THEME ST-1: LES RISQUES ET LES RESSOURCES GEOLOGIQUES

THEME ST-I: LES RISQUES ET LES RESSOURCES GEOLOGIQUES

Les manifestations de la dynamique de la Terre présentent un caractère aléatoire, variable selon le phénomène et dépendant de l'échelle temporelle

Ne pas confondre risque et aléa

L'aléa (naturel) est la possibilité qu'un phénomène naturel potentiellement dangereux de caractéristiques données survienne dans une région donnée.

L'enjeu est l'ensemble des personnes et des biens susceptibles d'être affectés par un phénomène naturel. Ils peuvent se hiérarchiser en fonction de leur importance avant, pendant et après une crise. Parmi les bâtiments et les infrastructures, on peut par exemple distinguer les bâtiments pouvant accueillir du public (écoles, salles de spectacle, etc.), ceux dont le rôle fonctionnel est primordial pour la protection civile (hôpitaux, casernes de pompiers, centres de crise, etc.) et identifier les réseaux nécessaires aux secours ou à la gestion de crise.

La vulnérabilité représente la fragilité d'un type d'enjeu (population, bâtiments, etc.) par rapport à un phénomène naturel d'une ampleur donnée. Différents types de vulnérabilité peuvent être distingués : la vulnérabilité structurelle des ouvrages ou des bâtiments liée à leur conception et réalisation, <u>la vulnérabilité systémique</u>, concernant un ensemble d'enjeux organisés en systèmes comme les infrastructures (réseaux routiers, de télécommunications...) et les centres de secours (hôpitaux, casernes...), la <u>vulnérabilité individuelle</u> exprimant le niveau de développement d'une culture du risque chez les individus, etc.

Le risque est la probabilité pendant une période de référence de perte des biens, des activités de production et des vies humaines, due à un phénomène potentiellement dangereux. Le risque est donc le croisement entre l'aléa, l'enjeu et sa vulnérabilité

Le risque est donc le produit de convolution entre l'aléa, l'exposition et la vulnérabilité des entités exposées.

RISQUES = ALEAS * SOMME des VULNERABILITES

Les manifestations de la dynamique de la Terre présentent un caractère aléatoire, variable selon le phénomène et dépendant de l'échelle temporelle

Diversité et caractéristiques des phénomènes naturels extrêmes (Aléas).

	Phénomène	Origine	Type d'énergie libérée
	séisme rupture au niveau d'une faille éruption volcanique arrivée d'un magma en surface		mécanique
	éruption volcanique	arrivée d'un magma en surface	mécanique et thermique
	× .		
TIAL		(20)	mécanique (et thermique)
PHENOMENE INITIAL	cyclone tropical	évaporation des eaux océaniques	thermique et mécanique
PHENO	tempête	circulation atmosphérique	thermique et mécanique
			mécanique
	crue extrême	rupture d'un réservoir d'eau (barrage)	mécanique
	feu de forêt	biomasse	thermique
	impact de météorite	astéroïde ou comète	mécanique et thermique

Figure 1 : Les principaux phénomènes naturels extrêmes

ST-I.1 Risques.CV

Document 2 : témoignages sur le séisme du 17 novembre 2006

Document 2a : extrait de l'article publié par LA DÉPÈCHE DU MIDI le18/11/2006

Séisme. Les Pyrénées ont été secouées

Pyrénées. Hier soir, un séisme dont l'épicentre se situe près de Lourdes a secoué le massif sans causer de dégâts. C'est un des plus importants de la décennie.

Il était 19 h 19* très précisément. « Les verres se sont mis à trembler. Il y a eu le bruit et pendant trois ou quatre secondes, tout a été secoué. L'électricité a été coupée pendant cinq bonnes minutes. Cette fois, ça a tapé vraiment fort. C'est étrange », raconte Jacques Mols au café le Pam-pam à Argelès-Gazost (Hautes-Pyrénées). Dans la sous-préfecture du département et les villages alentour, beaucoup de gens sont sortis de leurs maisons, étonnés, parfois inquiets, mais toujours de manière précipitée et sans paniquer : « Nous étions juste derrière la porte. Comme un réflexe de précaution, j'ai pris les gamins et on a filé loin des habitations. »

« C'est toujours impressionnant », dit cet habitant d'Aucun qui a cru qu'un « boulet de canon perçait les murs ».

Les Pyrénéens y sont certes habitués, mais la secousse qui s'est produite hier soir a fortement marqué la population, même si elle n'a pas provoqué de gros dommages (quelques dégâts matériels à Lourdes). (* 19h19 = TU + 1h)

(http://www.ladepechedumidi.fr)

Document 2b : effet sur les personnes

Effets sur les personnes

Dans de nombreuses communes (24), la panique a gagné les habitants qui sont fréquemment sortis dans les rues. 51 communes signalent une frayeur des habitants, tandis que pour 268 autres communes, l'inquiétude domine face à de tremblement de terre et la série de répliques qui a suivi.

Quelques exemples de témoignage :

À Lourdes : « j'ai cru que la cuisine était en train d'exploser et que le bâtiment était en train de s'effondrer. Je me suis donc précipitée en bas pour voir les résidents. C'était plus qu'une grosse frayeur pour moi et mes collègues de travail »

« J'ai d'abord cru sur l'appartement situé au dessus explosait, j'ai eu très peur que le plafond s'effondre et j'ai réalisé que c'était un tremblement de terre, les murs se balançaient »

Plusieurs témoignages rapportent que les enfants ont semblé très affectés par ce séisme et ses répliques, certains d'entre eux ne souhaitant plus rentrer dans leur maison, ou rester seul :

- Ossun : « ma fille hurlait de peur » ;
- Campan: « mon fils de 5 ans s'est mis à l'abris sous une table » ;
- Argelès-Gazost : « ma fille ne veut pas faire un pas sans que je sois auprès d'elle, elle a 14 ans ! Elle est paniquée à l'idée de reprendre le collège ce lundi »

(D'après Bureau central sismologique français –BCSF- note préliminaire du séisme d'Argelès-Gazost le 17 novembre 2006)

Document 2c : les dégâts

Lourdes (distance épicentrale 9 km)

Pour de nombreuses personnes de cette commune de 15679 habitants, le choc a été assez violent, très similaire à une explosion et suivi de 4 répliques consécutives bien ressenties par la population. Une coupure d'électricité sur la ville a augmenté les réactions de frayeur des habitants. De nombreux objets ont chuté. Une grande partie de la population est descendue dans la rue pour partager son émotion et tenter de se protéger contre les répliques éventuelles.

90 bâtiments ont été déclarés endommagés auprès de la mairie. Des chutes de plâtre dans l'église paroissiale de Lourdes ont été observées (maçonnerie, brique, pisée). Deux chapeaux de cheminée (en granit) sont tombés, occasionnant des dégâts sur la toiture avenue Duviau. Rue Lacade, une cheminée a subi des dommages extérieurs, le tiers supérieur de la seconde cheminée s'est effondré. Quelques chapeaux de cheminées ont été endommagés. Dans de nombreuses maisons on a constaté des fissures légères (niveau 1) ou plus importantes (niveau 2) endommageant dalles, murs, plafonds, encadrements de fenêtres, carrelages et tapisseries. L'oscillation des bâtiments a produits quelques dysfonctionnements d'ouverture de portes, de fonctionnement de volets roulants.

Châpeaux de cheminées fragilisés à Arrayou-Lahitte (8,5 km de l'épicentre) - photos DDE65

Juncalas (distance épicentrale 4 km)

Dans ce village de 200 habitants, cette secousse annoncée par un grondement fort allant en s'amplifiant a paniqué les personnes, les précipitant dans la rue. La forte secousse a fait chuter quelques objets, les brisant parfois. 20% des bâtiments (principalement de type A) ont été affectés par des dégâts de niveau 1 et 2 et ont touché très souvent de manière généralisée les bâtiments. 95% du village est construit de manière traditionnelle (moellons, pierres sèches).

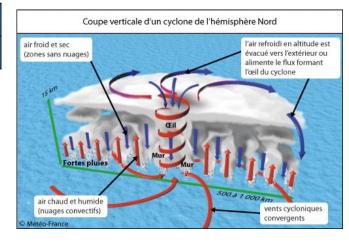
Vier-Bordes (distance épicentrale 5 km)

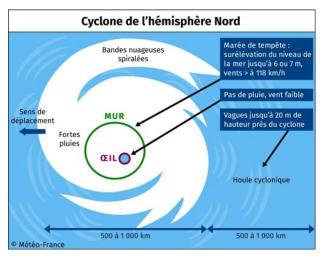
La forte secousse n'a produit que de rares effets sur les constructions de cette commune d'une centaine d'habitants. Quelques fissures fines ont été observées sur l'église et dans quelques appartements de la commune. Les objets ont parfois chuté, les liquides ont oscillé, mais aucun déplacement de meuble même léger n'a été indiqué.

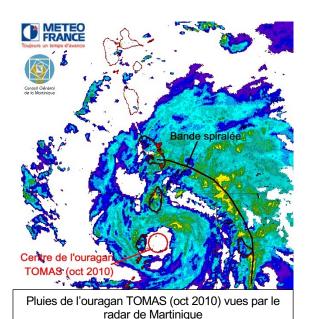
Artalens-Souin (distance épicentrale 6 km)

La commune d'Artalens-Souin (114 habitants) a connu une forte seccousse et les personnes ont gagné la rue très rapidement pour comprendre la nature du phénomène. Aucun administré n'a rapporté de dommage sur les habitations principalement construites en murs épais (type A en moellons et pierres sèches). Au vu de l'ensemble des effets relevés sur les personnes, les objets et les bâtiments, l'intensité V n'a pas été dépassée. Des objets ont bien chuté, mais les meubles, même légers n'ont pas été déplacés dans cette commune selon le maire du village interrogé par le BCSF. Seules les deux églises d'Artalens et de Souin ont connu quelques dommages, comme en atteste la photos cicontre. L'extrême vulnérabilité de ces bâtiments ne conduit pas à augmenter la valeur de l'intensité sur cette commune.

D'après le BCSF : note préliminaire du séisme d'Argelès Gazost le 17 novembre 2006


Un cyclone tropical est une perturbation météorologique tourbillonnaire présentant en surface un centre de basse pression atmosphérique et des vents qui tournent autour dans le sens contraire des aiguilles d'une montre (hémisphère Nord) ou dans le sens inverse (hémisphère Sud).


Dépression Tropicale	62 km/h et moins	le sens contrai Nord) ou dans l			
Tempête Tropicale	de 63 à 117 km/h				
0	de 118 à 153 km/h	de 154 à 177 km/h	de 178 à 209 km/h	de 210 à 249 km/h	250 km/h et plus
Ouragan	Cat. 1	Cat. 2	Cat. 3	Cat.4	Cat. 5



CEil de l'ouragan ISABEL (2003) vu depuis la station spatiale internationale (Photo NASA)

Structure du cyclone : le cyclone peut présenter en son centre un œil bien formé, de 30 à 60 km de diamètre en moyenne, dans lequel le ciel est souvent dégagé et les vents quasiment nuls. Toutefois, dans sa périphérie immédiate se forme la partie la plus active et dangereuse de l'ouragan, le mur de l'œil. On y trouve d'énormes nuages pluvio-orageux, se développant jusqu'à plus de 10 km d'altitude et les vents les plus forts.

Les vents violents

Dégâts dus aux rafales d'environ 200 km/h de l'ouragan Dean (Martinique, août 2007-Photo JL Vuillet)

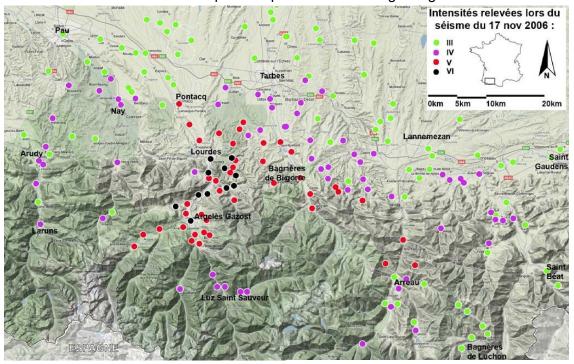
Les pluies intenses et cumulées

qui peuvent avoir des conséquences parfois catastrophiques en termes de dégâts dus aux inondations, coulées de boues ou glissements de terrains.

Fort-de-France (Martinique) envahie par les eaux lors du passage de l'ouragan Luis, début septembre 1995. (Photo Météo-France, P. Frayssinet)

Coulée de boue sur le Morne Calebasse (Photo France-Antilles -2011)

La mer dangereuse


L'Anse Mitan (Trois-Ilets, Martinique), habituellement calme, a vu déferler degros rouleaux alors qu'OMAR passait à plus de 500 km au Nord-Ouest. (Photo Météo-France, 2008).

Le danger vient aussi de la mer sous deux aspects, parfois conjugués : la houle cyclonique et l'onde de tempête.

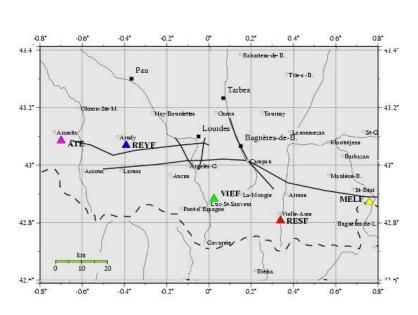
Document 3 : zone affectée par le séisme du 17 novembre 2006

Document 3a : carte des effets produits par le séisme d'Argelès-gazost le 17 novembre 2006

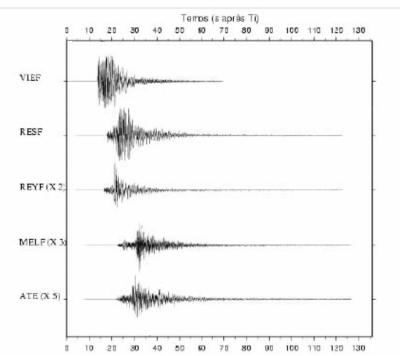
Document 3b : principales villes concernées par le séisme du 17 novembre 2006

Nom de la ville	Nombre d'habitants	Remarques
Argelès-Gazost	3 254 (2006)	Sous préfecture des Hautes Pyrénées - Ville thermale
Arudy	2 246 (2006)	Chef lieu de canton
Bagnère de Bigorre	8 790 (2008)	Sous préfecture des Hautes Pyrénées
Cauterets	1 305 (1999)	Ville thermale et station de sports d'hiver
Lannemezan	6 446 (2008)	Chef lieu de canton
Lourdes	16 150 (2009)	2 ^{ème} ville hôtelière française (208 hôtels) Lourdes reçoit jusqu'à 5 millions de visiteurs par an.
Pau	83 905 (2006)	Préfecture des Pyrénées atlantiques
Tarbes	49 194 (2008)	Préfecture des Hautes Pyrénées

Document 4 : enregistrements du séisme (Source : http://www.omp.obs-mip.fr/rssp/)


Document 4a : temps d'arrivée des ondes P du séisme d'Argelès-Gazost le 17 novembre 2006 dans différentes stations du Réseau de Surveillance Sismique des Pyrénées (RSSP)

(Heure du séisme : 18h 19min 51.2s - TU)


 $(rappel : VP = 6 \text{ km.s}^{-1})$

NOM	D(km)	T(h-min)	P(s)	
VIEF	15	18-19	54.44	
REYF	33	18-19	56.93	
RESF	35	18-19	57.66	D = distance
FDAF	51	18-20	0.27	T = heure d'arrivée
ATE	58	18-20	0.90	P(s) = arrivée des ondes P
MELF	63	18-20	1.70	après le début du séisme
ORDF	80	18-20	4.75	exprimé en secondes
				•

Document 4c : sismogrammes enregistrés lors du séisme du 17 novembre 2006 dans quelques stations du réseau de surveillance RSSP

Document 4b : carte détaillée de quelques stations du RSSP

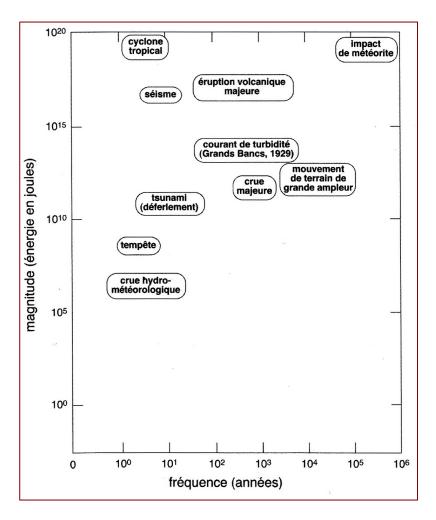
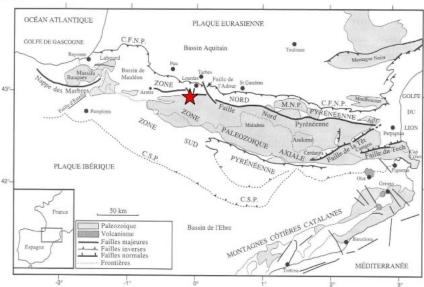


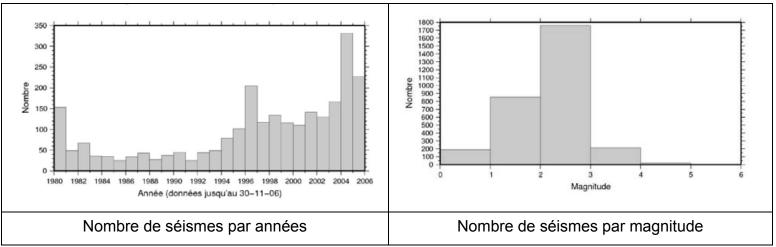

Figure 2 : Relation énergie dégagée et récurrence

Phénomène	Energie maximale dégagée (Joules)	Durée	Récurrence
séisme	10^{24}	secondes	annuelle à millénale
éruption volcanique	10 ²⁰	jours à années	très variable de 100 ans à 10 ⁴ ans
mouvement de terrain de grande ampleur	10^{20}	minutes	10^{3} à 10^{5} ans
courant de turbidité	1013	heures	$10^2 \text{à} 10^5 \text{ans}$
tempête	109	heures à jours	mensuelle à annuelle
cyclone tropical	vent : 10 ⁹ énergie totale: 10 ²⁵	jours	annuelle
crue d'origine hydro-météorologique	10 ⁶	jours à semaines	annuelle à centenale
crue extrême	1012	jours	centennale à décamillénale
tsunami	1011	heures	variable
impact de météorite	10^{20}	< seconde	¥

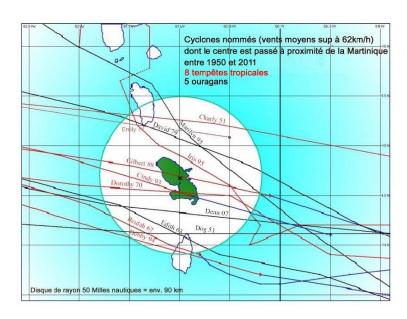

Figure 3 : Les caractéristiques des principaux phénomènes naturels extrêmes.

Document 5 : l'aléa sismique dans les Pyrénées

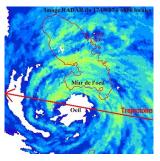
Document 5a : sismicité historique des Pyrénées

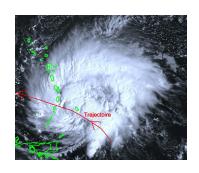


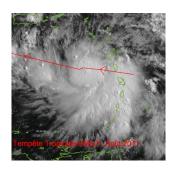
Carte structurale des Pyrénées (Mattauer et Henry, 1974). (Étoile rouge : localisation de l'épicentre du séisme de Lourdes, le 17 novembre 2006.)



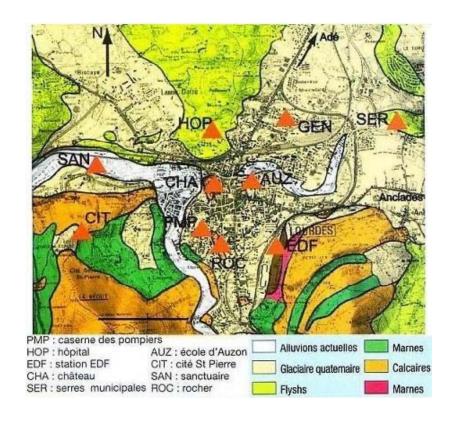
Document 5c : Sismicité observée par le RéNaSS LDG de 1980 à 2006 en Midi Pyrénées

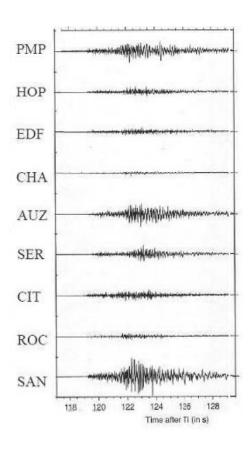

Le Réseau National de Surveillance Sismique (RéNaSS) a pour mission et objectif d'observer la sismicité française (et mondiale). Il détermine et diffuse les paramètres sources des séismes du territoire métropolitain et des zones frontalières. Il centralise et archive les données sismologiques à des fins de recherche en Sciences de la Terre. Dans les Pyrénées, l'observatoire de Midi Pyrénées possède un réseau régional de 20 stations de surveillance des risques sismiques, le RSSP.




D'après le BCSF : note préliminaire du séisme d'Argelès Gazost le 17 novembre 2006

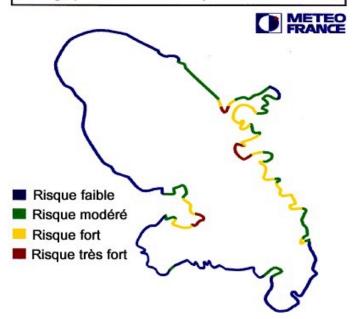
Entre 1950 et 2012, la Martinique a vu passer dans son environnement immédiat 13 cyclones nommés.





Nom et année	Dean 2007	Tomas 2010	Emily 2011(tempête tropicale)
Catégorie	2 à 3	1 à 2	
Vents max	155km/h rafales >à 200	160km/h rafales 200	
Pluies max	100mm en 1 heure	Jusqu'à 600mm	70mm/1h
Hauteur max des vagues	13m		
Estimation des dégâts	400 à 500 millions d'€		Inondations, coulées de boues, glissements de terrains

Document 6 : microzonage de la ville de Lourdes


La ville de Lourdes a été partiellement détruite par de tremblements de terre à deux reprises, en 1660 (séisme d'intensité IX à une vingtaine de kilomètres de Lourdes), et en 1750 (séisme d'intensité VIII à seulement 5 kilomètres de la cité). L'Observatoire Midi-Pyrénées (OMP) a donc conduit une étude pour évaluer la réponse des sols, au cas où un séisme semblable à ces séismes historiques viendrait à se reproduire aux portes de cette ville.

Enregistrements d'un même séisme et localisation sur la carte géologique de Lourdes des stations d'enregistrement temporaires placées dans la ville. (Sources :d'après Dubos, Souriau, Ponsolles, Fels et Sénéchal, Bull. Soc. Géol. Fr., 174,33-44, 2003 in http://www2.cnrs.fr/presse/thema/698.htm Plan de prévention des risques sismiques de la ville de Lourdes)

Cartographie des zones à risque liées aux surcotes

Toutes les communes de l'île sont susceptibles d'être affectées par les effets dévastateurs des vents et des pluies sur le bâti, les infrastructures, les cultures et l'environnement.

La proximité de relief et de zones pentues peut accentuer le risque par rapport aux fortes pluies et peut aussi contribuer à renforcer le vent dont la variabilité spatiale est parfois très importante. Pour les communes littorales s'ajoute le risque de houle cyclonique et de marée de tempête qui peuvent créer des surcotes engendrant des submersions marines.

Houle cyclonique provoquée par l'ouragan Luis 1995- déferlant sur le front de mer à Fort-de-France.

(Photo Météo-France, P. Frayssinet) Tout le littoral martiniquais est susceptible d'être affecté par la houle cyclonique

EFFETS DE LA HOULE ET
DE LA MAREE DE TEMPETE

VEI	Ejecta volume	Classification	Description	Plume	Frequency	Tropospheric injection	Stratospheric injection[1]	Examples
0	< 10,000 m ^e	Hawaiian	effusive	< 100 m	constant	negligible	none	Kilauea, Piton de la Fournaise
1	> 10,000 m ^a	Hawaiian/Strombolian	gentle	100-1000 m	daily	minor	none	Stromboli, Nyiragongo (2002)
2	> 1,000,000 m ⁸	Strombolian/Vulcanian	explosive	1–5 km	weekly	moderate	none	Galeras (1993), Mount Sinabung (2010)
3	> 10,000,000 m ^a	Vulcanian/Peléan	severe	3–15 km	few months	substantial	possible	Nevado del Ruiz (1985), Soufrière Hills (1995)
4	> 0.1 km ^s	Peléan/Plinian	cataclysmic	10-25 km	≥ 1 yr	substantial	definite	Mount Pelée (1902), Eyjafjallajökull (2010)
5	> 1 km²	Plinian	paroxysmal	20-35 km	≥ 10 yrs	substantial	significant	Mount Vesuvius (79 CE), Mount St. Helens (1980)
6	> 10 km²	Plinian/Ultra-Plinian	colossal	> 30 km	≥ 100 yrs	substantial	substantial	Krakatoa (1883), Mount Pinatubo (1991)
7	> 100 km ^s	Ultra-Plinian	super-colossal	> 40 km	≥ 1,000 yrs	substantial	substantial	Thera (Minoan Eruption), Tambora (1815)
8	> 1,000 km²	Supervolcanic	mega-colossal	> 50 km	≥ 10,000 yrs	substantial	substantial	Yellowstone (640,000 BP), Toba (74,000 BP)

Figure 4 : Indice d'explosivité volcanique (VEI)

Force croissante du cyclone

Document 2d : intensité et magnitude des séismes

Intensité Échelle MSK	Effets de la secousse sismique	Magnitude Échelle de Richter	
I	Seuls les sismographes très sensibles enregistrent les vibrations	1,5	
II	Secousses à peine perceptibles, ressenties par quelques personnes au repos, en particulier dans les étages supérieurs des bâtiments.	2.5	
III	Faible vibration ressentie par quelques personnes. Des personnes au repos ressentent un balancement ou un léger tremblement.	2,5	
IV	Séisme ressenti à l'intérieur par de nombreuses personnes et par un petit nombre au dehors. Quelques personnes sont réveillées. Les fenêtres les portes et la vaisselle bougent. Les objets suspendus oscillent.	3,5	
V	Séisme ressenti à l'intérieur par la plupart des personnes et par un petit nombre dehors. Les dormeurs se réveillent. Quelques personnes sortent en courant. Les objets suspendus oscillent fortement. La viaisselle, les verres tintent. La vibration est forte. Quelques meubles sont déplacés, quelques objets lourds se renversent. Les portes et fenêtres s'ouvrent et se ferment.	4,5	
VI	Ressenties à l'intérieur et par beaucoup au dehors. De nombreuses personnes sont effrayées et courent vers les sorties. Les objets tombent ; de légers dégâts apparaissent dans les bâtiments ordinaires : fissures, chute partielle de cheminées.		
VII	VII La plupart des personnes sont effrayées. Les meubles sont déplacés et les objets tombent des étagères. Des lézardes apparaissent dans les édifices anciens. Des cheminées tombent.		
VIII	Grande frayeur dans la population. De nombreux bâtiments ordinaires sont endommagés : chute de cheminées et de clochers, larges fissures dans les murs. Quelques bâtiments s'effondrent partiellement.		
IX à X	Les maisons s'écroulent ; Les canalisations souterraines sont cassées ; Destruction des ponts et des digues. Les rails de chemin de fer sont tordus		
XI	Panique générale. Dégâts important aux constructions en béton armé, ponts, barrages, etc. Grands éboulements		
XII	Panique générale. Toute structure à l'air libre ou en sous-sol est fortement endommagée ou détruite.	8,8	

L'intensité d'un séisme est une mesure des dommages causés par un tremblement de terre. L'échelle d'intensité utilisée actuellement, mise au point en 1964 par Medvedev, Sponheuer et Karnik, (dite échelle MSK) a été réactualisée en 1998 (EMS98). La magnitude d'un tremblement de terre (établie initialement par Richter) mesure l'énergie libérée lors d'un séisme.

Adapté du résumé utilisé par le British Geological Survey – d'après Grünthal, 1998 « European Macrosismic Sale 1998 »

Dépression tropicale	vents moyens sur 1 mn < 63 km/h	
Tempête tropicale	63 km/h ≤ vents moyens sur 1 mn ≤ 117 km/h Pluies très abondantes, forte houle	
Ouragan de classe 1	118 km/h ≤vents moyens sur 1 mn ≤ 153 km/h pression au centre > 980 hPa pluies diluviennes, très forte houle, marée de tempête encore faible	dégâts minimes
Ouragan de classe 2	154 km/h ≤vents moyens sur 1 mn ≤177 km/h pression au centre comprise entre 965 et 980 hPa pluies diluviennes, très forte houle, marée de tempête généralement inférieure à 2,5 m.	dégâts modérés
Ouragan de classe 3	178 km/h ≤vents moyens sur 1 mn ≤ 209 km/h pression au centre comprise entre 945 et 964 hPa pluies torrentielles, très forte houle, marée de tempête pouvant atteindre plusieurs mètres par endroits.	dégâts intenses
Ouragan de classe 4	210 km/h ≤vents moyens sur 1 mn ≤ 248 km/h pression au centre comprise entre 920 et 944 hPa pluies torrentielles, très forte houle, marée de tempête pouvant atteindre 4 mètres par endroits.	dégâts très intenses
Ouragan de classe 5	249 km/h ≤ vents moyens sur 1 mn pression au centre inférieure à 920 hPa pluies torrentielles, houle énorme, marée de tempête > à 4 m.	dégâts catastrophiques.

Échelle de Saffir-Simpson : C'est la vitesse maximale du vent, moyennée sur une minute, à l'intérieur du phénomène qui détermine son classement.

Les manifestations de la dynamique de la Terre présentent un caractère aléatoire, variable selon le phénomène et dépendant de l'échelle temporelle

Prévoir l'aléa ? Diminuer la vulnérabilité ?

Document 7a : « le plan séisme : programme national de prévention du risque sismique »

le Gouvernement a décidé d'engager sur les six années à venir, un programme national de prévention du risque sismique. L'objectif est de réduire la vulnérabilité au risque sismique. Sa stratégie consiste à favoriser une prise de conscience des citoyens, des constructeurs et des pouvoirs publics, mais aussi à mettre en œuvre avec fermeté des dispositions déjà adoptées et de poursuivre l'amélioration des savoir-faire

PLAN SEISME 🚻							
CHANTIER 1	CHANTIER 2	CHANTIER 3	CHANTIER 4				
Approfondir la connaissance scientifique de l'aléa, du risque et mieux informer sur celui-ci	Améliorer la prise en compte du risque sismique dans les constructions	Concerter, coopérer et communiquer	Contribuer à la prévention du risque de tsunami				
Informer et former Développer, programmer et évaluer la connaissance Capitaliser la connaissance	Assurer les respect de la réglementation Maîtriser et réduire la vulnérabilité	Réaliser les objectifs du programme Communiquer Anticiper la crise	Mettre au point un système d'alerte Évaluer et cartographier le risque en Méditerranée et dans les Antilles Former et sensibiliser				

Les principaux chantiers du Plan Séisme 2006-2011

Les axes du plan séisme Pyrénées En 2006, plusieurs actions ont été réalisées :

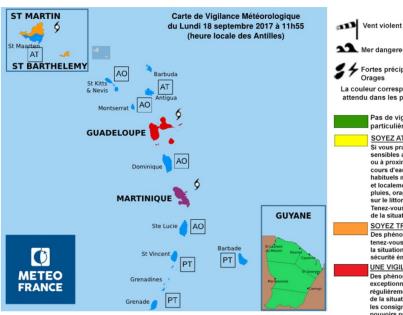
- Le microzonage de Lourdes, engagé par la DDE des Hautes-Pyrénées;
- La tenue le 12 décembre 2006 à Tarbes d'un forum à l'attention des professionnels de la construction :
- Le lancement de la réalisation d'un film
 « Construire une maison parasismique » à
 destination des constructeurs particuliers
 et des artisans.

Plusieurs actions sont en projet :

• Le microzonage de Bagnères-de-Bigorre ; la réalisation de scénarii de crise sismique

Doc 7c-2: Exercice de mise en sécurité dans un collège

Extrait du site http://www.planseisme.fr/


Document 7b : révision du zonage sismique dans les hautes Pyrénées

La nouvelle carte de zonage sismique réglementaire, fondée sur la nouvelle carte d'aléa sismique (ci-contre), est accompagnée de nouvelles règles de construction parasismique elle sera approuvée par décret dans le courant de l'année 2007.

D'après le site http://www.risquesmajeurs-hautes-pyrenees.pref.gouv.fr

Vigilance météorologique

Mer dangereuse à la côte

Fortes précipitations

La couleur correspond au degré de danger attendu dans les prochaines 24 heures.

> Pas de vigilance particulière.

SOYEZ ATTENTIFS :

Si vous pratiquez des activités sensibles au risque météorologique ou à proximité d'un rivage ou d'un cours d'eau; des phénomènes habituels mais occasionnellement et localement dangereux (fortes pluies, orages, fortes vagues sur le littoral) sont en effet prévus. Tenez-vous au courant de l'évolution de la situation.

SOYEZ TRÈS VIGILANT :

Des phénomènes dangereux sont prévus : tenez-vous au courant de l'évolution de la situation et suivez les conseils de sécurité émis par les pouvoirs publics.

UNE VIGILANCE ABSOLUE S'IMPOSE : Des phénomènes dangereux d'intensité exceptionnelle sont prévus ; tenez-vous régulièrement au courant de l'évolution de la situation et respectez impérativement les consignes de sécurité émises par les pouvoirs publics.

Cyclone

La couleur évolue en fonction de du cyclone et/ou des impacts atte territoire

> SOYEZ ATTENTIFS : Des conditions de fort

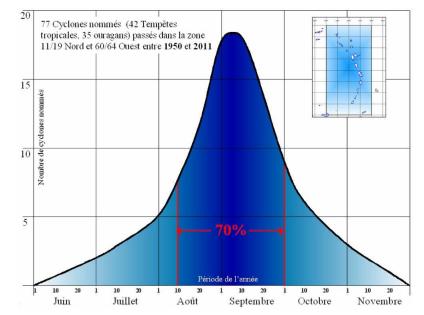
tropicale ou un ouragan sont plausibles sur le territoire dans 48 à 72 h.

PRÉPAREZ-VOUS :

Des conditions de forte tempête ou d'ouragan sont probables sur le territoire dans les 48h.

PROTÉGEZ-VOUS:

Des conditions de forte tempête ou d'ouragan sont très probables sur le territoire dans 6 à 18 h.


CONFINEZ-VOUS:

Des impacts majeurs associés à l'ouragan sont attendus dans 3 à 6 h.

RESTEZ PRUDENT: L'ouragan s'éloigne mais tout danger n'est pas écarté.

Niveaux d'alertes officielles des îles non françaises préconisées par le National Hurricane Center : PRÉALERTE TEMPÊTE (PT) : des conditions de tempête tropicale sont possibles dans les 48 heures. ALERTE TEMPÊTE (AT) : des conditions de tempête tropicale sont prévues dans les 36 heures. PRÉALERTE OURAGAN (PO): des conditions d'ouragan sont possibles dans les 48 heures. ALERTE OURAGAN (AO): des conditions d'ouragan sont prévues dans les 36 heures.

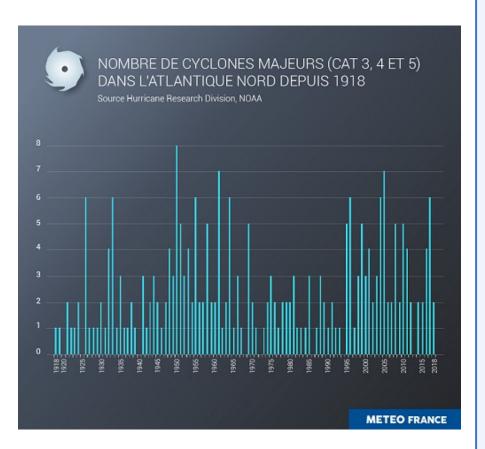
ST-I.1 Risques.CV

21

Connaissez-vous les

estez pruder

ase de seco


différentes phases d'alerte cyclonique

ORANGE

JAUNE

oyez attenti

Phase Vigilance

Les simulations du climat pour le XXIe siècle indiquent que les cyclones ne devraient pas être plus nombreux. En revanche, les cyclones les plus forts pourraient voir leur intensité augmenter.

Avec un recul d'une quarantaine d'années seulement, il est impossible de distinguer l'impact du changement climatique de la variabilité naturelle du phénomène.

Dans le cinquième rapport du Groupe d'experts intergouvernemental sur l'évolution du climat (Giec), les experts estiment aussi que les plus gros cyclones seront probablement plus puissants, avec des vents maximums plus élevés. Les précipitations liées aux systèmes cycloniques devraient être également plus intenses.

Une température de surface de l'océan plus élevée ne « facilite » en effet pas forcément la naissance de cyclones. Mais un cyclone déjà bien formé « puisera » bien plus d'énergie pour se renforcer dans une atmosphère humidifiée au-dessus d'océans réchauffés. En effet, la capacité de l'atmosphère à contenir de l'humidité augmente avec sa température. Ce supplément d'humidité sera à l'origine d'un renforcement des pluies cycloniques qui elles-mêmes intensifient le système.