. %’) et P la matrice de passage de %8 a %’.
Alors A et A’ sont lides par : A’ = P71AP

BMCorollaire 2 ... [Interprétation ]
Deux matrices semblables représentent un méme endomorphisme mais écrit sur des bases différentes.
Elles ont donc le méme spectre.

4 Diagonalisation

A) Valeurs propres

EmDéfinition9 ......... ... [valeur propre - vecteur propre associé]

Soit E un K-espace vectoriel et f € £ (E). On appelle valeur propre de f tout scalaire A pour lequel
I’équation suivante, appelée équation aux valeurs propres, admet une solution u non nulle :

f(u) = Au.

B Exemple 8.
Valeurs propres dVérivation. On considere 'endomorphisme de E = ¢ °° (R) défini par :

[2¢
D(u)=1u'.
L’équation aux valeurs propres de la dérivation est :

D(u) = Au inconnue :

et A est un parametre.

On cherche pour quelles valeurs de A cette équation admet une solution non nulle.

EDéfinition 10 ... ... ... ... [Spectre d’un endomorphisme]
On appele spectre d'un endomorphisme f I'ensemble de ses valeurs propres. On le note Sp(f), ou
Spec(f) ou encore o(f).

B) Sous-espaces propres

W Définition 11 .................. ... ... [Sous-espace propre associé a une valeur propre]
Soit E un K-espace vectoriel et f € £ (E) et A une valeur propre de f. On appelle sous-espace propre
de f associé a la valeur propre A I'ensemble noté E, et défini par :

E; :=ker(f — Aldg)

Lycée Chateaubriand, Rennes
Classe de B} 2025-2026

MY Patel Sl06)




Q
: A #
([ML{(J.—
O(M
X: dﬁﬁ’d—( ann
fM
X"g

02£
n,l- .
_ P 3
Al w
fOM
A- B






H Proposition 4 [Propriétés des sous-espaces propres]
Soit E un K-espace vectoriel et f un endomorphisme de E.

1. Les sous-espaces propres de f sont des sous-espaces vectoriels de E.
2. ucker(f —Aldg) & f(u) = Au.

3. Les éléments du sous-espace E; sont les vecteurs propres associés a la valeur propre A auxquels
on a ajouté le vecteur nul 0.

Les sous-espaces propres sont de dimension au moins 1. En particulier, A n’est pas une valeur
propre si et seulement si E; = {0}.
Le noyau de f est le sous-espace propre associé a la valeur propre 0.

\

I AAA QY P 4 S W S
UBAASGUBSCS PacelPiopresrasqoelas & anewalcur

rovre-non mille-senhinelnsdanelim A
ropre-Ran lle~sentiaeitsvGanswannagt Ge | .

P
Les sous-espaces propres de f sont stables par f

VAe€o(f) VYueE u€E;= f(u)€E,.

C) Valeurs propres et indépendance linéaire

B Théoréeme 8 [Vecteurs propres associés a des valeurs propres distinctes ]
Soit E un K-espace vectoriel et f € £ (E). Soit p > 1. Si uy,...,u, sont p vecteurs propres associés a

des valeurs propres deux a deux distinctes, alors la famille & = (ul, e up) est libre.

H Corollaire 3 [Intersection des sous-espaces propres]
Deux sous-espaces propres associés a des valeurs propres distinctes n’ont que le vecteur nul comme
vecteur en commun :

V(A1) EK® A #u=E,NE,={0}
Hm Corollaire 4 [Sert dans tous les exercices]

En juxtaposant des bases (ou simplement des familles libres) de sous-espaces propres deux a deux
distincts d'un endomorphisme (ou d’une matrice), on obtient encore une famille libre.

5 Diagonalisation en dimension finie

Si on dispose d’une base de E, diagonaliser un endomorphisme de E équivaut a diagonaliser sa matrice.

A) Nombre de valeurs propres

H Corollaire 5 [Nombre de valeurs propres en dimension finie]
Soit n > 0 un entier. Si E est un K-espace vectoriel de dimension finie n et si f est un endomorphisme
de E, alors f posséde au plus n valeurs propres distinctes.

H Exemple 9.
Soit f 'endomorphisme de K,[X ] dont la matrice est donné par : A=

On note F = ker(f —Id) et G = ker(f +1d)
1. Donner des bases de F et G.
2. Justifer que la juxtaposition de ces bases donne une base de K,[X].

3. Donner la matrice de f sur cette nouvelle base.
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B Corollaire 6
Soit E un espace vectoriel de dimension finie n, et 9 une base de E. Soit f un endomorphisme de E.
Notons A la matrice de f sur la base 98. Sont équivalents :

1. Aest diagonale.

2. 2B est une base de vecteurs propres de f.

B Définition 12 ... ... .. e [Diagonalisabilité]
Soit n > 0 un entier, E un K-espace vectoriel de dimension finie n, et f € £ (E).
On dit que f est diagonalisable si il existe une base 28 de E constituée de vecteurs propres de f.

B) Critere de diagonalisabilité
BThéoreme 9 ............. i [ Caractérisation de la diagonalisabilité |

Soit E un espace vectoriel de dimension finie n, et 98 une base de E. Soit f un endomorphisme de E.
Sont équivalents :

1. f est diagonalisbale.
2. La somme des dimensions des sev propres de f vaut au moins n.
En particulier, si f admet exactement n valeurs propres distinctes :

1. f est diagonalisable.

2. Les sous-espaces propres de f sont de dimension 1.
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