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• Revoir la fiche de révisions de sup sur les applications linéaires de Kp
dans Kn

.

• E, F sont des K-espaces vectoriels, de dimension finie ou non.

• Les vecteurs (c-à-d. les éléments de E ou F) seront notés par des lettres grasses.

1 Définitions générales

A) Terminologie

Ñ Définition 1 . . . . . . . . . . . . . . . . . . . [L (E, F) ,L (E), endomorphisme, isomorphisme, automorphisme]

1. L (E, F) : ensemble des applications linéaires de E dans F .

2. Si f 2 L (E, F) est bijective, f s’appelle un isomorphisme.

3. L (E) =L (E, E). Un élément de L (E) s’appelle un endomorphisme.

4. Un isomorphisme de L (E) s’appelle un automorphisme.

B) Application linéaire

Ñ Définition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Application linéaire]

Une application f : E! F entre deux K-ev est linéaire si pour tous vecteurs u,v de E et � 2 K :

f (u+�v) = f (u) +� f (v).

Ce qui signifie que l’image d’une combinaison linéaire quelconque est la combinaison linéaire des

images.

Ñ Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Opérations]

1. Une combinaison linéaire d’applications linéaires est linéaire : L (E, F) est un espace vectoriel.

2. Une composée d’applications linéaires est linéaire.

3. Si une application linéaire est bijective, sa bijection réciproque aussi.

Ñ Exemple 1.

Exemples universels, et donc triviaux (on retrouve ces applications linéaires dans tous les espaces vectoriels que l’on

veut) :

1. L’application nulle

0 : E�!F

x 7! 0

est linéaire.

2. L’identité de E :

IdE : E�!E

x 7! x

est linéaire.

3. Soit � 2 K. L’homothétie de rapport � de E :

�IdE : E�! E

x 7! �x

aussi.

◆
✓
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C) Exemples classiques d’applications linéaires

• Dans les espaces vectoriels de fonctions

1. Multiplication par une fonction g donnée : Si g 2 E = C 0 (I) :
Mg : E�! E

f 7! gf

2. Composition à droite par une fonction g donnée : Si g 2 E = C 0 (I) :
C g : E�! E

f 7! f � g

3. Dérivation des fonctions (k 2 N?, ou k = 1 mais avec dans ce dernier cas la convention

k� 1=1) :

d

dx
: C k(I)�!C k�1(I)

f 7! f0
.

• Dans les espaces vectoriels de polynômes

1. Composition à droite par un polynôme Q donné : Si Q 2 K[X ] est fixé :

TQ : K[X ]�!K[X ]
P 7! P �Q

(cas classique : Q= X+ 1, et dans ce cas TQ(P) = P(X+ 1) )

2. La multiplication par un polynôme Q fixé :

MQ : K[X ]�!K[X ]
P 7! QP

3. La dérivation des polynômes :

D : R[X ]�!R[X ]
P 7! P0

(ici, I = R et D est la restriction de d/dx à R[X ] ⇢ C1 (R)).

T14·1 Montrer qu’une application f est linéaire/un endomorphisme

1. On applique dans la plupart des cas la Déf. 2.

2. Souvent, les applications linéaires f étudiées sont des

combinaisons linéaires et composées de ces applications

classiques. On peut donc au lieu d’appliquer Déf.2 à f ,

se contenter d’établir que ces dernières sont linéaires par

Déf. 2 et on utilise Prop. 1.

3. Si on doit prouver en plus que f est un endomorphisme

de E, on ne doit pas oublier de prouver si u est un vecteur

de E, alors f (u) est aussi dans E.

Ñ Exercice 1.

Montrer que les applications suivantes sont linéaires :

1. f1 : P 7! X
2
P
0 + 3P (de R[X ] dans lui-même).

2. f2 : P 7! X
2
P
0 + 3P (de R2[X ] dans R3[X ]).

◆
✓
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D) Noyau - injectivité

Ñ Définition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Noyau]

Si f 2 L (E, F), ker f et l’ensemble des solutions u 2 E de l’équation linéaire homogène

(H) f (u) = 0.

Ñ Remarque 1.

1. L’équation (H) est une équation linéaire vectorielle, c’est-à-dire que l’inconnue est un vecteur.

2. Ainsi ker f = {u 2 E | f (u) = 0}.

Ñ Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Propriétés du noyau]

Soit f 2 L (E, F).

1. ker f est un sev de E.

2. f est injective si et seulement si la seule solution de l’équation f (u) = 0 est 0, c-à-d si et seulement

si ker f = {0}.
3. f est injective si et seulement si pour tout second membre v 2 F , l’équation f (u) = v a au plus

une seule solution.

T14·2 Calculer le noyau de f 2 L (E, F)

1. La recherche du noyau consiste par définition en la réso-

lution de l’équation linéaire homogène f (u = 0 (soit un

système linéaire, soit une équation di�érentielle linéaire

homgène, la recherche de polynômes, de matrices etc.)

2. Si on est en dimension finie et que l’on dispose de bases de

E et F, on peut analyser matriciellement le noyau T14·7.

Ñ Exemple 2.

Soit E = R3[X ], et f : P 7! P
0
. Déterminer le noyau de f . Étudier l’injectivité de f .

T14·3 Montrer que f 2 L (E, F) est injective
On calcule le noyau T14·2 et on prouve que la seule solution

de l’équation f (u) = 0 est u = 0. Matriciellement ( T14·2 2. ),

cela revient à prouver que la matrice de f est de rang p avec les

notations de T14·6

Ñ Exercice 2.

1. Soit T :C1 (R)!C1 (R) , y 7! y
0 � 2y . Déterminer le noyau de T.

E) Image - surjectivité

Ñ Définition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Image d’une application linéaire]

Si f 2 L (E, F), Im f et l’ensemble valeurs prises par f : Im f = { f (u) u 2 E}.◆
✓
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Ñ Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[Propriétés de l’image]

Soit f 2 L (E, F).

1. Im f est un sev de F .

2. f est surjective si et seulement si Im f = F.

3. f est surjective si et seulement si pour tout second membre v 2 F, l’équation f (u) = v a au moins
une solution u dans E.

T14·4 Calculer l’image de f 2 L (E, F)

1. La recherche d’une base de l’image n’est pas immédiate

en générale, ni forcément simple car cet ensemble est [pa-

ram].

2. Néanmoins, si on est en dimension finie et que l’on dispose

de bases, on peut analyser matriciellement l’image T14·7.

Ñ Exemple 3.

Dans E = R3[X ], si f : P 7! P0, f n’est pas surjective puisque si P 2 E le degré de f (P) est au plus 2, donc l’équation

f (P) = Q n’a pas de solution dans E pour le second membre Q= X3
par exemple.

F) Bijectivité

Ñ Définition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Bijectivité]

f 2 L (E, F) est bijective si elle est injective et surjective.

2 Cas de la dimension finie

Ñ Théorème 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Rigidité]

A) Matrice d’une application linéaire sur des bases

Ñ Définition 6 . . . . . . . . . . . . . . . . . . . [Matrice d’une application linéaire sur des bases données]

Soit E, F deux espaces vectoriels de dimension finie respectivement p et n. Soit f 2 L (E, F), BE =�
e1, . . . ,ep
�
, et BF = (f1, . . . , fn), des bases respectives de E et F. La matrice de f sur les bases BE ,BF

est la matrice dont la j-ème colonne est celle des coordonnées du vecteur f (ej) décomposé sur la base

BF (Déf. 11 fiche Espaces vectoriels) : ◆
✓

⇣
⌘
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T14·5 Écrire la matrice A de f 2 L (E, F) sur des bases données

1. On applique Déf. 6 Pour cela, avec les notations de

Déf. 6 :

a) La matrice possède p colonnes et n lignes.

b) On calcule f (e1), . . . , f (ep).
c) On décompose ce qui vient d’être calculé sur BF .

2. On recopie les coordonnées obtenues sur cette décompo-

sition en colonnes, ce qui donne la matrice cherchée :

MatBE ,BF
( f ) =

f (e1)
#

f (ep)
#

. . .
décomposé

sur les vecteurs

f1

fn

.

.

.

Ñ Exemple 4.

Si � : R2[X ]! R2[X ] est définie par : �(P) = P (X+ 1)� P, donner sa matrice A sur les bases canoniques.

Ñ Corollaire 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Égalité de deux app. lin]
Deux applications linéaires ayant les mêmes matrices sur des bases données sont égales.

Ñ Définition 7 . . . . . . . . . . . . . . . . . [Application linéaire canoniquement associée à une matrice ]

Inversement , si A2Mn,p(K), A peut être vue comme la matrice de l’application linéaire f 2 L (Kp
,Kn)

dont la matrice sur les bases canoniques est A.

B) Analyse matricielle du noyau

Ñ Théorème 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Base du noyau]
Avec les notations de Déf.6 Un système d’équations du noyau de f , et donc une base de ce dernier (en
coordonnées) s’obtient à partir du système linéaire (A|0), et f est injective ssi rg A= p.

Ñ Exemple 5.

Calculer le noyau de � de l’Exemple 4.

C) Analyse matricielle de l’image

Ñ Théorème 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Base de l’image]
Avec les notations de Déf.6, une famille génératrice de l’image de f est données (en coordonnées)

par les colonnes de A. En extrayant de cette famille une famille libre, on en tire une base de l’image de

f , et f est surjective ssi rg A=n.

Ñ Exemple 6.

Reprenons Exple 4. Déterminer L’image de �.

D) Rang. Théorème du rang

Ñ Définition 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Rang d’une application linéaire]

Le rang d’une application linéaire est la dimension de son image.◆
✓

⇣
⌘
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Ñ Théorème 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Calcul du rang]
Avec les notations de la définition Déf. 6, le rang de f est celui de A.

Ñ Théorème 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Théorème du rang]
Si E est de dimension finie, et si f 2 L (E, F), alors Im f est de dimension finie et :

dimker f + rg f = dim E.

T14·6 Noyau d’une matrice de petit format
Les combinaisons linéaires de colonnes permettent rapidement

de trouver des vecteurs du noyau. Cette technique, combinée au

théorème du rang, permet rapidement de trouver une base du

noyau.

T14·7 Traitement matriciel des applications linéaires

1. On écrit la matrice de F sur des bases bien choisies ou

données avec T14·5
2. Calcul du noyau : utiliser Thm. 1

3. Calcul de l’image : utiliser Thm. 2

4. Dans les deux cas, ne pas oublier de reconvertir en
vecteurs dans la réponse finale les colonnes calculées, qui

ne sont que les coordonnées des vecteurs sur les bases

de travail, et pas les vecteurs eux-mêmes. On conclura

toujours en écrivant : «en revenant aux vecteurs :. . .» et on

contrôlera que les vecteurs écrits sont bien des vecteurs :

— de E pour le calcul du noyau.

— de F pour le calcul de l’image.

Ñ Exemple 7.

Dans le précédent exemple, on voit que �(1) = 0, donc 1 est dans le noyau de l’endomrphisme �. Comme A est

visiblement de rang 2,� est de rang 2 (Thm. 5). Avec le théorème du rang, ker� est de dimension 3�2= 1. Comme

on a trouvé un vecteur non nul du noyau, il en constitue une base donc une base de ker� est la famille (1).

Ñ Théorème 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Caractérisation des isomorphismes en dimension finie]

Soit E, F deux espaces vectoriels de dimension finie et f 2 L (E, F) .

1. Si dim E > dim F , f ne peut être injective.

2. Si dim E < dim F , f ne peut être surjective.

3. Si dim E = dim F , sont équivalents :

a) f est injective.

b) f est surjective.

c) f est bijective. ◆
✓

⇣
⌘
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3 Changement de base entre espaces de dimension finie

Ñ Théorème 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Formule du changement de base]
Soit f un endomorphisme d’un espace vectoriel E de dimension finie n > 0, dont B et B0 sont deux

bases. Soit A (resp. A
0
) la matrice de f sur la baseB (resp.B0) et P la matrice de passage deB àB0.

Alors A et A
0

sont liées par : A
0 = P

�1
AP

Ñ Corollaire 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Interprétation ]
Deux matrices semblables représentent un même endomorphisme mais écrit sur des bases différentes.

Elles ont donc le même spectre.

4 Diagonalisation

A) Valeurs propres

Ñ Définition 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [valeur propre - vecteur propre associé]

Soit E un K-espace vectoriel et f 2 L (E). On appelle valeur propre de f tout scalaire � pour lequel

l’équation suivante, appelée équation aux valeurs propres, admet une solution u non nulle :

f (u) = �u.

Ñ Exemple 8.

Valeurs propres de la dérivation. On considère l’endomorphisme de E = C1 (R) défini par :

D(u) = u
0
.

L’équation aux valeurs propres de la dérivation est :

D(u) = �u inconnue :

et � est un paramètre.

On cherche pour quelles valeurs de � cette équation admet une solution non nulle.

Ñ Définition 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[Spectre d’un endomorphisme]

On appele spectre d’un endomorphisme f l’ensemble de ses valeurs propres. On le note Sp( f ), ou

Spec ( f ) ou encore �( f ).

B) Sous-espaces propres

Ñ Définition 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Sous-espace propre associé à une valeur propre]

Soit E un K-espace vectoriel et f 2 L (E) et � une valeur propre de f . On appelle sous-espace propre

de f associé à la valeur propre � l’ensemble noté E� et défini par :

E� := ker ( f ��IdE)◆
✓

⇣
⌘
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Ñ Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[Propriétés des sous-espaces propres]

Soit E un K-espace vectoriel et f un endomorphisme de E.

1. Les sous-espaces propres de f sont des sous-espaces vectoriels de E.

2. u 2 ker( f ��IdE), f (u) = �u.

3. Les éléments du sous-espace E� sont les vecteurs propres associés à la valeur propre � auxquels

on a ajouté le vecteur nul 0.

4. Les sous-espaces propres sont de dimension au moins 1. En particulier, � n’est pas une valeur

propre si et seulement si E� = {0} .
5. Le noyau de f est le sous-espace propre associé à la valeur propre 0.

6. Les sous-espaces propres associés à une valeur propre non nulle sont inclus dans l’image de f .

7. Les sous-espaces propres de f sont stables par f :

8� 2 �( f ) 8u 2 E u 2 E�) f (u) 2 E�.

C) Valeurs propres et indépendance linéaire

Ñ Théorème 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Vecteurs propres associés à des valeurs propres distinctes]
Soit E un K-espace vectoriel et f 2 L (E). Soit p � 1. Si u1, . . . , up sont p vecteurs propres associés à

des valeurs propres deux à deux distinctes, alors la famille F =
�
u1, . . . , up

�
est libre.

Ñ Corollaire 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Intersection des sous-espaces propres]
Deux sous-espaces propres associés à des valeurs propres distinctes n’ont que le vecteur nul comme

vecteur en commun :

8(�,µ) 2 K2 � 6= µ) E� \ Eµ = {0}

Ñ Corollaire 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Sert dans tous les exercices]
En juxtaposant des bases (ou simplement des familles libres) de sous-espaces propres deux à deux

distincts d’un endomorphisme (ou d’une matrice), on obtient encore une famille libre.

5 Diagonalisation en dimension finie

Si on dispose d’une base de E, diagonaliser un endomorphisme de E équivaut à diagonaliser sa matrice.

A) Nombre de valeurs propres

Ñ Corollaire 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Nombre de valeurs propres en dimension finie]
Soit n > 0 un entier. Si E est un K-espace vectoriel de dimension finie n et si f est un endomorphisme

de E, alors f possède au plus n valeurs propres distinctes.

Ñ Exemple 9.

Soit f l’endomorphisme de K2[X ] dont la matrice est donné par : A=

0
@

2 �2 1

2 �3 2

1 �2 2

1
A.

On note F = ker( f � Id) et G = ker( f + Id)

1. Donner des bases de F et G.

2. Justifer que la juxtaposition de ces bases donne une base de K2[X ].

3. Donner la matrice de f sur cette nouvelle base. ◆
✓

⇣
⌘
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Ñ Corollaire 6

Soit E un espace vectoriel de dimension finie n, et B une base de E. Soit f un endomorphisme de E.

Notons A la matrice de f sur la baseB . Sont équivalents :

1. A est diagonale.

2. B est une base de vecteurs propres de f .

Ñ Définition 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Diagonalisabilité]

Soit n> 0 un entier, E un K-espace vectoriel de dimension finie n, et f 2 L (E).
On dit que f est diagonalisable si il existe une baseB de E constituée de vecteurs propres de f .

B) Critère de diagonalisabilité

Ñ Théorème 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Caractérisation de la diagonalisabilité]

Soit E un espace vectoriel de dimension finie n, et B une base de E. Soit f un endomorphisme de E.

Sont équivalents :

1. f est diagonalisbale.

2. La somme des dimensions des sev propres de f vaut au moins n.

En particulier, si f admet exactement n valeurs propres distinctes :

1. f est diagonalisable.

2. Les sous-espaces propres de f sont de dimension 1.

◆
✓

⇣
⌘
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