TD 1 Correction - Séries numériques

Compétences à acquérir :

- - série géométrique et ses dérivées
 - série exponentielle (et ses variantes avec changements d'indices)
 - séries de terme général $\frac{1}{n}$ et $\frac{1}{n^2}$
- ▷ C2 : Calculer la somme d'une série comme combinaison linéaire des séries usuelles.
- ▷ C3 : Démontrer la convergence d'une série et calculer sa somme à l'aide d'une somme télescopique.
- > C4 : Démontrer la convergence ou la divergence d'une série à termes positifs par critère des équivalents ou de comparaison
- ▷ C5 : Utiliser la convergence absolue d'une série pour montrer sa convergence.

Exercice 1 (C1-C2-C3) Préciser la nature de chacune des séries suivantes et calculer la somme en cas de convergence.

$$1. \sum_{n \geqslant 1} \cos \left(\frac{1}{n}\right)$$

On a
$$\lim_{n\to +\infty}\cos\left(\frac{1}{n}\right)=\cos(0)=1\neq 0$$
 donc la série $\sum_{n\geqslant 1}\cos\left(\frac{1}{n}\right)$ est (grossièrement)

divergente.

$$2. \sum_{n\geqslant 1} \frac{\mathrm{e}^n}{n^2}$$

Par croissances comparées, $\lim_{n\to+\infty}\frac{\mathrm{e}^n}{n^2}=+\infty$ donc la série $\sum_{n\geqslant 1}\frac{\mathrm{e}^n}{n^2}$ est (grossièrement) divergente.

3.
$$\sum_{n \ge 1} e^{-n}$$

Pour tout
$$n \in \mathbb{N}^*$$
, on a $e^{-n} = (e^{-1})^n$. Or on sait que la série géométrique $\sum_{n \ge 0} (e^{-1})^n$ est

convergente car $e^{-1} \in]-1,1[$ donc la série $\sum_{n\geqslant 1} e^{-n}$ est convergente et :

$$\sum_{n=1}^{+\infty} e^{-n} = \sum_{n=1}^{+\infty} (e^{-1})^n - 1 = \frac{1}{1 - e^{-1}} - 1 = \frac{e^{-1}}{1 - e^{-1}}$$

4.
$$\sum_{n>2} \frac{1}{n(n-1)}$$

Pour tout $n \in \mathbb{N} \setminus \{0, 1\}$, on a $\frac{1}{n(n-1)} = \frac{1}{n-1} - \frac{1}{n}$. En notant $(S_n)_{n \ge 2}$ la suite des sommes partielles de la série, on a :

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \qquad S_n = \sum_{k=2}^n \frac{1}{k-1} - \sum_{k=2}^n \frac{1}{k} = \dots = 1 - \frac{1}{n}$$

La suite $(S_n)_{n\geqslant 2}$ est donc convergente de limite 1. Ainsi, la série $\sum_{n\geqslant 2}\frac{1}{n(n-1)}$ de somme

$$\sum_{n=2}^{+\infty} \frac{1}{n(n-1)} = 1.$$

5.
$$\sum_{n \ge 0} \frac{n}{n!}$$

On note $(S_n)_{n\in\mathbb{N}}$ la suite des sommes partielles de la série. Soit $n\in\mathbb{N}^*$. Alors :

$$S_n = \sum_{k=1}^n \frac{k}{k!} = \sum_{k=1}^n \frac{1}{(k-1)!} = \sum_{\ell=0}^{n-1} \frac{1}{\ell!}$$
 (changement d'indice $\ell = k-1$)

Or, pour tout $x \in \mathbb{R}$, la série $\sum_{\ell \geq 0} \frac{x^{\ell}}{\ell!}$ (série exponentielle) est convergente de somme e^x .

En particulier (pour x=1), la série $\sum_{\ell\geqslant 0}\frac{1}{\ell\,!}$ converge de somme égale à e. La suite $(S_n)_{n\in\mathbb{N}}$

est donc convergente de limite e. Autrement dit, la série $\sum_{n\geq 0} \frac{n}{n!}$ converge de somme

$$\sum_{n=0}^{+\infty} \frac{n}{n!} = e.$$

$$6. \sum_{n \geqslant 3} \left(1 - \frac{2}{n} \right)^n$$

En utilisant la forme exponentielle et l'équivalent usuel du logarithme, on trouve que $\lim_{n\to +\infty} \left(1-\frac{2}{n}\right)^n = \mathrm{e}^{-2} \neq 0. \text{ La série } \sum_{n\geq 1} \left(1-\frac{2}{n}\right)^n \text{ diverge donc (grossièrement)}.$

7.
$$\sum_{n \ge 0} n^2 e^{-3n}$$

Pour tout $n \in \mathbb{N}$, on a $n^2 e^{-3n} = n(n-1) (e^{-3})^n + n (e^{-3})^n$. Comme $e^{-3} \in]-1,1[$ les séries géométrique dérivée première $\sum_{n\geqslant 1} n (e^{-3})^{n-1}$ et géométrique dérivée seconde $\sum_{n\geqslant 2} n(n-1) (e^{-3})^{n-2}$ sont convergentes. L'ensemble des séries convergentes est un espace vectoriel donc la série $\sum_{n\geqslant 0} n^2 (e^{-3})^n$ converge et la somme de cette série vaut (par linéarité de la somme) :

$$\sum_{n=0}^{+\infty} n \left(e^{-3} \right)^n = \left(e^{-3} \right)^2 \sum_{n=2}^{+\infty} n(n-1) \left(e^{-3} \right)^{n-2} + e^{-3} \sum_{n=1}^{+\infty} n \left(e^{-3} \right)^{n-1}$$
$$= \frac{2 \left(e^{-3} \right)^2}{\left(1 - e^{-3} \right)^3} + \frac{e^{-3}}{\left(1 - e^{-3} \right)^2}$$

8.
$$\sum_{n > 0} (n+1) \frac{(-1)^n}{2^{2n}}$$

Pour tout $n \in \mathbb{N}$, on a:

$$(n+1)\frac{(-1)^n}{2^{2n}} = -\frac{1}{4} \times n \left(\frac{-1}{4}\right)^{n-1} + \left(\frac{-1}{4}\right)^n$$

Comme $-\frac{1}{4} \in]-1,1[$, les séries géométrique $\sum_{n\geqslant 0} n\left(\frac{-1}{4}\right)^n$ et géométrique dérivée pre-

mière $\sum_{n\geqslant 1} \left(\frac{-1}{4}\right)^{n-1}$ sont convergente. L'ensemble des séries convergentes étant un espace

vectoriel, la série $\sum_{n\geqslant 0} (n+1)\frac{(-1)^n}{2^{2n}}$ et convergente de somme égale à (par linéarité de la somme) :

$$\begin{split} \sum_{n=0}^{+\infty} (n+1) \frac{(-1)^n}{2^{2n}} &= -\frac{1}{4} \sum_{n=1}^{+\infty} n \left(\frac{-1}{4}\right)^{n-1} + \sum_{n=1}^{+\infty} \left(\frac{-1}{4}\right)^n \\ &= -\frac{1}{4} \times \frac{1}{\left(1 + \frac{1}{4}\right)^2} + \frac{1}{1 + \frac{1}{4}} \\ &= \frac{16}{25} \end{split}$$

9.
$$\sum_{n>1} \ln \left(\frac{n+2}{n} \right)$$

Notons $(S_n)_{n\geqslant 1}$ la suite des sommes partielles de cette série. Soit $n\in\mathbb{N}^*$. Alors :

$$S_n = \sum_{k=1}^n \ln\left(\frac{k+1}{k}\right) = \sum_{k=1}^n \left(\ln(k+1) - \ln(k)\right) = \dots = \ln(n+1) \qquad \text{(somme t\'elescopique)}$$

La suite $(S_n)_{n\geqslant 1}$ admet donc pour limite $+\infty$ quand n tend vers $+\infty$ donc la série $\sum_{n\geqslant 1} \ln\left(\frac{n+1}{n}\right)$ est divergente.

10.
$$\sum_{n>1} \frac{(-2)^n}{3 n!}$$

On sait que la série exponentielle $\sum_{n\geqslant 0} \frac{(-2)^n}{n!}$ converge (de somme e^{-2}). L'ensemble des séries convergentes est un espace vectoriel et la convergence d'une série ne dépend pas des premiers termes donc la série $\sum_{n\geqslant 1} \frac{(-2)^n}{3\,n!}$ converge de somme égale à (par linéarité de somme et en utilisant la relation de Chasles) :

$$\sum_{n=1}^{+\infty} \frac{(-2)^n}{3 \, n!} = \frac{1}{3} \left(\sum_{n=0}^{+\infty} \frac{(-2)^n}{n!} - 1 \right) = \frac{e^{-2} - 1}{3}$$

11.
$$\sum_{n\geqslant 0} \frac{1}{n+2}$$

Notons $(S_n)_{n\in\mathbb{N}}$ la suite des sommes partielles de cette série. Pour tout $n\in\mathbb{N}$, on a :

$$S_n = \sum_{k=0}^n \frac{1}{k+2} = \sum_{\ell=2}^{n+2} \frac{1}{\ell} = \sum_{\ell=1}^{n+2} \frac{1}{\ell} - 1$$

On a ici fait apparaître une somme partielle de la série harmonique dont on sait qu'elle diverge. Donc la suite $(S_n)_{n\in\mathbb{N}}$ est divergente. Autrement dit, la série $\sum_{n\geqslant 0}\frac{1}{n+2}$ est divergente.

12.
$$\sum_{n \geqslant 0} \frac{2n+1}{4^n n!}$$

On note $(S_n)_{n\in\mathbb{N}}$ la suite des sommes partielles de la série. Soit $n\in\mathbb{N}^*$. Par linéarité de la somme, on a :

$$S_{n} = \sum_{k=0}^{n} \frac{2k+1}{4^{k}k!} = 2\sum_{k=0}^{n} \frac{k\left(\frac{1}{4}\right)^{k}}{k!} + \sum_{k=0}^{n} \frac{\left(\frac{1}{4}\right)^{k}}{k!} = 2\sum_{k=1}^{n} \frac{k\left(\frac{1}{4}\right)^{k}}{k(k-1)!} + \sum_{k=0}^{n} \frac{\left(\frac{1}{4}\right)^{k}}{k!}$$
$$= \frac{1}{2}\sum_{k=1}^{n} \frac{\left(\frac{1}{4}\right)^{k-1}}{(k-1)!} + \sum_{k=0}^{n} \frac{\left(\frac{1}{4}\right)^{k}}{k!}$$
$$= \frac{1}{2}\sum_{\ell=0}^{n-1} \frac{\left(\frac{1}{4}\right)^{\ell}}{\ell!} + \sum_{k=0}^{n} \frac{\left(\frac{1}{4}\right)^{k}}{k!}$$

On a ici fait apparaître des sommes partielles de la série exponentielle $\sum_{n\geqslant 0} \frac{\left(\frac{1}{4}\right)^n}{n!}$ qui est convergente. On en déduit donc que la suite $(S_n)_{n\in\mathbb{N}}$ est convergente de limite :

$$\lim_{n \to +\infty} S_n = \frac{1}{2} \sum_{\ell=0}^{+\infty} \frac{\left(\frac{1}{4}\right)^{\ell}}{\ell!} + \sum_{k=0}^{+\infty} \frac{\left(\frac{1}{4}\right)^k}{k!} = \frac{e^{1/4}}{2} + e^{1/4} = \frac{3 e^{1/4}}{2}$$

Autrement dit, la série proposée converge de somme :

$$\sum_{n=0}^{+\infty} \frac{2n+1}{4^n n!} = \frac{3 e^{1/4}}{2}$$

13.(a) Écrire une fonction sommepartielle qui génère la suite des sommes partielles $(S_n)_{n\in\mathbb{N}}$ de la série $\sum_{n\geqslant 0}\frac{1}{n+2}$.

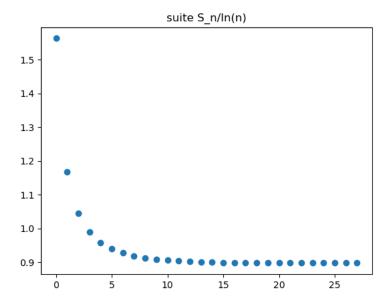
Il s'agit de calculer, pour tout entier naturel n, la somme $\sum_{k=0}^{n} \frac{1}{k+2}$.

```
def SP(n):
    s = 0
    for k in range(n+1):
        s = s+1/(k+2)
    return s
```

(b) Représenter graphiquement la suite $\left(\frac{\mathbf{S}_n}{\ln(n)}\right)_{n\geqslant 2}$ à l'aide de l'outil informatique. Quelle conjecture peut-on émettre?

D'après le graphique obtenu, la suite $\left(\frac{\mathbf{S}_n}{\ln(n)}\right)_{n\geqslant 2}$ semble convergente de limite 1. On peut donc conjecturer que $\mathbf{S}_n \lim_{n\to +\infty} \ln(n)$.

```
from math import *
import matplotlib.pyplot as plt
L = [SP(k)/log(k) for k in range(2,30)]
plt.plot(L,'o')
plt.title('suite S_n/ln(n)')
plt.show()
```



Exercice 2 (C4-C5) Déterminer si les séries suivantes sont convergentes.

1.
$$\sum_{n\geq 1} \frac{(-1)^n}{n^2}$$

Pour tout $n \in \mathbb{N}^*$, on a $\left| \frac{(-1)^n}{n^2} \right| = \frac{1}{n^2}$. Or on sait que la série $\sum_{n \geqslant 1} \frac{1}{n^2}$ est convergente.

Ainsi, la série $\sum_{n>1} \frac{(-1)^n}{n^2}$ est absolument convergente donc elle est convergente.

$$2. \sum_{n \ge 0} \frac{\cos(n)}{4^n}$$

Pour tout $n \in \mathbb{N}$, on sait que $|\cos(n)| \le 1$ donc $0 \le \left|\frac{\cos(n)}{4^n}\right| \le \frac{1}{4^n}$ en multipliant par $\frac{1}{4^n} \ge 0$. Or la série géométrique $\sum_{n \ge 0} \left(\frac{1}{4}\right)^n$ est convergente car $\frac{1}{4} \in]-1,1[$. Comme les séries $\sum_{n \ge 0} \frac{|\cos(n)|}{4^n}$ et $\sum_{n \ge 0} \frac{1}{4^n}$ sont à termes positifs, le théorème de majoration permet de conclure que la série $\sum_{n \ge 0} \left|\frac{\cos(n)}{4^n}\right|$ est convergente. Autrement dit, la série $\sum_{n \ge 0} \frac{\cos(n)}{4^n}$ converge absolument et donc elle converge.

3.
$$\sum_{n \ge 1} \frac{1}{2n^2 + \cos(n)^2}$$

Soit $n \in \mathbb{N}^*$. On a $\cos(n)^2$ donc $2n^2 + \cos(n)^2 \geqslant 2n^2$. Par décroissance de la fonction inverse sur \mathbb{R}_+^* , on obtient $0 \leqslant \frac{1}{2n^2 + \cos(n)^2} \leqslant \frac{1}{2n^2}$. Or on sait que la série $\sum_{n\geqslant 1} \frac{1}{n^2}$ est convergente donc la série $\sum_{n\geqslant 1} \frac{1}{2n^2}$ converge également (puisque l'ensemble des séries convergentes est un espace vectoriel). Comme les séries $\sum_{n\geqslant 1} \frac{1}{2n^2 + \cos(n)^2}$ et $\sum_{n\geqslant 1} \frac{1}{2n^2}$ sont à termes positifs, le théorème de majoration permet de conclure que la série $\sum_{n\geqslant 1} \frac{1}{2n^2 + \cos(n)^2}$ est convergente.

4.
$$\sum_{n \ge 1} \ln \left(1 + \frac{1}{n^2} \right)$$

Comme
$$\lim_{n\to+\infty} \frac{1}{n^2} = 0$$
, on a $\ln\left(1 + \frac{1}{n^2}\right) \underset{n\to+\infty}{\sim} \frac{1}{n^2}$.

Or on sait que la série $\sum_{n\geq 1} \frac{1}{n^2}$ est convergente.

Comme les séries $\sum_{n\geqslant 1} \ln\left(1+\frac{1}{n^2}\right)$ et $\sum_{n\geqslant 1} \frac{1}{n^2}$ sont à termes positifs, le théorème des équiva-

lents des séries à termes positifs permet de conclure que la série $\sum_{n\geqslant 1}\,\ln\left(1+\frac{1}{n^2}\right)$ converge.

COMMENTAIRE

On peut ici éviter le raisonnement avec un équivalent en démontrant préalablement l'inégalité classique :

$$\forall t \in [0, +\infty[, \quad \ln(1+t) \leqslant t]$$

5.
$$\sum_{n>1} n \ln \left(1 + \frac{1}{n^2}\right)$$

Comme $\lim_{n\to +\infty} \frac{1}{n^2} = 0$, on a $\ln\left(1+\frac{1}{n^2}\right) \sim \frac{1}{n^2}$ et donc $n\ln\left(1+\frac{1}{n^2}\right) \sim \frac{1}{n\to +\infty} \frac{1}{n}$. On sait que la série harmonique est divergente. Les séries $\sum_{n\geqslant 1} \frac{1}{n}$ et $\sum_{n\geqslant 1} n\ln\left(1+\frac{1}{n^2}\right)$ sont à termes positifs donc le théorème des équivalents des séries à termes positifs permet de conclure que la série $\sum_{n\geqslant 1} n\ln\left(1+\frac{1}{n^2}\right)$ diverge.

la série
$$\sum_{n\geqslant 1} n \ln \left(1 + \frac{1}{n^2}\right)$$
 est divergente

Exercice 3 (C5) \square Pour tout entier n supérieur ou égal à 2, on pose $u_n = \left(1 - \frac{1}{n}\right)^{n^2}$.

1. Préciser les nombres réels α et β tel que l'on ait le développement asymptotique suivant :

$$n^2 \ln \left(1 - \frac{1}{n}\right) \underset{+\infty}{=} \alpha n + \beta + \mathrm{o}(1)$$

On sait que $\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$. Comme $\lim_{n \to +\infty} \left(-\frac{1}{n}\right) = 0$, on a par substitution :

$$\ln\left(1 - \frac{1}{n}\right) = -\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$$

En multipliant par n^2 , il vient :

$$n^2 \ln \left(1 - \frac{1}{n}\right) = -n - \frac{1}{2} + o(1)$$

En particulier, les nombres $\alpha = -1$ et $\beta = -\frac{1}{2}$ conviennent.

2. En déduire qui existe un nombre réel C à déterminer tel que $u_n \underset{n \to +\infty}{\sim} C e^{-n}$.

Pour tout $n \in \mathbb{N}^*$, on a $u_n = e^{n^2 \ln \left(1 - \frac{1}{n}\right)}$ et donc, d'après la question précédente :

$$u_n = e^{-n - \frac{1}{2} + o(1)} = e^{-1/2} e^{-n} e^{o(1)}$$

Or $\lim_{n\to +\infty} \mathrm{e}^{\,\mathrm{o}(1)}=1$ (puisque $\mathrm{o}(1)$ est une suite convergente de limite 0). Ainsi :

en posant
$$C = e^{-1/2}$$
, on a $u_n \sim_{n \to +\infty} C e^{-n}$

3. La série $\sum_{n\geq 2} u_n$ est-elle convergente? Justifier.

Comme e>1, on a $\frac{1}{e}\in]-1,1[$ donc la série géométrique de raison $\frac{1}{e}$ est convergente. De plus, on a montré à la question précédente que

$$u_n \sim_{n \to +\infty} C e^{-n}$$
.

Les séries mises en jeu sont bien à termes positifs, donc par théorème des équivalents des séries à termes positifs, on obtient que la série $\sum_{n\geq 2} u_n$ converge.

la série
$$\sum_{n\geqslant 2} u_n$$
 est convergente

8

Exercice 4 (C1-C2) \square Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=0, u_1=2$ et :

$$\forall n \in \mathbb{N}, \quad 3u_{n+2} + \frac{u_{n+1}}{2} - \frac{u_n}{2} = 0$$

1. Écrire une fonction informatique qui calcule les sommes partielles de cette série. Quelle conjecture peut-on faire quant à la convergence de la série $\sum_{n\geqslant 0}u_n$ et à la somme (en cas

On commence par écrire une fonction récursive qui génère la suite $(u_n)_{n\in\mathbb{N}}$.

```
def suiteU(n) :
    if (n==0) :
        return 0
    elif (n==1) :
        return 2
    else :
        return -suiteU(n-1)/6+suiteU(n-2)/6
```

En sommant les termes suiteU(k), on obtient les sommes partielles.

```
def sommes(n) :
    s = 0
    for k in range(n+1) :
        s += suiteU(k)
    return s
```

En exécutant la fonction sommes pour quelques valeurs de n (comprises entre 10 et 30), on obtient des sommes partielles proches de 2 à 10^{-3} près. On conjecture donc que :

la série
$$\sum_{n\geqslant 0}u_n$$
 est convergente de somme égale à 2

2. Répondre mathématiquement à la question précédente.

La suite $(u_n)_{n\in\mathbb{N}}$ est récurrente linéaire d'ordre deux. L'équation caractéristique associée est $3x^2 + \frac{x}{2} - \frac{1}{2} = 0$. Elle admet deux racines réelles distinctes : $-\frac{1}{2}$ et $\frac{1}{3}$. Il existe donc $(A, B) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{N}, \qquad u_n = A\left(-\frac{1}{2}\right)^n + B\left(\frac{1}{3}\right)^n$$

Déterminons les valeurs de A et B. On résout :

$$\begin{cases} u_0 = 0 \\ u_1 = 2 \end{cases} \iff \begin{cases} A+B = 0 \\ -3A+2B = 12 \end{cases} \iff \begin{cases} A = -\frac{12}{5} \\ B = \frac{12}{5} \end{cases}$$

Finalement:

de convergence)?

$$\forall n \in \mathbb{N}, \qquad u_n = -\frac{12}{5} \left(-\frac{1}{2}\right)^n + \frac{12}{5} \left(\frac{1}{3}\right)^n$$

Comme $\left(-\frac{1}{2},\frac{1}{3}\right) \in]-1,1[^2,$ les séries géométriques $\sum_{n\geqslant 0} \left(-\frac{1}{2}\right)^n$ et $\sum_{n\geqslant 0} \left(\frac{1}{3}\right)^n$ sont convergentes. L'ensemble des séries convergentes est un espace vectoriel donc la série

 $\sum_{n\geq 0} u_n$ est donc convergente de somme égale à (par linéarité de la somme) :

$$\sum_{n=0}^{+\infty} u_n = -\frac{12}{5} \sum_{n=0}^{+\infty} \left(-\frac{1}{2} \right)^n + \frac{12}{5} \sum_{n=0}^{+\infty} \left(\frac{1}{3} \right)^n = -\frac{12}{5} \times \frac{1}{1 + \frac{1}{2}} + \frac{12}{5} \times \frac{1}{1 - \frac{1}{3}}$$
$$= -\frac{12}{5} \times \frac{2}{3} + \frac{12}{5} \times \frac{3}{2}$$
$$= 2$$

Finalement:

la série
$$\sum_{n\geqslant 0} u_n$$
 est convergente de somme $\sum_{n=0}^{+\infty} u_n = 2$

Exercice 5 (C3-C4) $\ \ \,$ On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in]0,1[$ et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n - u_n^2$$

1. Justifier que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.

Pour démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente, nous allons utiliser le théorème de la limite monotone.

On remarque d'abord que :

$$\forall n \in \mathbb{N}, \qquad u_{n+1} - u_n = -u_n^2 \leqslant 0$$

donc la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante. Montrons maintenant qu'elle est minorée par 0. Pour cela, démontrons par récurrence (simple) que pour tout $n\in\mathbb{N}$, on a $u_n\in]0,1[$. Pour tout $n\in\mathbb{N}$, on considère la proposition $\mathcal{P}_n: \langle u_n\in]0,1[$ ».

- Initialisation : la proposition \mathcal{P}_0 est vraie puisqu'il est indiqué dans l'énoncé que $u_0 \in]0,1[$.
- **Hérédité**: soit $n \in \mathbb{N}$ tel que la proposition \mathcal{P}_n soit vraie. Montrons qu'elle entraı̂ne la proposition \mathcal{P}_{n+1} . On a $u_{n+1} = u_n(1-u_n)$. Par hypothèse de récurrence, on sait que $u_n \in]0,1[$ et donc $1-u_n \in]0,1[$. Par produit, on obtient $u_{n+1} \in]0,1[$. La proposition \mathcal{P}_{n+1} est donc vraie.
- Conclusion : pour tout $n \in \mathbb{N}$, la proposition \mathcal{P}_n est vraie par principe de récurrence simple, c'est-à-dire $u_n \in]0,1[$.

Comme la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée par 0, elle est convergente d'après le théorème de la limite monotone. Notons $\ell \in \mathbb{R}$ sa limite. On sait que :

$$\forall n \in \mathbb{N}, \qquad u_{n+1} = u_n - u_n^2$$

et que $\lim_{n\to +\infty}u_n=\lim_{n\to +\infty}u_{n+1}=\ell$. En faisant tendre n vers $+\infty$ dans la relation de récurrence, on obtient l'égalité :

$$\ell = \ell - \ell^2$$
 c'est-à-dire $-\ell^2 = 0$ soit encore $\ell = 0$

Finalement:

la suite $(u_n)_{n\in\mathbb{N}}$ est convergente de limite 0

2. Démontrer que la série $\sum_{n\geq 0} u_n^2$ est convergente et calculer sa somme.

Notons $(S_n)_{n\in\mathbb{N}}$ la suite des sommes partielles de la série $\sum_{n\geqslant 0}u_n^2$. Soit $n\in\mathbb{N}$. En utilisant la relation de récurrence vérifiée par la suite, on a :

$$S_n = \sum_{k=0}^n u_k^2 = \sum_{k=0}^n (u_k - u_{k+1}) = u_0 - u_{n+1}$$

puisque la somme est télescopique. On a démontré précédemment que $\lim_{n\to+\infty} u_{n+1} = 0$ donc la suite $(S_n)_{n\in\mathbb{N}}$ est convergente de limite u_0 . Ainsi :

la série
$$\sum_{n\geqslant 0}u_n^2$$
 est convergente de somme $\sum_{n=0}^{+\infty}u_n^2=u_0$

3. Déterminer la nature de la série $\sum_{n\geq 0} \ln\left(\frac{u_{n+1}}{u_n}\right)$.

Tout d'abord, remarquons que pour tout $k \in \mathbb{N}$, on a $\frac{u_{k+1}}{u_k} > 0$ (comme quotient de deux nombres strictement positifs d'après ce qui a été établi dans la récurrence de la question 1.) donc le nombre $\ln\left(\frac{u_{k+1}}{u_k}\right)$ est bien défini.

Notons $(T_n)_{n\in\mathbb{N}}$ la suite des sommes partielles de la série $\sum_{n\geqslant 0} \ln\left(\frac{u_{n+1}}{u_n}\right)$. Soit $n\in\mathbb{N}$. On a :

$$T_n = \sum_{k=0}^{n} (\ln(u_{k+1}) - \ln(u_k)) = \ln(u_{n+1}) - \ln(u_0)$$

car la somme obtenue est télescopique. Par composition des limites on a (puisque la suite $(u_k)_{k\in\mathbb{N}}$ converge de limite 0) :

$$\lim_{n \to +\infty} \ln(u_{n+1}) = \lim_{x \to 0^+} \ln(x) = -\infty$$

donc la suite $(T_n)_{n\in\mathbb{N}}$ est divergente (de limite $-\infty$). Autrement dit :

la série
$$\sum_{n\geqslant 0} \ln\left(\frac{u_{n+1}}{u_n}\right)$$
 est divergente

4. En déduire la nature de la série $\sum_{n\geq 0} u_n$.

On remarque que pour tout $n \in \mathbb{N}$, on a :

$$\ln\left(\frac{u_{n+1}}{u_n}\right) = \ln\left(\frac{u_n - u_n^2}{u_n}\right) = \ln\left(1 - u_n\right).$$

Or on a montré que la suite (u_n) tend vers 0, donc on peut en déduire que pour $n \to +\infty$, on a :

$$\ln\left(\frac{u_{n+1}}{u_n}\right) \sim -u_n.$$

Autrement dit,

$$-\ln\left(\frac{u_{n+1}}{u_n}\right) \sim u_n,$$

et la suite (u_n) est positive d'après la question 1, donc par théorème des équivalents des séries à termes positifs, la divergence de la série de terme général $\ln\left(\frac{u_{n+1}}{u_n}\right)$ démontrée en question 3 implique la divergence de la série de terme général u_n .

la série
$$\sum_{n\geqslant 0} u_n$$
 est divergente

Exercice 6 (C1-C2-C4) $\ \ \, \ \,$ On considère l'équation différentielle $y''-y'-2y=-\,\mathrm{e}^{-x}$ notée (E).

1. Déterminer l'ensemble de solutions de (E) sachant qu'une solution particulière est de la forme $y_p: x \mapsto axe^{-x}$, avec $a \in \mathbb{R}$.

L'équation différentielle (E) est linéaire du second ordre. L'équation caractéristique associée à l'équation homogène est $x^2 - x - 2 = 0$. Les racines de cette équation sont -1 et 2. On en déduit que l'ensemble des solutions de l'équation homogène est :

$$\left\{ x \longmapsto A e^{-x} + B e^{2x} \,\middle|\, (A, B) \in \mathbb{R}^2 \right\}$$

Il reste à chercher une solution particulière de (E). D'après l'énoncé, on cherche une solution de (E) sous la forme $y: x \longmapsto ax e^{-x}$. La fonction y est deux fois dérivable sur \mathbb{R} et :

$$\forall x \in \mathbb{R}, \quad y'(x) = (-ax + a) e^{-x} \text{ et } y''(x) = (ax - 2a) e^{-x}$$

Donc:

y est solution de (E) sur $\mathbb{R} \iff \forall x \in \mathbb{R}, \ (ax - 2a) e^{-x} - (-ax + a) e^{-x} - 2(ax) e^{-x} = -e^{-x}$ $\iff -3a = -1$

car $e^{-x} \neq 0$. On obtient donc $a = \frac{1}{3}$. D'après le théorème fondamental, l'ensemble des solution S de (E) est :

$$S = \left\{ x \longmapsto \frac{x}{3} e^{-x} + A e^{-x} + B e^{2x} \,\middle|\, (A, B) \in \mathbb{R}^2 \right\}$$

2. Étant donnée une solution y de (E), déterminer à quelle condition nécessaire et suffisante la série $\sum_{n=0}^{\infty} y(n)$ est convergente et calculer sa somme dans ce cas.

Pour tout $n \in \mathbb{N}$, on a $e^{-n} = \left(\frac{1}{e}\right)^n$ et $n e^{-n} = n \left(\frac{1}{e}\right)^n$. Or $\frac{1}{e} \in]-1,1[$ donc les séries géométrique $\sum_{n \geqslant 0} e^{-n}$ et géométrique dérivée première $\sum_{n \geqslant 0} n e^{-n}$ sont convergente. Par linéarité, on en déduit que pour tout $A \in \mathbb{R}$, la série $\sum_{n \geqslant 0} \left(\frac{n}{3} e^{-n} + A e^{-n}\right)$ est convergente. D'autre part, $e^2 > 1$ donc la série géométrique $\sum_{n \geqslant 0} e^{2n}$ est divergente. On en déduit que

pour tout $B \in \mathbb{R}$, la série $\sum_{n \geq 0} B e^{2n}$ est convergente si et seulement si B = 0.

Soit $(A,B) \in \mathbb{R}^2$ et $y: x \longmapsto \frac{x}{3} e^{-x} + A e^{-x} + B e^{2x}$. D'après ce qui précède,

la série
$$\sum_{n\geqslant 0}y(n)$$
 est convergente si et seulement si $B=0$

et, dans ce cas, on a par linéarité:

$$\sum_{n=0}^{+\infty} y(n) = \frac{1}{3e} \sum_{n=0}^{+\infty} n \left(\frac{1}{e}\right)^{n-1} + A \sum_{n=0}^{+\infty} \left(\frac{1}{e}\right)^{n} = \frac{1}{3e} \times \frac{1}{(1-e^{-1})^{2}} + \frac{A}{1-e^{-1}}$$

Exercice 7 Pour tout entier naturel N non nul, on pose $S_N = \sum_{k=1}^N \frac{(-1)^k}{k}$.

1.(a) Écrire une fonction somme en langage python qui prend en argument un entier naturel N non nul et qui renvoie la valeur de S_N .

La syntaxe est toujours la même pour calculer une somme :

```
def somme(N):
    s = 0
    for k in range(1,N+1):
        s = s+(-1)**k/k
    return s
```

- (b) Avec cette fonction, calculer S_2 , S_4 et S_6 et conjecturer le sens de variations de la suite $(S_{2N})_{N\geqslant 1}$.
 - En tapant somme(2), somme(4) et somme(6) dans la console, on obtient $S_2 = -0.5$, $S_4 = -0.583$ et $S_6 \approx -0.617$ donc la suite $(S_{2N})_{N\geqslant 1}$ semble décroissante.
- 2. Montrer que les suites $(S_{2N})_{N\geqslant 1}$ et $(S_{2N+1})_{N\in\mathbb{N}}$ sont adjacentes. Que peut-on en déduire? Montrons que les suites $(S_{2N})_{N\geqslant 1}$ et $(S_{2N+1})_{N\in\mathbb{N}}$ sont adjacentes.
 - Montrons que la suite $(S_{2N})_{N\geqslant 1}$ est décroissante. Soit $n \in \mathbb{N}^*$, on a :

$$S_{2(n+1)} - S_{2n} = S_{2n+2} - S_{2n} = \frac{(-1)^{2n+2}}{2n+2} + \frac{(-1)^{2n+1}}{2n+1}$$

$$= \frac{1}{2n+2} - \frac{1}{2n+1} = \frac{(2n+1) - (2n+2)}{(2n+1)(2n+2)} = -\frac{1}{(2n+1)(2n+2)} \le 0.$$

— Montrons que la suite $(S_{2N+1})_{N\geqslant 0}$ est croissante. Soit $n \in \mathbb{N}$, on a :

$$\begin{split} S_{2(n+1)+1} - S_{2n+1} &= S_{2n+3} - S_{2n+1} = \frac{(-1)^{2n+3}}{2n+3} + \frac{(-1)^{2n+2}}{2n+2} \\ &= -\frac{1}{2n+3} + \frac{1}{2n+2} = \frac{-(2n+2) + (2n+3)}{(2n+2)(2n+3)} = \frac{1}{(2n+2)(2n+3)} \geq 0. \end{split}$$

— Soit $n \ge 1$, on a:

$$S_{2n+1} - S_{2n} = \frac{(-1)^{2n+1}}{2n+1} = -\frac{1}{2n+1}$$

donc $\lim_{n \to +\infty} S_{2n+1} - S_{2n} = 0.$

Ainsi, les suites $(S_{2N})_{N\geqslant 1}$ et $(S_{2N+1})_{N\in\mathbb{N}}$ sont adjacentes

On en déduit que ces suites sont convergentes, de même limite $\ell \in \mathbb{R}$. Alors par propriété des suites extraites, la suite $(S_N)_{N \in \mathbb{N}^*}$ converge.

3. Écrire une fonction valeurapprochee qui prend en argument un nombre réel eps strictement positif et renvoie la plus petite valeur de N et la valeur de S_N correspondante telles que $|S_N - S_{N+1}| < \varepsilon$.

On utilise une boucle while et la fonction somme précédente.

```
from math import abs
def valeurapprochee(eps) :
    N = 1
    while (abs(somme(N)-somme(N+1)) >= eps) :
        N = N+1
    return N, somme(N)
```

4. Montrer que :

$$\forall x \in \mathbb{R} \setminus \{-1\}, \ \forall N \in \mathbb{N}^*, \qquad \sum_{k=0}^{N-1} (-x)^k = \frac{1}{1+x} - (-1)^N \frac{x^N}{1+x}$$

Soient $x \in \mathbb{R} \setminus \{-1\}$ et $N \in \mathbb{N}^*$. Alors $\sum_{k=0}^{N-1} (-x)^k$ est la somme des termes d'une suite géométrique de raison $-x \neq 1$ car $x \neq -1$. On a donc :

$$\sum_{k=0}^{N-1} (-x)^k = \frac{1 - (-x)^N}{1 - (-x)} = \frac{1}{1+x} - (-1)^N \frac{x^N}{1+x}$$

5. En déduire que $\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} = \ln(2)$.

Soit $N \in \mathbb{N}^*$. En intégrant l'égalité obtenue à la question précédente sur le segment [0,1] (ce qui est licite puisque ce segment ne contient par -1 et car les fonctions mises en jeu sont continues sur ce segment), on a obtient (en utilisant aussi la linéarité de l'intégrale) :

$$\sum_{k=0}^{N-1} (-1)^k \int_0^1 x^k \, \mathrm{d}x = \int_0^1 \frac{\mathrm{d}x}{1+x} - (-1)^N \int_0^1 \frac{x^N}{1+x} \, \mathrm{d}x$$

c'est-à-dire:

$$\sum_{k=0}^{N-1} \frac{(-1)^k}{k+1} = \ln(2) - (-1)^N \int_0^1 \frac{x^N}{1+x} \, \mathrm{d}x$$

Or le changement d'indice $\ell = k + 1$ donne $\sum_{k=0}^{N-1} \frac{(-1)^k}{k+1} = \sum_{\ell=1}^{N} \frac{(-1)^{\ell-1}}{\ell} = -S_N$ et donc :

$$S_N = -\ln(2) + (-1)^N \int_0^1 \frac{x^N}{1+x} dx$$
 (0.1)

Pour tout $x \in [0, 1]$, on a $1 + x \ge 1$ donc, par décroissance de la fonction inverse sur \mathbb{R}_+^* , il vient $0 \le \frac{1}{1+x} \le 1$ puis, en multipliant par $x^N \ge 0$, on obtient :

$$0 \leqslant \frac{x^N}{1+x} \leqslant x^N$$

La croissance de l'intégrale nous donne, puisque $\int_0^1 x^N dx = \frac{1}{N+1}$:

$$0 \leqslant \int_0^1 \frac{x^N}{1+x} \, \mathrm{d}x \leqslant \frac{1}{N+1}$$

Enfin, comme $-1 \leqslant (-1)^N \leqslant 1$:

$$-\frac{1}{N+1} \le \int_0^1 \frac{x^N}{1+x} \, \mathrm{d}x \le \frac{1}{N+1}$$

Or $\lim_{N\to+\infty}\frac{\pm 1}{N+1}=0$ donc, d'après le théorème des gendarmes, $\lim_{N\to+\infty}\int_0^1\frac{x^N}{1+x}\,\mathrm{d}x=0$. Finalement, la suite $(S_N)_{N\geqslant 1}$ est convergente de limite $-\ln(2)$ d'après (1). Autrement dit :

la série
$$\sum_{n\geqslant 1} \frac{(-1)^n}{n}$$
 est convergente de somme $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n} = -\ln(2)$

Exercice 8 (C3) \square Pour tout entier naturel n non nul, on pose :

$$u_n = \arctan\left(\frac{1}{n^2 + n + 1}\right)$$

1. Montrer que:

$$\forall (a,b) \in \left[0, \frac{\pi}{2}\right]^2, \qquad \tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$$

Soit $(a,b) \in \left[0,\frac{\pi}{2}\right[^2$. Alors $a-b \in \left]-\frac{\pi}{2},\frac{\pi}{2}\right[$. En particulier, les nombres a,b et a-b appartiennent au domaine de définition de la fonction tangente donc les nombres $\tan(a)$, $\tan(b)$ et $\tan(a-b)$ sont bien définis. De plus :

$$\tan(a-b) = \frac{\sin(a-b)}{\cos(a-b)} = \frac{\sin(a)\cos(b) - \cos(a)\sin(b)}{\cos(a)\cos(b) + \sin(a)\sin(b)}$$
$$= \frac{\cos(a)\cos(b)}{\cos(a)\cos(b)} \times \frac{\frac{\sin(a)}{\cos(a)} - \frac{\sin(b)}{\cos(b)}}{1 + \frac{\sin(a)}{\cos(a)} \times \frac{\sin(b)}{\cos(a)}}$$

ce qui donne bien:

$$\forall (a,b) \in \left[0, \frac{\pi}{2}\right[, \qquad \tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}\right]$$

2. En déduire que :

$$\forall n \in \mathbb{N}^*, \quad \arctan\left(\frac{1}{n}\right) - \arctan\left(\frac{1}{n+1}\right) = \arctan\left(\frac{1}{n^2 + n + 1}\right)$$

Soit $n \in \mathbb{N}^*$. On a $0 \le \frac{1}{n} \le 1$ et donc, par croissance de la fonction arctan sur [0,1], on a :

$$\arctan(0)\leqslant\arctan\left(\frac{1}{n}\right)\leqslant\arctan(1) \qquad \text{c'est-\grave{a}-dire} \qquad 0\leqslant\arctan\left(\frac{1}{n}\right)\leqslant\frac{\pi}{4}$$

En particulier, $\arctan\left(\frac{1}{n}\right) \in \left[0, \frac{\pi}{2}\right[$. De la même façon, on a $\arctan\left(\frac{1}{n+1}\right) \in \left[0, \frac{\pi}{2}\right[$.

On peut donc appliquer la question 1. aux nombres $a = \arctan\left(\frac{1}{n}\right)$ et $b = \arctan\left(\frac{1}{n+1}\right)$.

On sait que $\tan \circ \arctan = \operatorname{Id}_{\mathbb{R}} \operatorname{donc} \tan(a) = \frac{1}{n} \operatorname{et} \tan(b) = \frac{1}{n+1}$. Ainsi :

$$\tan(a-b) = \frac{\frac{1}{n} - \frac{1}{n+1}}{1 + \frac{1}{n(n+1)}} = \frac{1}{n^2 + n + 1} = \tan\left(\arctan\left(\frac{1}{n^2 + n + 1}\right)\right)$$

Comme la fonction tangente est injective (ou *strictement croissante*) sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et comme $\left(a-b, \frac{1}{n^2+n+1}\right) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[^2$, on a $a-b = \arctan\left(\frac{1}{n^2+n+1}\right)$. Finalement :

$$\forall n \in \mathbb{N}^*, \quad \arctan\left(\frac{1}{n}\right) - \arctan\left(\frac{1}{n+1}\right) = \arctan\left(\frac{1}{n^2 + n + 1}\right)$$

3. Étudier la convergence de la série $\sum_{n\geq 1} u_n$ et calculer sa somme en cas de convergence.

Soit $n \in \mathbb{N}^*$. On pose $S_n = \sum_{k=1}^n u_k$. D'après la question 2., on a :

$$S_n = \sum_{k=1}^n \left(\arctan\left(\frac{1}{k}\right) - \arctan\left(\frac{1}{k+1}\right) \right) = \dots = \arctan(1) - \arctan\left(\frac{1}{n+1}\right)$$
$$= \frac{\pi}{4} - \arctan\left(\frac{1}{n+1}\right)$$

car la somme est télescopique. Par composition des limites :

$$\lim_{n \to +\infty} \arctan\left(\frac{1}{n+1}\right) = \lim_{x \to 0} \arctan(x) = 0$$

donc la suite $(S_n)_{n\geqslant 1}$ est convergente de limite $\frac{\pi}{4}$. Autrement dit :

la série
$$\sum_{n\geqslant 1} u_n$$
 est convergente de somme $\sum_{n=1}^{+\infty} u_n = \frac{\pi}{4}$

17

Exercice 9 (C1-C3-C5) \Box 1. Montrer que la série de terme général $u_n = \ln(1 - 1/n^2)$ converge.

On pose pour $n \ge 2$, $v_n = -\ln(1 - 1/n^2) \ge 0$.

On remarque que $\lim_{n\to+\infty}\frac{1}{n^2}=0$ donc

$$v_n \sim \frac{1}{n^2}$$
.

La série de terme général $\frac{1}{n^2}$ converge en tant que série usuelle. Par critère des équivalents des séries à termes positifs, on en déduit que la série de terme général v_n converge. Or pour tout $n \geq 2$, $u_n = -v_n$, donc on obtient la convergence de la série de terme général u_n

2. Calculer la somme de cette série.

Soit $n \ge 2$, on pose $S_n = \sum_{k=2}^n u_k$. On a:

$$S_n = \sum_{k=2}^n \ln\left(1 - \frac{1}{k^2}\right)$$

$$= \sum_{k=2}^n \ln\left(\frac{k^2 - 1}{k^2}\right)$$

$$= \sum_{k=2}^n \ln\left(\frac{(k-1)(k+1)}{k^2}\right)$$

$$= \sum_{k=2}^n \left(\ln(k-1) + \ln(k+1) - \ln(k^2)\right)$$

$$= \sum_{k=2}^n \left(\ln(k-1) + \ln(k+1) - 2\ln(k)\right)$$

en utilisant les propriétés de la fonction ln. Maintenant, par linéarité de la somme, on obtient :

$$S_n = \sum_{k=2}^n \ln(k-1) + \sum_{k=2}^n \ln(k+1) - 2\sum_{k=2}^n \ln(k)$$

$$= \sum_{j=1}^{n-1} \ln(j) + \sum_{l=3}^{n+1} \ln(l) - 2\sum_{k=2}^n \ln(k) \text{ en posant } j = k-1 \text{ et } l = k+1$$

$$= \left(\sum_{j=1}^{n-1} \ln(j) - \sum_{k=2}^n \ln(k)\right) + \left(\sum_{l=3}^{n+1} \ln(l) - \sum_{k=2}^n \ln(k)\right)$$

$$= \ln(1) - \ln(n) + \ln(n+1) - \ln(2)$$

$$= \ln\left(\frac{n+1}{n}\right) - \ln(2)$$

$$= \ln\left(1 + \frac{1}{n}\right) - \ln(2)$$

Ainsi, on obtient $\lim_{n\to+\infty} S_n = -\ln(2)$, donc la série de terme général u_n converge et vaut :

$$\sum_{n\geq 2} u_n = -\ln(2).$$

Exercice 10 (C4) \square Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0>0, u_1>0$ et :

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \qquad u_n = u_{n-1} + \frac{u_{n-2}}{n \ln(n)}$$

Pour tout $n \in \mathbb{N} \setminus \{0, 1\}$, on pose $S_n = \sum_{k=2}^n \frac{1}{k \ln(k)}$.

1. Étudier la fonction $f: x \longmapsto \frac{1}{x \ln(x)}$ sur l'intervalle]1, $+\infty$ [.

La fonction f est dérivable sur $]1, +\infty[$ (comme inverse de la fonction dérivable $x \longmapsto x \ln(x)$ sur $]1, +\infty[$ et qui ne s'annule pas sur cet intervalle) et :

$$\forall x \in]1, +\infty[, \qquad f'(x) = -\frac{\ln(x) + 1}{x^2 \ln(x)^2} \le 0$$

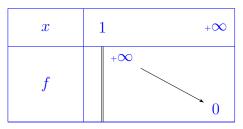
car $1 + \ln(x) \ge 1 \ge 0$ et $x^2 \ln(x)^2 > 0$. Donc la fonction f est décroissante sur $]1, +\infty[$. De plus :

$$\lim_{x \to +\infty} x \ln(x) = +\infty \qquad \text{donc} \qquad \lim_{x \to +\infty} f(x) = 0$$

et:

$$\lim_{x \to 1^{+}} \ln(x) = 0^{+} \qquad \text{donc} \qquad \lim_{x \to 1^{+}} f(x) = +\infty$$

On obtient donc le tableau de variation de f suivant :



2. Montrer que:

$$\forall k \in \mathbb{N} \setminus \{0, 1\}, \qquad \frac{1}{(k+1)\ln(k+1)} \leqslant \int_{k}^{k+1} \frac{\mathrm{d}x}{x\ln(x)} \leqslant \frac{1}{k\ln(k)}$$

Soit $k \in \mathbb{N} \setminus \{0, 1\}$. Alors $(k, k + 1) \in]1, +\infty[^2$. Comme la fonction f est décroissante sur l'intervalle $]1, +\infty[$, on a :

$$\forall x \in [k, k+1], \qquad f(k+1) \leqslant f(x) \leqslant f(k)$$

Par croissance de l'intégrale, on a alors :

$$\int_{k}^{k+1} f(k+1) \, \mathrm{d}x \le \int_{k}^{k+1} f(x) \, \mathrm{d}x \le \int_{k}^{k+1} f(k) \, \mathrm{d}x$$

Or:

$$\int_{k}^{k+1} f(k+1) dx = \left[f(k+1)x \right]_{k}^{k+1} = f(k+1) \qquad \text{et, de la même façon,} \qquad \int_{k}^{k+1} f(k) dx = f(k)$$

Finalement, en utilisant l'expression de f, on a bien :

$$\forall k \in \mathbb{N} \setminus \{0, 1\}, \qquad \frac{1}{(k+1)\ln(k+1)} \leqslant \int_{k}^{k+1} \frac{\mathrm{d}x}{x\ln(x)} \leqslant \frac{1}{k\ln(k)}$$

3. En déduire que :

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \qquad \ln(\ln(n+1)) - \ln(\ln(2)) \leqslant S_n \leqslant \ln(\ln(n)) - \ln(\ln(2)) + \frac{1}{2\ln(2)}$$

Soit $n \in \mathbb{N} \setminus \{0, 1\}$. En sommant les inégalités obtenues précédemment sur les entiers $k \in [2, n]$ on obtient :

$$\sum_{k=2}^{n} \frac{1}{(k+1)\ln(k+1)} \leqslant \sum_{k=2}^{n} \int_{k}^{k+1} \frac{\mathrm{d}x}{x\ln(x)} \leqslant \sum_{k=2}^{n} \frac{1}{k\ln(k)}$$

et donc, en utilisant la relation de Chasles pour les intégrales

$$\sum_{k=2}^{n} \frac{1}{(k+1)\ln(k+1)} \le \int_{2}^{n+1} \frac{\mathrm{d}x}{x\ln(x)} \le \sum_{k=2}^{n} \frac{1}{k\ln(k)}$$
 (0.2)

Une primitive de la fonction f sur $]1, +\infty[$ est la fonction $x \mapsto \ln(\ln(x))$ donc :

$$\int_{2}^{n+1} \frac{\mathrm{d}x}{x \ln(x)} = \left[\ln(\ln(x)) \right]_{2}^{n+1} = \ln(\ln(n+1)) - \ln(\ln(2))$$

Le changement d'indice $\ell = k + 1$, on a :

$$\sum_{k=2}^{n} \frac{1}{(k+1)\ln(k+1)} = \sum_{\ell=3}^{n+1} \frac{1}{\ell \ln(\ell)} = \sum_{k=2}^{n+1} \frac{1}{k \ln(k)} - \frac{1}{2\ln(2)} = S_{n+1} - \frac{1}{2\ln(2)}$$

Les inégalités (0.2) se réécrivent donc :

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \qquad S_{n+1} - \frac{1}{2\ln(2)} \le \ln(\ln(n+1)) - \ln(\ln(2)) \le S_n$$

L'inégalité de gauche ci-dessus se réécrit (en remplaçant n+1 par n) :

$$\forall n \in \mathbb{N} \setminus \{0, 1, 2\}, \qquad S_n \leqslant \ln(\ln(n)) - \ln(\ln(2)) + \frac{1}{2\ln(2)}$$

Cette inégalité est évidente pour n=2 (c'est en fait une égalité puisque $S_2=\frac{1}{2\ln(2)}$). Finalement :

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \qquad \ln(\ln(n+1)) - \ln(\ln(2)) \leqslant S_n \leqslant \ln(\ln(n)) - \ln(\ln(2)) + \frac{1}{2\ln(2)}$$

4. Déterminer alors un équivalent de S_n quand n tend vers $+\infty$. Quelle est la nature de la série $\sum_{n\geqslant 2}\frac{1}{n\ln(n)}$?

Soit $n \in \mathbb{N} \setminus \{0, 1, 2\}$. Comme $\ln(\ln(n)) > 0$ (puisque $\ln(n) \ge \ln(3) > 1$), on a :

$$\frac{\ln(\ln(n+1))}{\ln(\ln(n))} - \frac{\ln(\ln(2))}{\ln(\ln(n))} \leqslant \frac{S_n}{\ln(\ln(n))} \leqslant 1 - \frac{\ln(\ln(2))}{\ln(\ln(n))} + \frac{1}{2\ln(2)\ln(\ln(n))}$$

Or:

$$\ln(\ln(n+1)) = \ln\left(\ln\left(n\left[1+\frac{1}{n}\right]\right)\right) = \ln\left(\ln(n) + \ln\left(1+\frac{1}{n}\right)\right)$$

$$= \ln\left(\ln(n)\left[1+\frac{\ln\left(1+\frac{1}{n}\right)}{\ln(n)}\right]\right)$$

$$= \ln(\ln(n)) + \ln\left(1+\frac{\ln\left(1+\frac{1}{n}\right)}{\ln(n)}\right)$$

et donc:

$$\frac{\ln(\ln(n+1))}{\ln(\ln(n))} = 1 + \frac{\ln\left(1 + \frac{\ln\left(1 + \frac{1}{n}\right)}{\ln(\ln(n))}\right)}{\ln(\ln(n))}$$

On obtient alors:

$$\lim_{n\to +\infty} \left(\frac{\ln(\ln(n+1))}{\ln(\ln(n))} - \frac{\ln(\ln(2))}{\ln(\ln(n))}\right) = 1$$

On a aussi:

$$\lim_{n \to +\infty} \left(1 - \frac{\ln(\ln(2))}{\ln(\ln(n))} + \frac{1}{2\ln(2)\ln(\ln(n))} \right) = 1$$

donc, d'après le théorème des gendarmes, on a $\lim_{n\to+\infty}\frac{\mathbf{S}_n}{\ln(\ln(n))}=1$. Ainsi :

$$S_n \underset{n \to +\infty}{\sim} \ln(\ln(n))$$

Comme $\lim_{n\to+\infty}\ln(\ln(n))=+\infty$, l'équivalent précédent implique que la suite $(S_n)_{n\geqslant 2}$ des sommes partielles de la série $\sum_{n\geqslant 2}\frac{1}{n\ln(n)}$ est divergente de limite $+\infty$. On en déduit donc que :

la série
$$\sum_{n\geqslant 2} \frac{1}{n\ln(n)}$$
 est divergente

5. Montrer qu'il existe $c \in \mathbb{R}_+^*$ tel que :

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \qquad u_n - u_{n-1} \geqslant \frac{c}{n \ln(n)}$$

D'après la relation de récurrence vérifiée par la suite, il suffit de montrer qu'il existe une constante C > 0 telle que, pour tout $n \in \mathbb{N} \setminus \{0,1\}$, on ait $u_{n-2} \geqslant C$. Il s'agit donc de montrer que la suite $(u_n)_{n \in \mathbb{N}}$ est minorée. Ceci est vrai si la suite est croissante; la suite sera alors minorée par son premier terme.

Pour l'établir, commençons par montrer, à l'aide d'un raisonnement par récurrence à deux pas, que tous les termes de la suite sont strictement positifs. Pour tout $n \in \mathbb{N}$, on considère la proposition \mathcal{P}_n : « $u_n > 0$ ».

- Initialisation: par hypothèse, on sait que $u_0 > 0$ et $u_1 > 0$ donc les propositions \mathcal{P}_0 et \mathcal{P}_1 sont vraies.
- **Hérédité**: soit $n \in \mathbb{N}$ tel que les propositions \mathcal{P}_n et \mathcal{P}_{n+1} soient vraies. Montrons qu'elles entrainent la proposition \mathcal{P}_{n+2} , c'est-à-dire que $u_{n+2} > 0$. On a :

$$u_{n+2} = u_{n+1} + \frac{u_n}{(n+2)\ln(n+2)} > 0$$

car $u_{n+1} > 0$, $u_n > 0$ (hypothèse de récurrence) et $(n+2)\ln(n+2) > 0$ (en effet, n+2>1). Donc la proposition \mathcal{P}_{n+2} est vraie.

• Conclusion : pour tout $n \in \mathbb{N}$, la proposition \mathcal{P}_n est vraie par principe de récurrence à deux pas.

Étudions maintenant les variations de la suite $(u_n)_{n\in\mathbb{N}}$. Soit $n\in\mathbb{N}\setminus\{0,1\}$. D'après la relation de récurrence, on sait que :

$$u_n - u_{n-1} = \frac{u_{n-2}}{n \ln(n)} > 0$$

et donc, pour tout $n \in \mathbb{N}^*$, on a $u_{n+1} - u_n \ge 0$. La suite $(u_n)_{n \ge 1}$ est donc croissante (à partir du rang 1 seulement a priori : en effet, rien dans l'énoncé nous permet de comparer u_0 et u_1).

Posons donc $c = \min(u_0, u_1) \in \mathbb{R}_+^*$. Pour tout $n \in \mathbb{N}$, on a alors $u_n \ge c$ (ce que l'on peut réécrire : $\forall n \in \mathbb{N} \setminus \{0, 1\}, \ u_{n-2} \ge c$) et donc :

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \qquad \frac{u_{n-2}}{n \ln(n)} \geqslant \frac{c}{n \ln(n)} \qquad (\operatorname{car} n \ln(n) > 0)$$

Finalement:

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \qquad u_n - u_{n-1} \geqslant \frac{c}{n \ln(n)}$$

6. Conclure quant à la nature de la suite $(u_n)_{n\in\mathbb{N}}$.

Soit $n \in \mathbb{N} \setminus \{0, 1\}$. En sommant les inégalités obtenus à la question 5. (sur les entiers $k \in [2, n]$), on obtient :

$$\sum_{k=2}^{n} (u_k - u_{k-1}) \geqslant c \sum_{k=2}^{n} \frac{1}{k \ln(k)}$$

c'est-à-dire (la première somme est télescopique) :

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \qquad u_n \geqslant u_1 + c S_n$$

D'après la question précédente, la suite $(S_n)_{n\geqslant 2}$ est divergente de limite $+\infty$ donc, puisque c>0,

$$\lim_{n \to +\infty} (u_1 + c \, \mathbf{S}_n) = +\infty$$

D'après le théorème de comparaison :

la suite $(u_n)_{n\geq 2}$ (et donc aussi $(u_n)_{n\in\mathbb{N}}$) est divergente de limite $+\infty$

Exercice 11 (C3-C4) $\ \ \,$ 1. Soit $\alpha \in \mathbb{R}_+^*$. On étudie dans cette question la série $\sum_{n>1} \frac{1}{n^{\alpha}}$.

Pour tout
$$p \in \mathbb{N}^*$$
, on pose $S_p = \sum_{n=1}^p \frac{1}{n^{\alpha}}$.

(a) Montrer que, pour tout entier $n \ge 2$, on a :

$$\int_{n}^{n+1} \frac{1}{t^{\alpha}} \, \mathrm{d}t \leqslant \frac{1}{n^{\alpha}} \leqslant \int_{n-1}^{n} \frac{1}{t^{\alpha}} \, \mathrm{d}t$$

Soit $n \in \mathbb{N} \setminus \{0, 1\}$. Comme $\alpha > 0$, la fonction $t \longmapsto \frac{1}{t^{\alpha}}$ est décroissante sur \mathbb{R}_{+}^{*} donc elle est aussi décroissante sur les intervalles [n-1, n] et [n, n+1] (qui sont bien inclus dans \mathbb{R}_{+}^{*} car $n \geq 2$). Donc :

$$\left(\forall t \in [n-1,n], \frac{1}{n^{\alpha}} \leqslant \frac{1}{t^{\alpha}}\right)$$
 et $\left(\forall t \in [n,n+1], \frac{1}{t^{\alpha}} \leqslant \frac{1}{n^{\alpha}}\right)$

En intégrant ces inégalités sur les segments [n-1,n] et [n+1,n] respectivement, on obtient :

$$\frac{1}{n^{\alpha}} \int_{n-1}^{n} 1 \, \mathrm{d}t \leqslant \int_{n-1}^{n} \frac{1}{t^{\alpha}} \, \mathrm{d}t \qquad \text{et} \qquad \int_{n}^{n+1} \frac{1}{t^{\alpha}} \, \mathrm{d}t \leqslant \frac{1}{n^{\alpha}} \int_{n}^{n+1} 1 \, \mathrm{d}t$$

Or
$$\int_{n-1}^{n} 1 dt = \int_{n}^{n+1} 1 dt = 1 d$$
'où :

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \qquad \int_{n}^{n+1} \frac{1}{t^{\alpha}} dt \leqslant \frac{1}{n^{\alpha}} \leqslant \int_{n-1}^{n} \frac{1}{t^{\alpha}} dt$$

(b) Donner la nature de la série $\sum_{n>1} \int_{n}^{n+1} \frac{1}{t^{\alpha}} dt$ suivant la valeur de α .

Pour tout
$$n \in \mathbb{N}^*$$
, on pose $T_n = \sum_{k=1}^n \int_k^{k+1} \frac{1}{t^{\alpha}} dt$.

Soit $n \in \mathbb{N}^*$. D'après la relation de Chasles pour les intégrales, on a $T_n = \int_1^{n+1} \frac{1}{t^{\alpha}} dt$. On distingue maintenant deux cas.

• Premier cas : $\alpha = 1$. Dans ce cas, $T_n = \left[\ln(t)\right]_1^{n+1} = \ln(n+1)$ et donc $\lim_{n \to +\infty} T_n = +\infty$. La série $\sum_{n \geqslant 1} \frac{1}{n}$ est donc divergente (ce que l'on savait déjà). • Deuxième cas : $\alpha \in]0,1[\cup]1,+\infty[$. Ici :

$$T_n = \int_1^{n+1} t^{-\alpha} dt = \left[\frac{t^{-\alpha+1}}{1-\alpha} \right]_1^{n+1} = \frac{1}{1-\alpha} \left(\frac{1}{(n+1)^{\alpha-1}} - 1 \right)$$

Si $\alpha \in]0,1[$, alors $\lim_{n \to +\infty} \frac{1}{(n+1)^{\alpha-1}} = +\infty$ et donc, comme $\frac{1}{1-\alpha} > 0$, on a encore

$$\lim_{n\to+\infty} T_n = +\infty$$
. La série $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ diverge donc.

Supposons maintenant que $\alpha \in]1, +\infty[$. Alors $\lim_{n \to +\infty} \frac{1}{(n+1)^{\alpha-1}} = 0$ (puisque $\alpha - 1 >$

0) et donc $\lim_{n\to+\infty} T_n = \frac{1}{\alpha-1}$. Dans ce cas, la série $\sum_{n\geqslant 1}^{\infty} \frac{1}{n^{\alpha}}$ est convergente de somme

$$\overline{\alpha-1}$$
.

Finalement:

pour tout
$$\alpha > 0$$
, la série $\sum_{n \geqslant 1} \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$

(c) En déduire la nature de la série $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$ suivant la valeur de α .

Soit $\alpha \in \mathbb{R}_+^*$. On distingue deux cas.

• Premier cas : $\alpha \in]0,1]$. D'après la question 1.(a), on a :

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \qquad \frac{1}{n^{\alpha}} \geqslant \int_{\mathbb{R}}^{n+1} \frac{1}{t^{\alpha}} \, \mathrm{d}t \geqslant 0$$

Or la série $\sum_{n\geqslant 2}\int_n^{n+1}\frac{1}{t^{\alpha}}\,\mathrm{d}t$ diverge (question 1.(b) avec $\alpha\in]0,1])$ donc, par compa-

raison de séries à termes positifs, la série $\sum_{n\geqslant 2}\frac{1}{n^{\alpha}}$ diverge également. Ainsi, la série

$$\sum_{n\geqslant 1} \frac{1}{n^{\alpha}} \text{ diverge.}$$

• Deuxième cas : $\alpha \in]1, +\infty[$. D'après la question 1.(a), on sait que :

$$\forall n \in \mathbb{N}^*, \qquad 0 \leqslant \frac{1}{(n+1)^{\alpha}} \leqslant \int_{n}^{n+1} \frac{1}{t^{\alpha}} dt$$

Or on sait que la série $\sum_{n\geq 1} \int_n^{n+1} \frac{1}{t^{\alpha}} dt$ converge (question 1.(b) car $\alpha>1$) donc,

par comparaison de séries à termes positifs, la série $\sum_{n\geqslant 1} \frac{1}{(n+1)^{\alpha}}$ est convergente.

Autrement dit, la série $\sum_{n\geqslant 2}\frac{1}{n^{\alpha}}$ converge, de même que la série $\sum_{n\geqslant 1}\frac{1}{n^{\alpha}}$.

Finalement:

pour tout
$$\alpha\in\mathbb{R}_+^*,$$
 la série $\sum_{n\geqslant 1}\frac{1}{n^\alpha}$ converge si et seulement si $\alpha>1$

2. Déterminer un équivalent simple du terme général de la série ci-dessous puis étudier la nature de cette série :

$$\sum_{n \ge 1} \frac{1}{n} \left(\sqrt{n+1} - \sqrt{n} \right)$$

Pour tout $n \in \mathbb{N}^*$, on a:

$$\frac{\sqrt{n+1}-\sqrt{n}}{n} = \frac{\sqrt{n}}{n} \left(\sqrt{1+\frac{1}{n}}-1\right) = \frac{1}{\sqrt{n}} \left(\sqrt{1+\frac{1}{n}}-1\right)$$

Comme $\lim_{n\to +\infty} \frac{1}{n} = 0$, on a $\sqrt{1+\frac{1}{n}} - 1 \underset{n\to +\infty}{\sim} \frac{1}{2n}$ et donc, par produit :

$$\frac{\sqrt{n+1}-\sqrt{n}}{n} \mathop{\sim}_{n \to +\infty} \frac{1}{2n^{3/2}}$$

Comme $\frac{3}{2} > 1$, la série $\sum_{n>1} \frac{1}{n^{3/2}}$ est convergente d'après la question 1.(c). Par critère des

équivalents des séries à termes positifs, on obtient donc que la série $\sum_{n\geqslant 1} \frac{\sqrt{n+1-\sqrt{n}}}{n}$ est convergente.

la série
$$\sum_{n\geqslant 1} \frac{\sqrt{n+1}-\sqrt{n}}{n}$$
 est convergente

Exercice 12 (C4) $\ \ \,$ On pose, pour tout n entier naturel non nul, $v_n = \frac{n^{n+\frac{1}{2}}}{n! e^n}$ et $\delta_n = \ln\left(\frac{v_{n+1}}{v_n}\right)$.

1. Déterminer un développement limité en la variable $\frac{1}{n}$ à l'ordre 2 de δ_n . Pour tout $n \in \mathbb{N}^*$, on a :

$$\frac{v_{n+1}}{v_n} = \frac{(n+1)^{n+\frac{3}{2}}}{(n+1)! e^{n+1}} \times \frac{n! e^n}{n^{n+\frac{1}{2}}} = \frac{1}{e} \left(1 + \frac{1}{n}\right)^{n+\frac{1}{2}}$$

et donc:

$$\delta_n = \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right) - 1$$

Comme $\lim_{n\to+\infty} \frac{1}{n} = 0$, on a le $DL_3(+\infty)$ suivant :

$$\ln\left(1 + \frac{1}{n}\right) = \frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + o\left(\frac{1}{n^3}\right)$$

et donc

$$\delta_n = \left(n + \frac{1}{2}\right) \left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + o\left(\frac{1}{n^3}\right)\right) - 1$$
$$= 1 - \frac{1}{2n} + \frac{1}{3n^2} + \frac{1}{2n} - \frac{1}{4n^2} - 1 + o\left(\frac{1}{n^2}\right)$$

d'où:

$$\delta_n = \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right)$$

2. En déduire un équivalent de δ_n .

On a montré que $\delta_n = \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right)$, on en déduit que :

$$\delta_n \sim \frac{1}{12n^2}.$$

3. En déduire la nature de la série $\sum_{n\geq 1} \delta_n$.

On sait que la série $\sum_{n\geqslant 1}\frac{1}{n^2}$ est convergente. On déduit donc du critère des équivalents des séries à termes positifs que la série $\sum_{n\geqslant 1}\delta_n$ est convergente.

la série
$$\sum_{n\geqslant 1} \delta_n$$
 converge

4. Conclure alors que la suite $(v_n)_{n\geqslant 1}$ converge vers une limite strictement positive. Pour tout $n\in\mathbb{N}^*$, on a $v_{n+1}=v_n\,\mathrm{e}^{\delta_n}$. En posant $\Delta_n=\sum\limits_{k=1}^n\delta_k$ pour tout $n\in\mathbb{N}^*$, alors on montre (facilement) par récurrence simple que:

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \qquad \underbrace{v_n = v_1 e^{\Delta_{n-1}}}_{\text{proposition } \mathcal{P}_n} = e^{\Delta_{n-1} - 1}$$

La série $\sum_{n\geqslant 1} \delta_n$ est convergente donc la suite $(\Delta_n)_{n\geqslant 1}$ de ses sommes partielles converge vers un nombre réel noté ℓ . Par composition des limites, la suite $(v_n)_{n\geqslant 2}$ converge donc de limite $e^{\ell-1}$. La convergence et la limite d'une suite ne dépend pas du premier terme donc :

la suite $(v_n)_{n\geqslant 1}$ est convergente de limite $e^{\ell-1}>0$

Exercice 13 (C1-C2-C3) Soit $q \in]-1,1[$. Pour tout entier naturel k non nul on considère la propriété :

$$\mathcal{P}_k$$
: « la série $\sum_{n \geq k} \binom{n}{k} q^{n-k}$ converge et $\sum_{n=k}^{+\infty} \binom{n}{k} q^{n-k} = \frac{1}{(1-q)^{k+1}}$ »

On va montrer par récurrence que, pour tout entier naturel k, la proposition \mathcal{P}_k est vraie.

1. Montrer que \mathcal{P}_0 est vraie.

Pour tout $n \in \mathbb{N}$, on a $\binom{n}{0} = 1$ et on sait que la série géométrique $\sum_{n \geq 0} q^n$ est convergente car $q \in]-1,1[$ de somme :

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q} = \frac{1}{(1-q)^{0+1}}$$

donc la proposition \mathcal{P}_0 est vraie

2. Soit $k \in \mathbb{N}$. On suppose que la proposition \mathcal{P}_k est vraie.

Pour tout entier $p \ge k+1$, on pose $S_p = \sum_{n=k+1}^p \binom{n}{k+1} q^{n-(k+1)}$.

(a) Montrer que, pour tout $p \ge k + 1$, on a :

$$(1-q) S_p = -\binom{p}{k+1} q^{p-k} + \sum_{n=k}^{p-1} \binom{n}{k} q^{n-k}$$

Soit p un entier supérieur ou égal à k+1. Par linéarité de la somme, on a :

$$(1-q) S_p = \sum_{n=k+1}^p \binom{n}{k+1} q^{n-(k+1)} - \sum_{n=k+1}^p \binom{n}{k+1} q^{n-k}$$

En effectuant le changement d'indice m=n-1 dans la première somme puis la relation de Chasles, on obtient :

$$(1-q) S_p = \sum_{m=k}^{p-1} {m+1 \choose k+1} q^{m-k} - \sum_{n=k+1}^{p} {n \choose k+1} q^{n-k}$$
$$= 1 + \sum_{n=k+1}^{p-1} \left[{n+1 \choose k+1} - {n \choose k+1} \right] q^{n-k} - {p \choose k+1} q^{p-k}$$

En utilisant maintenant la formule du triangle de Pascal (ou on refait le calcul), il vient :

$$(1-q) S_p = 1 + \sum_{n=k+1}^{p-1} \binom{n}{k} q^{n-k} - \binom{p}{k+1} q^{p-k}$$

Or $\binom{n}{n}q^{n-n}=1$ donc, d'après la relation de Chasles :

$$(1-q) S_p = -\binom{p}{k+1} q^{p-k} + \sum_{n=k}^{p-1} \binom{n}{k} q^{n-k}$$

(b) Montrer la suite $\left(\sum_{n=k}^{p-1} \binom{n}{k} q^{n-k}\right)_{p\geqslant k+1}$ converge et déterminer sa limite.

Par hypothèse de récurrence, la série $\sum_{n\geqslant k}\binom{n}{k}q^{n-k}$ de somme $\frac{1}{(1-q)^{k+1}}$. Ainsi, en posant :

$$\forall p \geqslant k, \qquad T_p = \sum_{n=k}^p \binom{n}{k} q^{n-k}$$

cela signifie que la suite $(T_p)_{p\geqslant k}$ est convergente de limite $\frac{1}{(1-q)^{k+1}}$. La suite $(T_{p-1})_{p\geqslant k}$ est donc aussi convergente de même limite, de même que $(T_{p-1})_{p\geqslant k+1}$ (le premier terme ne modifiant pas la convergence ni la limite). Autrement dit :

$$\left[\left(\sum_{n=k}^{p-1} \binom{n}{k} q^{n-k}\right)_{p\geqslant k+1} \text{ converge de limite } \frac{1}{(1-q)^{k+1}}\right]$$

(c) Montrer que $\lim_{p \to +\infty} \binom{p+1}{k+1} q^{p+1-k} = 0$.

Pour tout entier $p \geqslant k + 1$, on a

$$\binom{p+1}{k+1} = \frac{(p+1)!}{(k+1)!(p-k)!} = \frac{(p+1)p\dots(p-k+1)}{(k+1)!}$$

Pour tout $j \in \llbracket -1, k-1 \rrbracket$, on a $p-j \underset{p \to +\infty}{\sim} p$ et donc :

$$\binom{p+1}{k+1} \mathop{\sim}_{p \to +\infty} \frac{p^{k+1}}{k!} \qquad \text{puis} \qquad \binom{p+1}{k+1} q^{p+1-k} \mathop{\sim}_{p \to +\infty} \frac{q^{1-k}}{k!} \times p^{k+1} q^p$$

Par croissances comparées, on sait que $\lim_{p\to +\infty} p^{k+1}q^p = 0$ (car $q\in]-1,1[$) et donc :

$$\lim_{p \to +\infty} \binom{p+1}{k+1} q^{p+1-k} = 0$$

(d) Conclure.

On sait que la suite $\left(\sum_{n=k}^{p-1} \binom{n}{k} q^{n-k}\right)_{\substack{p\geqslant k+1\\ k+1}}$ est convergente de limite $\frac{1}{(1-q)^{k+1}}$ (question 2.(b)). Par ailleurs, la suite $\left(\binom{p+1}{k+1} q^{p+1-k}\right)_{\substack{p\geqslant k+1\\ p\geqslant k+1}}$ est convergente de limite 0 (question 2.(c)). Par linéarité, la suite $((1-q)\operatorname{S}_p)_{p\geqslant k+1}$ est convergente d'après la question 2.(a) de limite $\frac{1}{(1-q)^{k+1}}$, c'est-à-dire :

$$\lim_{p \to +\infty} (1 - q) S_p = \frac{1}{(1 - q)^{k+1}}$$

Or
$$1 - q \neq 0$$
 donc:

$$\lim_{p \to +\infty} S_p = \frac{1}{(1-q)^{k+2}}$$

Autrement dit:

la série
$$\sum_{n\geqslant k+1}\binom{n}{k+1}q^{n-(k+1)} \text{ est convergente de somme}$$

$$\sum_{n=k+1}^{+\infty}\binom{n}{k+1}q^{n-(k+1)}=\frac{1}{(1-q)^{k+2}}$$

donc la proposition \mathcal{P}_{k+1} est vraie. Par principe de récurrence simple, on peut donc conclure que :

pour tout
$$k \in \mathbb{N}^*$$
, la série $\sum_{n \geqslant k} \binom{n}{k} q^{n-k}$ est convergente et $\sum_{n=k}^{+\infty} \binom{n}{k} q^{n-k} = \frac{1}{(1-q)^{k+1}}$

Exercice 14 On sait que la série de terme général $\frac{1}{n^2}$ est convergente. On veut calculer la somme de cette série. Pour tout $t \in [0, \pi]$, on pose :

$$f(t) = \frac{t^2}{2\pi} - t$$
 et $g(t) = \frac{f(t)}{2\sin(\frac{t}{2})}$ si $t \neq 0$

1. Montrer que g est prolongeable par continuité en 0 et que ce prolongement (que l'on note encore g) est de classe \mathcal{C}^1 sur $[0,\pi]$.

Indication : pour les études en 0, on utilisera des développements limités.

On a $f(t) \underset{t\to 0}{\sim} -t$ et $\sin\left(\frac{t}{2}\right) \underset{t\to 0}{\sim} \frac{t}{2}$ car $\lim_{t\to 0} \frac{t}{2} = 0$. Par quotient, on obtient $g(t) \underset{t\to 0}{\sim} -1$ et donc $\lim_{t\to 0} g(t) = -1$. Donc :

on peut prolonger g par continuité en 0 en posant g(0) = -1

La fonction g est de classe \mathcal{C}^1 sur $]0,\pi]$ comme quotient de fonctions de classe \mathcal{C}^1 sur $]0,\pi]$. Étudions la dérivabilité de g en 0. On a :

$$\forall t \in]0, \pi], \qquad \frac{g(t) - g(0)}{t - 0} = \frac{f(t) + 2\sin\left(\frac{t}{2}\right)}{2t\sin\left(\frac{t}{2}\right)}$$

Comme $\lim_{t\to 0} \frac{t}{2} = 0$, on a:

$$f(t) + 2\sin\left(\frac{t}{2}\right) = \frac{t^2}{2\pi} - t + 2\sin\left(\frac{t}{2}\right) = \frac{t^2}{2\pi} - t + 2\left(\frac{t}{2} + o(t^2)\right)$$
$$= \frac{t^2}{0} \frac{t^2}{2\pi} + o(t^2)$$
$$\underset{t \to 0}{\sim} \frac{t^2}{2\pi}$$

De plus, $2t \sin\left(\frac{t}{2}\right) \underset{t\to 0}{\sim} t^2$ donc, par quotient, $\frac{g(t)-g(0)}{t-0} \underset{t\to 0}{\sim} \frac{1}{2\pi}$. Finalement, $\lim_{t\to 0} \frac{g(t)-g(0)}{t-0} = \frac{1}{2\pi}$. La fonction g est donc dérivable en 0 et $g'(0) = \frac{1}{2\pi}$. Enfin, étudions la continuité de g' en 0. Pour tout $t \in]0, \pi]$, on a :

$$g'(t) = \frac{1}{2} \times \frac{f'(t)\sin\left(\frac{t}{2}\right) - \frac{f(t)}{2}\cos\left(\frac{t}{2}\right)}{\sin\left(\frac{t}{2}\right)^2}$$

Or $\sin\left(\frac{t}{2}\right)^2 \underset{t\to 0}{\sim} \frac{t^2}{4}$ et :

$$f'(t)\sin\left(\frac{t}{2}\right) + \frac{f(t)}{2}\cos\left(\frac{t}{2}\right) = \left(\frac{t}{\pi} - 1\right)\left(\frac{t}{2} + o(t^2)\right) - \frac{1}{2}\left(\frac{t^2}{2\pi} - t\right)\left(1 - \frac{t^2}{2} + o(t^2)\right)$$

$$= \frac{t^2}{0}\frac{t^2}{2\pi} - \frac{t}{2} - \frac{t^2}{4\pi} + \frac{t}{2} + o(t^2)$$

$$= \frac{t^2}{0}\frac{t^2}{4\pi} + o(t^2)$$

$$\stackrel{\sim}{=} \frac{t^2}{4\pi}$$

Par quotient, on obtient $g'(t) \sim \frac{1}{2\pi}$ et donc $\lim_{t\to 0} g'(t) = \frac{1}{2\pi} = g'(0)$. Finalement, la fonction g' est continue en 0.

On peut donc conclure que la fonction g est de classe \mathcal{C}^1 sur $[0,\pi]$

2. Pour tout entier naturel k non nul, calculer l'intégrale $\int_0^{\pi} f(t) \cos(kt) dt$. Soit $k \in \mathbb{N}^*$. Alors :

$$\int_0^{\pi} f(t) \cos(kt) dt = \int_0^{\pi} \left(\frac{t^2}{2\pi} - t\right) \cos(kt) dt$$

On effectue ensuite deux intégrations par parties (en dérivant à chaque fois le polynôme) et on obtient :

$$\forall k \in \mathbb{N}^*, \qquad \int_0^{\pi} f(t) \cos(kt) dt = \frac{1}{k^2}$$

3.(a) Démontrer que :

$$\forall (a,b) \in \mathbb{R}^2, \qquad \sin(a)\cos(b) = \frac{\sin(a+b) + \sin(a-b)}{2}$$

Soit $(a, b) \in \mathbb{R}^2$. On sait que :

$$\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$$

et:

$$\sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a)$$

Il suffit ensuite d'en faire la demi-somme.

(b) Soient $(n, t) \in \mathbb{N}^* \times]0, \pi]$. Montrer l'égalité :

$$\sum_{k=1}^{n} \cos(kt) = \frac{\sin\left(\left(n + \frac{1}{2}\right)t\right)}{2\sin\left(\frac{t}{2}\right)} - \frac{1}{2}$$

Soit $(n,t) \in \mathbb{N}^* \times]0,\pi]$. Pour tout $k \in [1,n]$, on sait que $\cos(kt) = \operatorname{Re}\left(e^{ikt}\right)$. En utilisant la linéarité de la partie réelle et la formule de Moivre, on obtient :

$$\sum_{k=1}^{n} \cos(kt) = \operatorname{Re}\left(\sum_{k=1}^{n} \left(e^{it}\right)^{k}\right)$$

Or $\sum_{k=1}^{n} (e^{it})^k$ est la somme des termes d'une suite géométrique de raison $e^{it} \neq 1$ car $t \in]0,\pi]$ (donc en particulier $t \neq 0 \mod 2\pi$). On a donc :

$$\sum_{k=1}^{n} (e^{it})^k = e^{it} \times \frac{1 - (e^{it})^n}{1 - e^{it}} = e^{it} \times \frac{1 - e^{int}}{1 - e^{it}}$$

d'après la formule de Moivre. On utilise maintenant la technique de l'angle moitié (qui requiert la formule d'Euler pour le sinus ici) :

$$\sum_{k=1}^{n} (e^{it})^k = e^{it} \times \frac{e^{i\frac{nt}{2}} \left(e^{-i\frac{nt}{2}} - e^{i\frac{nt}{2}}\right)}{e^{i\frac{t}{2}} \left(e^{-i\frac{t}{2}} - e^{i\frac{t}{2}}\right)} = e^{i\frac{(n+1)t}{2}} \times \frac{-2i\sin\left(\frac{nt}{2}\right)}{-2i\sin\left(\frac{t}{2}\right)}$$
$$= e^{i\frac{(n+1)t}{2}} \times \frac{\sin\left(\frac{nt}{2}\right)}{\sin\left(\frac{t}{2}\right)}$$

En explicitant ce nombre complexe et en considérant la partie réelle, on obtient :

$$\sum_{k=1}^{n} \cos(kt) = \frac{\sin\left(\frac{nt}{2}\right)\cos\left(\frac{(n+1)t}{2}\right)}{\sin\left(\frac{t}{2}\right)}$$

D'après la question 3.(a), on a :

$$\sin\left(\frac{nt}{2}\right)\cos\left(\frac{(n+1)t}{2}\right) = \frac{1}{2}\left[\sin\left(\left(n+\frac{1}{2}\right)t\right) + \underbrace{\sin\left(-\frac{t}{2}\right)}_{=-\sin\left(\frac{t}{2}\right)}\right]$$

d'où le résultat :

$$\sum_{k=1}^{n} \cos(kt) = \frac{\sin\left(\left(n + \frac{1}{2}\right)t\right)}{2\sin\left(\frac{t}{2}\right)} - \frac{1}{2}$$

4. Soit φ une fonction de classe \mathcal{C}^1 sur $[0,\pi]$. À l'aide d'une intégration par parties, montrer que :

$$\lim_{n \to +\infty} \int_0^{\pi} \varphi(t) \sin\left(\left(n + \frac{1}{2}\right)t\right) dt = 0$$

Soit $n \in \mathbb{N}^*$. Pour tout $t \in [0, \pi]$, posons :

$$u'(t) = \sin\left(\left(n + \frac{1}{2}\right)t\right)$$
 $v(t) = \varphi(t)$

et:

$$u(t) = \frac{-\cos\left(\left(n + \frac{1}{2}\right)t\right)}{n + \frac{1}{2}} \qquad v'(t) = \varphi'(t)$$

Les fonctions u et v sont de classe \mathcal{C}^1 sur le segment $[0,\pi]$ donc on peut intégrer par parties sur ce segment et on a :

$$\int_0^{\pi} \varphi(t) \sin\left(\left(n + \frac{1}{2}\right)t\right) dt = \underbrace{\left[\frac{-\cos\left(\left(n + \frac{1}{2}\right)t\right)}{n + \frac{1}{2}}\varphi(t)\right]_0^{\pi}}_{\text{noté } u_n} + \underbrace{\frac{1}{n + \frac{1}{2}}\int_0^{\pi} \varphi'(t) \cos\left(\left(n + \frac{1}{2}\right)t\right) dt}_{\text{noté } v_n}$$

Or:

$$u_n = \frac{\varphi(0) - \cos\left(\left(n + \frac{1}{2}\right)\pi\right)\varphi(\pi)}{n + \frac{1}{2}}$$

Comme $-1 \leqslant \cos\left(\left(n + \frac{1}{2}\right)\pi\right) \leqslant 1$, on a l'encadrement :

$$\frac{\varphi(0) - |\varphi(\pi)|}{n + \frac{1}{2}} \leqslant u_n \leqslant \frac{\varphi(0) + |\varphi(\pi)|}{n + \frac{1}{2}}$$

Or $\lim_{n\to+\infty} \frac{\varphi(0)\pm|\varphi(\pi)|}{n+\frac{1}{2}}=0$ donc, d'après le théorème des gendarmes, on a aussi $\lim_{n\to+\infty} u_n=0$.

De plus, d'après l'inégalité triangulaire pour les intégrales, on a :

$$|v_n| \le \frac{1}{n+\frac{1}{2}} \int_0^{\pi} |\varphi'(t)| \times \left| \cos \left(\left(n + \frac{1}{2} \right) t \right) \right| dt$$

On sait que pour tout $t \in [0, \pi]$, on a $\left|\cos\left(\left(n + \frac{1}{2}\right)t\right)\right| \leqslant 1$. De plus, la fonction φ est de classe \mathcal{C}^1 sur $[0, \pi]$ donc la fonction φ' est continue sur le segment $[0, \pi]$. En particulier, elle est bornée sur ce segment. Il existe donc $M \in \mathbb{R}_+$ tel que pour tout $t \in [0, \pi]$, on ait $|\phi'(t)| \leqslant M$. La croissance de l'intégrale fournit alors :

$$|v_n| \leqslant \frac{M\pi}{n+\frac{1}{2}}$$
 c'est-à-dire $-\frac{M\pi}{n+\frac{1}{2}} \leqslant v_n \leqslant \frac{M\pi}{n+\frac{1}{2}}$

Or $\lim_{n\to+\infty}\pm\frac{M\pi}{n+\frac{1}{2}}=0$ donc, d'après le théorème des gendarmes, on a aussi $\lim_{n\to+\infty}v_n=0$. Finalement, par somme on a bien :

$$\lim_{n \to +\infty} \int_0^{\pi} \varphi(t) \sin\left(\left(n + \frac{1}{2}\right)t\right) dt = 0$$

5. En utilisant les questions précédentes, en déduire que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Soit $n \in \mathbb{N}^*$. D'après la question 2., on sait que :

$$\sum_{k=1}^{n} \frac{1}{k^2} = \sum_{k=1}^{n} \int_{0}^{\pi} f(t) \cos(kt) dt = \int_{0}^{\pi} f(t) \left(\sum_{k=1}^{n} \cos(kt) \right) dt$$

On applique maintenant la question 3.(a) et on obtient :

$$\sum_{k=1}^{n} \frac{1}{k^2} = \int_0^{\pi} g(t) \sin\left(\left(n + \frac{1}{2}\right)t\right) dt - \frac{1}{2} \int_0^{\pi} \left(\frac{t^2}{2\pi} - t\right) dt$$

Or $\int_0^{\pi} \left(\frac{t^2}{2\pi} - t\right) dt = -\frac{\pi^2}{3}$ et comme la fonction g est de classe \mathcal{C}^1 sur $[0, \pi]$ (question 1.), on sait d'après la question 4. que :

$$\lim_{n \to +\infty} \int_0^{\pi} g(t) \sin\left(\left(n + \frac{1}{2}\right)t\right) dt = 0$$

Finalement, la suite $\left(\sum_{k=1}^{n} \frac{1}{k^2}\right)_{n\geqslant 1}$ est convergente de limite $\frac{\pi^2}{6}$. Autrement dit :

la série
$$\sum_{k\geqslant 1}\frac{1}{k^2}$$
 est convergente de somme $\sum_{n=1}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$