
CH13 – Variables aléatoires réelles à densité
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Grille d’analyse des exercices

Exercice Question T Référence(s) Commentaires/remarques

1. T0 : technique ancestrale. Pas listée dans les techniques de base.

2. Déf : pas de technique livrée. Revenir à la définition.

3. C : utilisation d’un résultat de cours (théorème, proposition, etc.)

4. ? Question discriminante et plus difficile : demande raisonnement et enchaînement de techniques.
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1 Généralités

A) Densité

Ñ Définition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Densité de probabilité ou fonction de masse]
La fonction f est une densité de probabilité si les 4 conditions sont vérifiées :

1. f est définie sur R.

2. f est continue sur R sauf au plus en un nombre fini de points.

3. f est positive sur R.

4. l’intégrale généralisée

R +1
�1 f (t)dt existe et vaut 1.

B) Variable aléatoire réelle à densité

Ñ Définition 2 . . . . . . . . . . . . . . . . . . . . . . . . .[densité d’une variable aléatoire variable à densité]
Soit X une variable aléatoire réelle sur (⌦,T , P).

1. On dit que X admet la fonction f comme densité si :

a) La fonction f est une fonction de masse.

b) Pour tout réel x : P(X  x) =
Z x

�1
f (t)dt

2. On dit que X est à densité, ou qu’elle admet une densité, si il existe une fonction f telle que X

admette f comme densité. Dans ce cas, la densité est notée fX .

Ñ Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Quasi-unicité de la densité]
Une densité de probabilité d’une variable à densité est unique modulo un ensemble fini, c’est-à-dire :

si f et g sont deux densités de X , alors f et g prennent les mêmes valeurs partout sauf au plus en un

nombre fini de points.

C) Fonction de répartition

Ñ Définition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Fonction de répartition]

Si X est à densité de densité fX , sa fonction de répartition est définie par FX (x) =
Z x

�1
fX (t)dt.

Ñ Remarque 1.
Inutile de prouver la convergence de cette l’intégrale généralisée : elle converge car fX est une densité (en effet

l’existence de FX (x) pour tout réel x devient alors une simple conséquence la relation de Chasles).

Ñ Corollaire 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Caractérisation de la loi par la fonction de répartition]
La loi d’une VAR à densité est déterminée par sa fonction de répartition : si on reconnaît en FX la fonction

de répartition d’une loi connue (usuelle ou déjà calculée par ailleurs p.ex), on peut affirmer que X suit

aussi cette loi connue.

Ñ Exemple 1.
Si la fonction de répartition de la variable Y est donnée par :

FY (y) =

������

0 si y  0

y si 0 y  1

1 si y � 1

alors on peut affirmer que Y suit une loi uniforme sur [0, 1]. ◆
✓

⇣
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Ñ Définition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Loi d’une variable à densité]

1. Si X est à densité, on appelle loi de X toute densité de X .

2. On dit que deux variables aléatoires à densité ont même loi si elles admettent une densité en

commun.

D) Règles de calcul des probabilités avec les variables à densité

Ñ Théorème 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Calcul]
Soit X une VAR à densité de densité fX .

1. Pour tout réel a, P(X = a) = 0.

2. Si a < b, sont deux réels les probabilités des évènements X 2 [a, b], X 2 [a, b[, X 2]a, b] et

X 2]a, b[ sont toutes égales et valent

Z b

a

fx(t)dt = FX (b)� FX (a).

3. Pour tout réel t :

P(X � t) = P(X > t) = 1� FX (t)

Ñ Remarque 2.
l’égalité P(X � t) = P(X > t) est en général fausse, sauf si X est une variable à densité.

E) Théorème le plus important

Ñ Théorème 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Caractérisation des variables à densité]

1. Soit Y une VAR sur (⌦,T , P) et FY sa fonction de répartition.

• Si les deux conditions suivantes sont remplies :

a) FY est continue sur R.

b) Il existe un ensemble fini (ou vide) � tel qu’en dehors de �, la fonction FY est C 1 a
,

• alors on peut affirmer les deux points suivants :

a) Y est bien une variable aléatoire à densité.

b) De plus, on une densité fY de Y est donnée par :

fY (t) =
����

0 sit 2�
F
0
Y
(t) sinon .

2. Enfin, Si une variable est à densité, alors il est vrai que sa fonction de répartition est continue sur

R et C 1
-sauf.

a. On dit dans ce cas que F
Y

est C 1
sauf peut-être au plus en un nombre fini de points, abrégé «C 1

-sauf».

Ñ Remarque 3.
On utilise ce théorème pour prouver qu’une variable Y fabriquée à partir d’une VAR à densité X est aussi à densité.

◆
✓

⇣
⌘
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T131 Comment prouver qu’une variable donnée est à densité ?
1. On peut reconnaître une loi usuelle.

2. Sinon on examine sa fonction de répartition :

a) Soit on reconnaît la fonction de répartition d’une variable

de loi connue et on applique le Corollaire 1.

b) Soit on calcule la fonction de répartition et on applique

le Théorème 2, voir T132.

c) Un cas plus expéditif que b) est celui où l’énoncé dit :

«vérifier que la variable X est à densité et qu’une densité

est f (x) = . . .» : il su�t de calculer la fonction de ré-

partition de X et la comparer à
R x
�1 f (t)dt. On conclut

par cor. 1 encore.

◆
✓

⇣
⌘
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T132 Comment appliquer Th. 2 pour une VAR Y ?
En général, Y est donnée comme dépendant d’une variable X

dont on sait qu’elle est à densité. Pour prouver que Y est à

densité :

1. On commence par calculer l’espace image de Y

a) c’est en général un intervalle I , et il est tel que P(Y 2
I) = 1. En pratique on écrit quelque chose comme :

« Y (⌦) = I quasi-certainement»

b) mettons alors I = (a, b) (a, b, éventuellement infi-

nis,et bornes éventuellement fermées ou non)

2. Ensuite, on exprime FY (t) en termes de FX . Pour cela :

a) on traite rapidement le cas t 62 I : FY (t) = 1 si t > b

et FY (t) = 0 si t < a le cas échéant. (en e�et, si p.ex
b = +1, le cas t > b est vide).

b) On traite le cas t 2 I : on fixe t 2 (a, b) et on

transforme l’évènement [Y  t] en un évènement

en termes de X .

c) Ceci permet de calculer FY (t) en termes de de FX :

FY (t) = FX (u(t)). Si vous avez correctement traité

2.b), votre u(t) doit être dans X (⌦). Sinon, il y a

une erreur.

d) La synthèse de 1. et 2. nous donne donc l’expres-

sion de FY (t) en tout réel t.

3. À ce stade, on doit avoir la valeur de FY (t) pour tout
réel t. Ensuite :

a) Soit on reconnaît en FY (t)pour tout t 2 R l’expres-

sion d’une fonction de répartition d’une loi connue

et on conclut avec le Cor. 1
b) Sinon on vérifie que FY ainsi obtenue est :

i) C 0(R). En général, cela se voit sauf aux points

de raccords éventuels a, b (il faut donc être soi-

gneux pour ces points là).

ii) C 1
en dehors de l’ensemble � = {a, b} (cela

su�t d’après la condition 2. Théorème 2).

Cela devrait se voir par opérations sur des fonc-

tions usuelles et FX , dont on sait qu’elle est C 1

sauf en un nombre fini de points au plus d’après

Théorème 2 2..

4. Enfin, si on souhaite une densité de Y , on l’obtient en

dérivant FY là où c’est possible (c’est impossible au plus

en un nombre fini de points, mais le fait de ne pas avoir

de valeur pour la densité en ces points-là n’a aucune im-

portance d’après Proposition 1).

Ñ Exemple 2.

Soit X une VAR à densité de loi fX : x 7! x · 1[0,1]. Montrer que la VAR X
2

est à densité et en donner la loi.◆
✓

⇣
⌘
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Ñ Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Transformation affine d’une variable à densité]
Soit a, b deux réels tels que a 6= 0 et X une variable à densité. Soit Y = aX + b la transformée affine de

X . Alors :

1. Y est une variable aléatoire à densité.

2. Une densité de Y s’exprime en dehors d’un ensemble fini à l’aide d’une densité de X par

8y 2 R fY (y) =
1

|a| fX

Å
y � b

a

ã

Ñ Exemple 3.

Si X suit une loi uniforme sur [a, b], Y = (b � a)X + a est a densité donnée par : fY (y) =
1

b� a
1[0,1]

⇣
y � a

b� a

⌘
. Or,

y � a

b� a
2 [0, 1], y 2 [a, b], 1[a,b](y) = 1. On retrouve bien la loi uniforme sur [a, b].

Ñ Exercice 1.
(D’après oral 2018) Soit a > 0 et b un réel. On dit qu’une variable aléatoire suit une loi de Laplace de paramètres

a, b si elle admet pour densité la fonction fa,b définie sur R par :

8t 2 R fa,b(t) =
1

2a
exp

Å
� |t � b|

a

ã
.

Justifier que fa,b est bien une densité.

2 Moments

A) Moment d’ordre r

Ñ Définition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Moment d’ordre r d’une var à densité]

Soit r 2 N, r � 2 et X une variable aléatoire à densité sur un espace probablilisé (⌦,T , P) de densité fx .

1. On dit que X admet un moment d’ordre r si l’intégrale

Mr :=
Z +1

�1
t

r
fX (t)dt

est absolument convergente.

2. Dans ce cas, le réel Mr s’appelle moment d’ordre r de X .

Ñ Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Relation d’existence entre les moments]

1. Si X admet un moment d’ordre r, alors X admet un moment d’ordre s pour tout entier s  r.

2. En particulier, si X admet un moment d’ordre 2, alors X admet une espérance et une variance.

B) Espérance

Ñ Définition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Espérance des variables à densité]
Soit X une variable aléatoire à densité et fX une densité de la loi X .

1. On dit que X admet une espérance si elle admet un moment d’ordre 1.

2. Si X admet une espérance, l’espérance de X est définie par :

E(X ) =
Z +1

�1
t fX (t)dt

◆
✓

⇣
⌘
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Ñ Remarque 4.
on doit vérifier l’absolue convergence.

Ñ Exemple 4.

La densité définie sur R par fX (t) =
1

⇡

1

1+ t2
n’admet pas d’espérance.

Ñ Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Propriétés de l’espérance]
Soit X , Y deux variables aléatoires à densité sur un espace probablilisé (⌦,T , P). En plus des propriétés

classiques :

1. (positivité) Si X est à valeurs positives, E(X )� 0.

2. Si X admet une espérance, |X | admet une espérance aussi. De plus : |E(X )| E(|X |).

Ñ Théorème 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Formule de transfert]
Soit X une variable à densité de densité fX sur (⌦,T , P), et u une fonction telle que la VAR Y = u(X )
est aussi une variable à densité.

1. u(X ) admet une espérance si et seulement si l’intégrale généralisée

R +1
�1 u(t) fX (t)dt converge

absolument.

2. Dans ce cas :

E(u(X )) =
Z +1

�1
u(t) fX (t)dt

Ñ Remarque 5.

1. On peut ainsi connaître l’espérance de la variable u(X ) sans même disposer d’une densité de cette dernière :

la connaissance de la densité de X suffit à calculer l’espérance de u(X ).

2. On dit formule de transfert, car le théorème affirme que E(Y ) =
Z +1

�1
x fu(X )(x)dx =
Z +1

�1
u(x) fX (x)dx

C) Variance. Écart-type

Ñ Définition 7 . . . . . . . . . . . . . . . . . . . . . . . . .[Moment d’ordre 2 d’une variable à densité. Variance]
Soit X une variable aléatoire à densité de densité fX . On dit que X admet une variance si la VAR

[X � E(X )]2 admet une espérance et on pose alors :

V (X ) = E

�
[X � E(X )]2
�

et �X :=
p

V (X ) son écart-type.

Ñ Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[Caractérisation en termes de moments]
X admet une variance si et seulement si X admet un moment d’ordre 2.

Ñ Théorème 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Formule de Koenig]
Si X admet une variance, alors X admet aussi un moment d’ordre 2 et :

V (X ) = E(X 2)� (E(X ))2◆
✓

⇣
⌘
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Ñ Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Propriétés de la variance]
Soit X une variable aléatoire à densité sur un espace probablilisé (⌦,T , P) et admettant une variance.

Alors :

1. (Positivité). V (X )> 0. En particulier, une variable à densité ne peut être de variance nulle.

2. (Homogénéité.) Si X est exprimée en unités u, V (X ) est en unité u
2
, et �X en unités u.

3. (Homogénité et invariance par translation). Si a, b sont deux réels :

V (ax + b) = a
2
V (X )

4. La variable aléatoire
X � E(X )
�X

est centrée réduite.

3 Densités uniformes sur un segment

A) Définition

Ñ Définition 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[Loi U (a, b)]
Soit a < b deux réels et I un intervalle d’extrémités a, b. X suit une loi uniforme sur l’intervalle I si elle

admet pour densité :

ua,b =
1

b� a
1[a,b]

On note X †U (a, b).

Ñ Remarque 6.
C’est la loi qui n’accorde aucune préférence (aucun biais) à tout réel de I . Le caractère ouvert ou fermé des extrémités

n’intervient pas.

B) Fonction de répartition

Ñ Proposition 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Fonction de répartition]

Si X †U (a, b), sa fonction de répartition est la fonction :

FX : x 7!

8
>><
>>:

0 si x  a

x � a

b� a
si a < x  b

1 si x > b

C) Graphique

Densité

0
x

y

a b

1

b� a

a b

x

1

Fonction de répartiton ◆
✓
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D) Moments

Ñ Proposition 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Moments de la loi U (a, b)]
Si X †U (a, b), X admet une espérance et une variance et :

1. E(X ) =
a+ b

2
.

2. V (X ) =
(b� a)2

12
.

E) Simulation

1 from random import random
2 def unif(a,b):
3 retrurn a+(b-a)* random ()

F) Propriétés complémentaires

Ñ Proposition 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Proportion]

Si X † U (a, b), alors pour tout intervalle J , P(X 2 J) =
M �m

b� a
où m, M sont les extrémités de

l’intervalle J \ [a, b].

Ñ Remarque 7.
Résultat à la base des méthodes de simulation.

Ñ Proposition 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[Invariance par translation affine]
Si X †U (0, 1), pour tous réels a > 0 (resp. a < 0) et b, la variable Y = aX + b suit une loiU (b, a+ b)
(resp. U (a+ b, b)).

4 Densités exponentielles

A) Définition

Ñ Définition 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Loi exponentielle de paramètre �]
Soit � > 0. La VAR X suit une loi exponentielle de paramètre � si elle admet pour densité :

f�(x) =
⇢
�e
��x

si x � 0

0 sinon

On note X † E (�).

Ñ Proposition 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Fonction de répartition]
Si X † E (�), sa fonction de réaprtition est la fonction donée par :

8x 2 R F�(x) =
⇢

1� e
��x

si x � 0

0 sinon
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B) Graphique (�1 > �2)

Densité

0
x

y

�1

�2

x

1

Fonction de répartition

C) Moments

Ñ Proposition 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Moments de la loi E (�)]
Si X † E (�) alors X admet une epsérance et une variance et

1. E(X ) =
1

�
.

2. et V (X ) =
1

�2
.

D) Simulation

On utilse le fait que si U †U (0, 1) alors X = �1

�
ln U † E (�) (à prouver : par la méthode classique).

Ñ Exercice 2.
Le faire !

1 from random import random
2 from numpy import log
3 def expo(mu):
4 return -1/mu * log( random ())

E) Propriétés complémentaires

Ñ Proposition 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[Absence de mémoire]
Si X † E (�) alors :8(T, t) 2 R?2+

P(X > T + t|X > T ) = P(X > t)

Ñ Proposition 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Changement d’échelle]

Si X † E (�) , alors pour a > 0, aX † E
Å
�

a

ã

Ñ Exercice 3.
Soit ↵ > 0, et (pN ) une suite de réels de ]0,1[ telle que pN ⇠

N!1
↵

N
. Soit (XN )N�1 une suite de VAR de loi GN?(pN ).

Montrer que pour tout réel t > 0 : P

Å
XN

N
> t

ã
⇠

N!1
e
�↵t

.

Autrement dit, pour N assez grand, la loi de
XN

N
est approximativement exponentielle de paramètre ↵.
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5 Densités gaussiennes

A) Définition

Ñ Définition 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Loi N (m,�2)]

1. Soit m 2 R, � > 0. La VAR X suit une loi normale de paramètres m,�2
si elle admet pour densité :

fm,�(x) =
1

�
p

2⇡
e
� (x�m)2

2�2

On note X †N (m,�2).

2. La loi N (0,1) est appelée loi normale centrée réduite.

Ñ Définition 11 . . . . . . . . . . . . . . . . [Fonction de répartition de la loi normale centrée réduite]
Fonction notée �.

8x 2 R �(x) =
1p
2⇡

Z x

�1
e
� t

2

2 dt

B) Graphique (�1 > �2), m= 0

Densité

0
x

y
1

�2

p
2⇡ •

•
1

�1

p
2⇡

0
x

y

•1

2

Fonction de répartition
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C) Interprétation graphique des paramètres

Distribution de la masse
M = 1

�
p

2⇡
•

M

2

�' 0,6M

' 1, 17�

m

m+1�m�1� •• m+2�m�2� •• m+3�m�3� ••

68,3% de la masse totale

95,4% de la masse totale

99,7% de la masse totale

D) Moments

Ñ Proposition 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Moments de la loi N
�
m,�2
�
]

Si†N
�
m,�2
�
, alors X admet une espérance et une variance et :

1. E(X ) = m.

2. V (X ) = �2

E) Quantiles de la loi normale

Ñ Définition 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[Quantile d’ordre ↵]
Pour ↵ 2 [0,1], c’est l’unique réel u↵ tel que �(u↵) = ↵.

0
x

u↵

fonction de masse

masse totale = 1

•

↵

100↵% de la masse

1p
2⇡

Ñ Remarque 8.
Interprétation : u↵ est l’abscisse au bout de laquelle on accumule la fraction ↵ de la masse totale de la densité.

Ñ Proposition 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Symétrie]
8x 2 R �(x) +�(�x) = 1.

F) Simulation

Pas de méthode de simulation explicitement au programme. ◆
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G) Propriétés complémentaires

Ñ Proposition 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Invariance par transformation affine]
Si X †N
�
m,�2
�

alors pour tous réels a 6= 0 et b, la variable Y = aX+b suit une loiN
�
am+ b, a

2�2
�
.

Ñ Définition 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Variables aléatoires mutuellement indépendantes]
Soit n� 2 et X1, . . . , Xn n variables aléatoires définies sur un même espace probabilisé (⌦,T , P). On dit

que les variables X1, . . . , Xn sont mutuellement indépendantes si pour tous réels t1, . . . , tn les évènements

[X1  t1], . . . , [Xn  tn] sont mutuellement indépendants.

Ñ Théorème 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Somme de variables gaussiennes indépendantes]
Soit n � 2 un entier. Si X1†N (m1,�2

1
), X2†N (m2,�2

2
), . . ., Xn†N (mn,�2

n
) sont n variables

mutuellement indépendantes, alors S = X1 + · · · + Xn suit aussi une loi normale, de paramètres

m= m1 + · · ·+mn, �2 = �2

1
+ · · ·+�2

n
.

6 Loi d’une somme de variables indépendantes : intégrale de convo-
lution

A) Résultat fondamental

Ñ Théorème 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Loi de X + Y ]
Soit X et Y sont deux variables aléatoires à densité définies sur un même espace probabilisé (⌦,T , P) et

mutuellement indépendantes, de densité respectives fX et fY . Soit Z = X + Y. Si pour tout réel x (sauf

au plus un nombre fini), l’intégrale suivante, appelée intégrale de convolution :

g(x) =
Z +1

�1
f1(t) f2(x � t)dt

existe, alors :

1. La variable Z est à densité.

2. Une densité fZ de Z est g.

B) Méthode de calcul d’une intégrale de convolution

Ñ Définition 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [support d’une fonction positive]
Soit h une fonction positive définie sur R. Le support de h est l’ensemble S(h) = {t 2 R h(t)> 0}.

Ñ Proposition 18 . . . . . . . . . . . . . . . . . . . . . . [Formule donnant l’intersection de deux intervalles]
Soit a, b, c, d quatre nombres, finis ou non. En convenant que +1 est plus grand que tout réel (et que

�1 est plus petit que tout réel), alors ]a, b[\]c, d[ est :

1. vide si b < c ou si d < a.

2. non vide si b � c et d � a et dans ce cas :

]a, b[\]c, d[=]max (a, c) , min (b, d) [

Ñ Exemple 5.
Convolution de deux densités exponentielles de paramètres distincts.

Ñ Exemple 6.
Convolution de deux densités uniformes.◆
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T133 Comment calculer la loi de Z = X + Y par convolution
L’énoncé rappellera toujours que la loi de Z est donnée par :

8x 2 R f
Z
(x) =
Z +1

�1
f
X
(t) f

Y
(x � t)dt| {z }

h(t)

.

1. On fixe d’abord x (= la variable de f
Z
), et on raisonne avec

t pour déterminer le support de h. Cela donne pour des

constantes réelles a, b, c, d souvent dépendantes de x , ou infi-

nies :

h(t)> 0 , f
X
(t)> 0 et f

Y
(x � t)> 0

, t 2]a, b[ et t 2]c, d[
, [t > a et t > c] et [t < b et t < d]
, t 2]max (a, c)| {z }

↵

,min (b, d))| {z }
�

[

2. Maintenant que ]↵,�[ est déterminé, on oublie t et on raisonne

avec x pour simplifier l’expression de ]↵;�[ :

a) Calcul ↵=max (a, c) en résolvant l’inéquation a  c :

— Si cette expression dépend de x , on détermine pour

quelles valeurs critiques éventuelles A de x on a

a = c (souvent au plus une seule).

— Sinon, le calcul de ↵ est immédiat.

b) On calcule de même � =min (b, d) avec des éventuelles

valeurs critiques B de x , et les mêmes remarques que

pour A.

3. On synthétise les résultats obtenus en 2. en remplissant le

tableau suivant, semblable à un tableau de signe (attention à

placer les éléments A, B, . . . dans le bon ordre) :

x

↵ =

� =

]↵;�[=

�1 A B +1

4. On complète le tableau en vérifiant la non-vacuité de ]↵;�[
(non vide ssi ↵< �) :

a) pour chaque colonne du tableau, on résout l’inéquation

↵< � , ce qui induit éventuellement des nouvelles valeurs

critiques de x à reporter en ligne d’en-tête du tableau

b) De même qu’en 3., on complète le tableau en ajou-

tant à ce dernier les lignes nécessaires comme indiqué

ci-dessous :

x

↵ =

� =

]↵;�[=

↵ < �?(O/N)

f
Z
(x) =
R �
↵

h =

�1 A B +1

5. Par définition de ]↵,� , f
Z
(x) = 0 dans les colonnes contenant

des N, et sinon, on calcule l’intégrale pour les colonnes conte-

nant des O, ce qui donne l’expression de f
Z
(x) pour tout réel

x .
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