
ST-I: LES RISQUES ET LES RESSOURCES GEOLOGIQUES ST-I-2 LES RESSOURCES GEOLOGIQUES

I. Les ressources géologiques : diversité et répartition

A. Diversité des ressources géologiques

1. Eau


a. Eau renouvelable

b. Autres ressources en eau

	Réserves d'eau douce				
	milieux	volume (km³)			
	neige et glace des pôles et des montagnes	30 000 000			
	eaux souterraines à moins de 500 m de profondeur	4 000 000			
	eaux souterraines à plus de 500 m de profondeur	4 000 000			
	eaux des lacs d'eau douce	100 000			
an	eaux présentes dans les sols	70 000			
	eaux présentes à tout instant dans l'atmosphère	13 000			
	eaux présentes à tout instant dans toutes les rivières	1 000			
		© 2009 Encyclopædia Universalis France S.A.			

c. L'eau peut s'accumuler et être stockée dans les aquifères

Source: INRS, 2010

2. Matériaux ou matériaux utiles

Figure 1

Transformation des matières premières de carrière

Matières premières	Produits élaborés	Traitement thermique
Calcaires	Chaux	Températures moyennes
Gypse	Plâtres	Basses températures
Calcaires, argiles	Ciments	Hautes températures
Bauxites, calcaires	Ciments alumineux	Très hautes températures Procédés métallurgiques
Argiles, sables	Tuiles et briques (produits rouges)	Hautes températures
Argiles, sables, feldspaths,	Carrelages	Températures moyennes à élevées
Silice, feldspaths, pegmatites, Syénites, fondants,	Céramique sanitaire	Températures élevées
Silice,carbonates, oxydes de B, P, Ge, Al, Sels alcalins et alcalino-terreux	Verres	Températures élevées

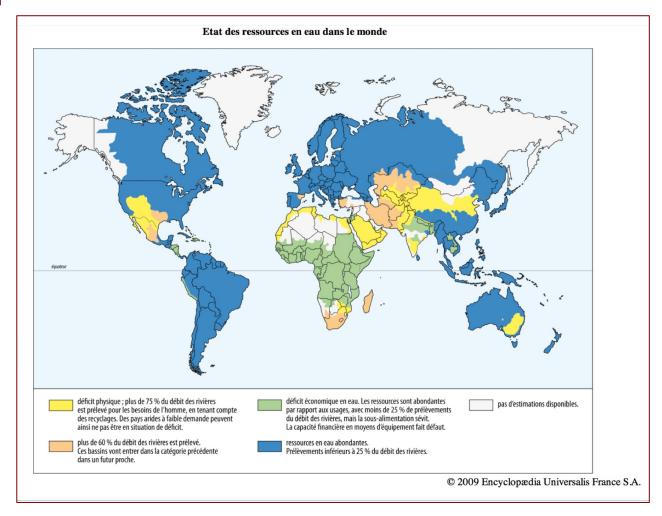
On va surtout y retrouver

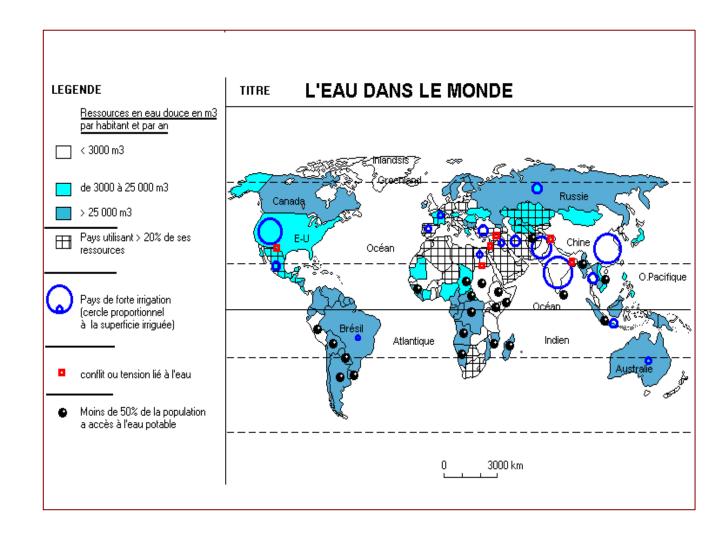
les gisements constitués de métaux

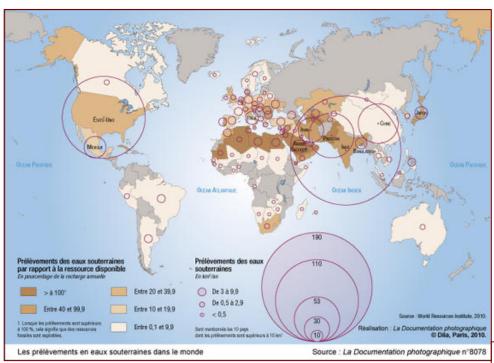
métaux ferreux -fer, nickel, cobalt par ex-, métaux légers -aluminium par ex, métaux de base -cuivre, plomb par ex-, métaux précieux -or, argent par ex-, « petits métaux » -arsenic, mercure par ex-, métaux de récupération -sélénium par ex-,

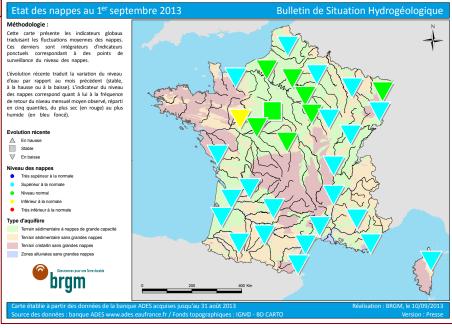
les gisements non métalliques

diamant, soufre, potasse par ex-

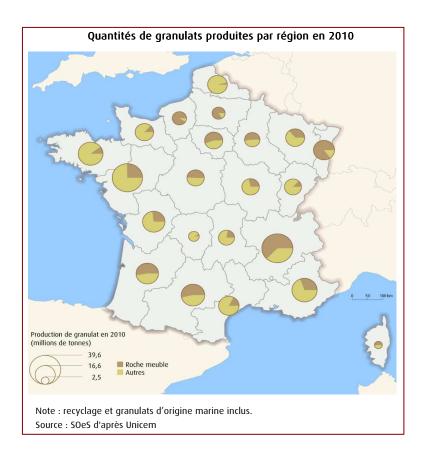

3. Minerais


	Substances énergétiques				
Vapeur - Gaz naturel - Pétrole -	Schistes bitumineux - Charbon - Lignite - Tourbe - Uranium				
	Métaux				
Métaux ferreux					
Fer, Fe	Propriétés mécaniques, alliages magnétiques				
Nickel, Ni	Aciers inoxydables, réfractaires (aéronautique), résiste à la corrosion				
Cobalt, Co	Aciers rapides, alliages magnétiques, catalyse, céramique, verre				
Chrome, Cr	Aciers spéciaux, inoxydables, réfractaires				
Manganèse, Mn	Aciers ordinaires et spéciaux (améliore la dureté et la durabilité)				
Tungstène, W	Carbure de tungstène: aciers à haute résistance, lampes, électrodes				
Molybdène, Mo	Aciers rapides, résiste à la corrosion (électronique)				
Vanadium, V	Aciers spéciaux et rapides				
	Métaux légers				
Aluminium, Al	Résistance, alliages avec Mg, Zn, Cu (aéronautique, emballage)				
Titane, Ti	Légèreté et résistance, remplace le Pb pour la couleur blanche des peinture				
	Métaux de base				
Cuivre, Cu	Conductibilité électrique, ductilité, résiste à la corrosion				
Plomb, Pb	Usages chimiques, accumulateurs, plomb tétraéthyle (tuyaux)				
Zinc, Zn	Alliages avec Al, résiste à la corrosion (fer blanc)				
Étain, Sn	Alliages				
	Métaux précieux				
Or, Au	Usage monétaire, bijouterie, raccords électroniques				
Argent, Ag	Photo, électricité, électronique, bijouterie				
Platine, Pt	Électricité (électrodes), carbure, catalyse, bijouterie				
Platinoïdes (Rh, Pd, Os, Ir)	Rh: alliages ductiles; Pd: électronique				
	«Petits métaux»				
Arsenic, As	Usages chimiques				
Antimoine, Sb	Accumulateurs, peintures, ignifugeants				
Bismuth, Bi	Usages médicaux				
Mercure, Hg	Batteries, alliages, catalyse				
Lithium, Li	Batteries, piles				
Béryllium, Be	Alliages (bronze)				
Niobium-Tantale	Alliages ferreux				
Zirconium, Zr	Réfractaires, industrie nucléaire, céramiques				
Terres rares	Alliages ferreux, télévision couleur				
Thorium, Th	Filaments et tubes à vide				
Rubidium, Rb	Lasers				
Métaux récupe	érés lors de l'exploitation d'autres métaux				
Gallium-Germanium	Semi-conducteurs Semi-conducteurs				
Sélénium-Tellure	Semi-conducteurs				
Indium-Cadmium	Semi-conducteurs Semi-conducteurs				
	Substances non métalliques				
Diamant, gemmes	Pierres précieuses : joaillerie, bijouterie				
Soufre, sel, pyrite, chrome, bore	Matériaux chimiques				
Graphite	Industrie électrique (électrodes)				
Fluorine	Chimie, métallurgie de l'aluminium				
Barytine	Boues de forage, papeterie				
Potasse, phosphates, nitrates	Engrais				
Quartz, Al-silicates, Al-chromite	Réfractaires				
Diamant, corindon, grenat, grès	Abrasifs				
Micas, asbeste, talc, vermiculite	Isolants, emballage				
Feldspaths, quartz, argiles	Céramique, verrerie				
Ocre, argiles, diatomite, barytine	Peintures et charges				
s, graviers, pierre, ardoise, gypse, anhydrite, lave, pouzzolane, marbre, magnésite	Matériaux routiers et matériaux de construction				


4. Ressources énergétiques


B. Répartition inégale des ressources géologiques

1. Eau

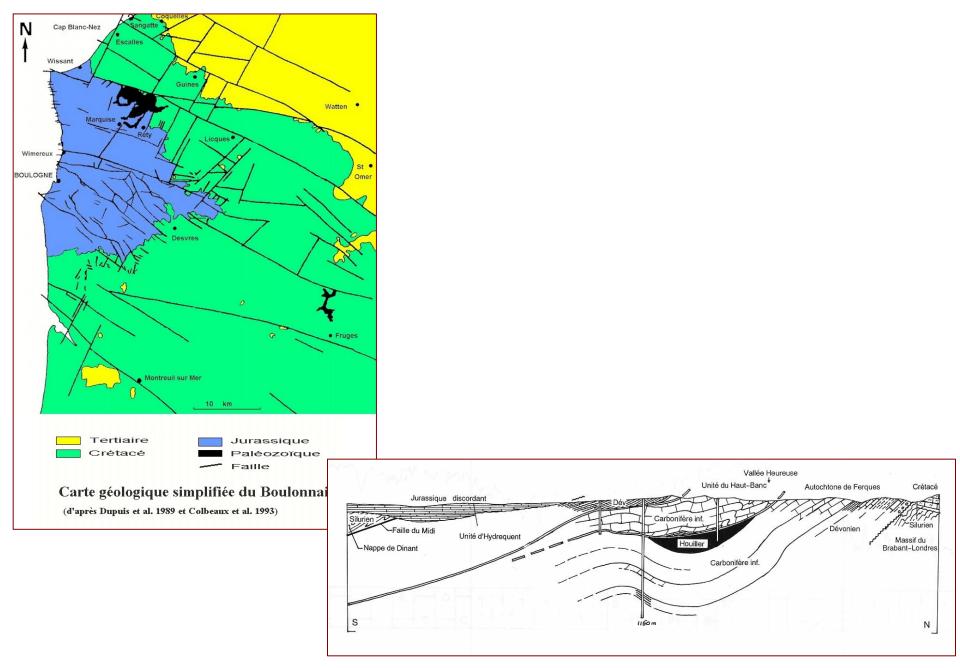


2. Matériaux

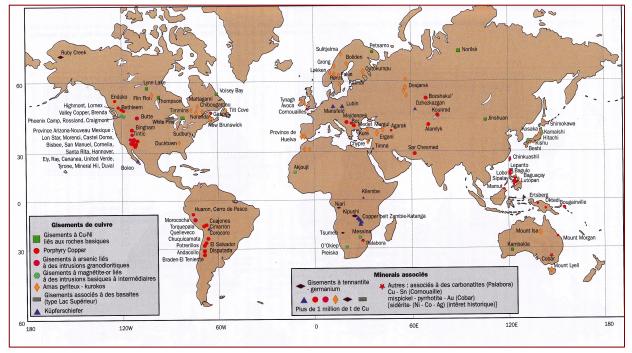
a .Un exemple : les granulats

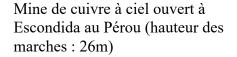
b. Exemple régional : La Vallée Heureuse : Producteur de calcaire

Ballast calcaire 31/50 mm


Gravillon calcaire lavé 4/20 mm

Gravillon calcaire lavé 4/6 mm

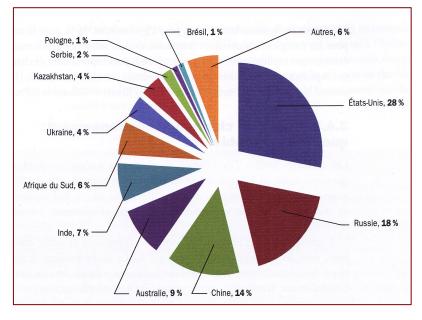


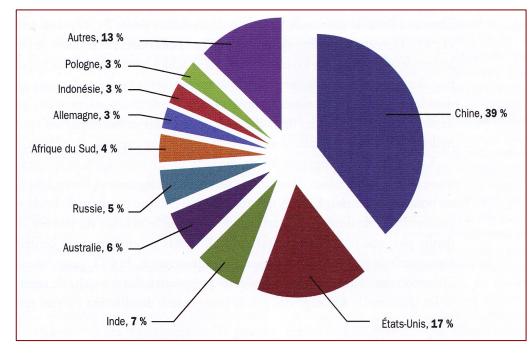

BCPST2 Amiens C. Vilbert

3. Minerais

a. Notion de gisement

b. étude d'un exemple : le cuivre

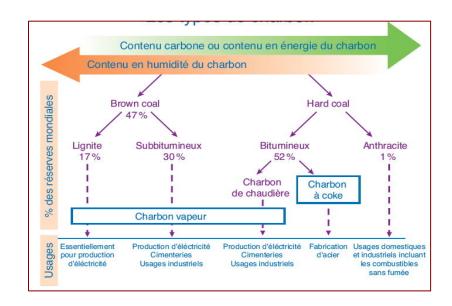


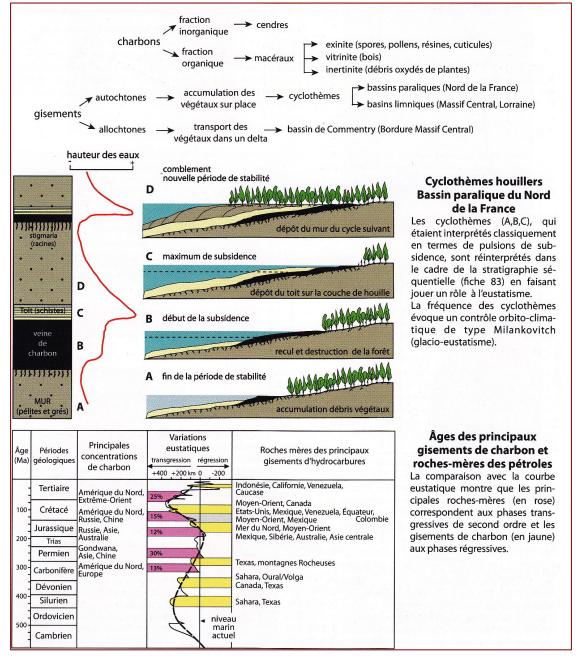

Un énorme glissement de terrain a englouti, aux deux tiers, la fosse profonde de 1 km et large de 4 km de la mine de cuivre à ciel ouvert de Bingham Canyon (avril 2013)

4. Ressources énergétiques à partir d'un exemple : le charbon

a .réserves mondiales et répartition

Répartition des réserves mondiales de charbon : 930 milliards de tonnes – 2009 (à gauche) Répartition de la production mondiale de charbon : 6783 millions de tonnes -2009 (en bas)

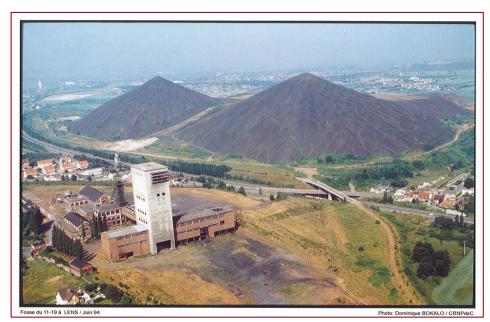

b. Le charbon en quelques mots



Sacs de charbon

Pouvoirs caloriques des différents types de charbon (à gauche) Usages des différents types de charbon (en bas)

Types de charbon	Pouvoir calorifique (enkJ/kg)	Teneur en carbone (en %)
HOUILLE		
- Anthracite	33 500 - 34 900	93 - 97
- Charbon maigre et houille anthraciteuse	34 900 - 36 000	90 - 93
- Charbon demi-gras ou semi-bitumineux	35 000 - 37 000	80 - 90
- Charbon gras ou bitumineux à coke	32 000 - 37 000	75 - 90
- Flambant	32 700 - 34 000	70 - 80
LIGNITE	< 25 110	50 - 60
TOURBE	12 555	< 50



II. Ressources géologiques et activités humaines

A. Adaptation de l'activité humaine aux conditions locales

1. exploitation minière et environnement

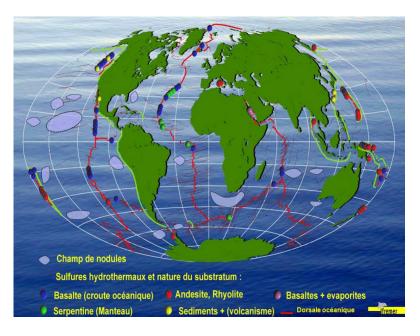
Fosses 11 et 19 (terrils de 182 et 184m) Loos en Gohelle prêt de Lens Terrils = accumulation de résidus miniers, Composés principalement de schistes

2. Un exemple de reconversion :

BCPST2 Amiens C. Vilbert

B. Acheminement – échanges à différentes échelles

- 1. dans le cas d'une ressource rare
- 2. dans le cas d'une ressource locale abondante


III. Le Géologue et les ressources


- A. Exploitation adaptée des ressources
- B. Recherche de nouvelles ressources

© Ifremer-Nautile/Campagne Nodinaut 2004 Concombre de mer sur un fond à nodules du Pacifique nord, par 5.000 m de fond

BCPST2 Amiens C. Vilbert