Chapitre 1 Séries numériques

1 Série numérique

1.1 Qu'est-ce qu'une série numérique?

Définition 1.1.1. Soit (u_n) une suite réelle. La série de terme général u_n est la suite des sommes partielles (S_n) définie par

$$S_n = \sum_{k=0}^n u_k$$

Exemple 1.1.1.

Déterminer les sommes partielles des séries dont les termes généraux sont indiqués ci-dessous :

1.
$$\forall n \geq 0, \ u_n = 1$$

$$2. \ \forall n \ge 1, \ u_n = \ln\left(1 + \frac{1}{n}\right)$$

3.
$$\forall k \ge 0, \ u_k = q^k \text{ pour } q \in]-1,1[$$

4.
$$\forall k \geq 0, \ u_k = k$$

Remarque 1.1.1. Pour la plupart des séries, il n'est pas possible de calculer explicitement leurs sommes partielles. C'est par exemple le cas de la série $\sum_{n\geq 1}\frac{1}{n}$.

1

Définition 1.1.2 (Nature de la série).

Si la suite (S_n) converge vers ℓ , on dit que la série $\sum u_k$ converge et on écrit

$$\sum_{k=0}^{+\infty} u_k = \ell.$$

On peut alors définir le reste d'ordre \boldsymbol{n} de la série par

$$R_n = \sum_{k=0}^{+\infty} u_k - S_n = \sum_{k=n+1}^{+\infty} u_k$$

et on a $\lim_{n\to+\infty} R_n = 0$.

Remarque 1.1.2. La convergence de la série ne dépend pas des premiers termes de la suite (u_n) , mais la somme de la série, oui.

2

Exemple 1.1.2.

Déterminer la nature des séries suivantes :

- $1. \sum_{n\geq 0} 1$
- $2. \sum_{n \ge 1} \ln \left(1 + \frac{1}{n} \right)$

3. $\sum_{k\geq 0} q^k \text{ pour } q \in]-1,1[$

 $4. \sum_{k \ge 0} k$

1.2 La divergence grossière

Théorème 1.2.1. Si la série $\sum u_n$ converge, alors on a $\lim_{n\to+\infty} u_n = 0$.

 $D\'{e}monstration.$

La réciproque est fausse.

On verra plus tard que la série de terme général $\frac{1}{n}$ est divergente.

Corollaire 1.2.2. Divergence grossière

Si $(u_n)_{n\in\mathbb{N}}$ ne converge pas vers 0, la série $\sum u_n$ diverge.

Exemple 1.2.1. Déterminer la nature de la série de terme général $u_n = \frac{n(3n+1)\sqrt{n-1}}{(n-\pi)(n+e)}$.

1.3 Opérations sur les séries

Proposition 1.3.1.

Si deux séries de termes généraux u_n et v_n convergent, avec $\sum u_n = \ell$ et $\sum v_n = \ell'$, alors pour tout $(\lambda, \mu) \in \mathbb{R}^2$, la série de terme général $\lambda u_n + \mu v_n$ converge, de somme $\lambda \ell + \mu \ell'$.

2 Les séries usuelles

2.1 La série harmonique

Théorème 2.1.1. Série harmonique La série de terme général $\frac{1}{n}$ diverge.

Démonstration. Pour tout entier naturel n non nul, on pose $S_n = \sum_{k=1}^n \frac{1}{k}$.

1. Montrer que :

$$\forall k \in \mathbb{N}^*, \qquad \int_k^{k+1} \frac{1}{t} \, \mathrm{d}t \le \frac{1}{k}$$

2. En déduire que :

$$\forall n \in \mathbb{N}^*, \quad \ln(n+1) \leqslant S_n$$

3. Conclure quant à la nature de la série $\sum_{n\geqslant 1} \frac{1}{n}$.

2.2 La série $\sum_{n\geq 1} \frac{1}{n^2}$

Théorème 2.2.1. Série des $1/n^2$ La série de terme général $\frac{1}{n^2}$ converge.

Remarque 2.2.1. (résultats hors programme)

- La somme de cette série vaut $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
- De manière générale, les séries de terme général $\frac{1}{n^{\alpha}}$ sont appelées les séries de Riemann et elles convergent si et seulement si $\alpha > 1$.

Démonstration. Pour tout entier naturel n non nul, on pose $S_n = \sum_{k=1}^n \frac{1}{k^2}$.

1. Pour tout $n \in \mathbb{N} \setminus \{0,1\}$, calculer la somme $\sum_{k=2}^{n} \frac{1}{k(k-1)}$.

2. Montrer que :

$$\forall k \in \mathbb{N} \setminus \{0, 1\}, \qquad \frac{1}{k^2} \leqslant \frac{1}{k(k-1)}$$

3. En déduire que :

$$\forall n \in \mathbb{N}^*, \quad \mathbf{S}_n \leqslant 2$$

4. Conclure quant à la convergence de la série $\sum_{n\geqslant 1}\,\frac{1}{n^2}.$

2.3 Séries géométriques

Théorème 2.3.1. Série géométrique

La série de terme général q^n converge si et seulement si |q| < 1 et dans ce cas

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$$

 $D\'{e}monstration.$

Exemple 2.3.1. La série de terme général $u_n = \frac{2}{3^n}$ est-elle convergente?

Théorème 2.3.2.

1. Série géométrique dérivée première : La série de terme général nq^{n-1} converge si et seulement si |q|<1 et dans ce cas

$$\sum_{n=1}^{+\infty} nq^{n-1} = \frac{1}{(1-q)^2}.$$

2. Série géométrique dérivée seconde : La série de terme général $n(n-1)q^{n-2}$ converge si et seulement si |q|<1 et dans ce cas

$$\sum_{n=2}^{+\infty} n(n-1)q^{n-2} = \frac{2}{(1-q)^3}$$

 $D\'{e}monstration.$

Exemple 2.3.2. Montrer la convergence de la série de terme général $u_n = \frac{n^2+1}{2^n}$ et calculer sa somme.

2.4 Série exponentielle

Théorème 2.4.1. Série exponentielle

Pour tout $x \in \mathbb{R}$, la série de terme général $\frac{x^n}{n!}$ converge et

$$\sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x.$$

Exemple 2.4.1. La série de terme général $u_n = \frac{n+1}{n!}$ est-elle convergente ? Si oui, que vaut sa somme ?

2.5 Séries télescopiques

Proposition 2.5.1. Séries télescopiques

Pour déterminer la nature d'une série dont le terme général est du type

$$u_n = a_{n+1} - a_n$$

on explicite la somme partielle d'ordre n en utilisant le télescopage des sommes.

Exemple 2.5.1. On pose $u_n = \frac{1}{n(n+1)}$ pour $n \ge 1$.

1. Déterminer $(a,b) \in \mathbb{R}^2$ tel que $u_n = \frac{a}{n} + \frac{b}{n+1}$.

2. Montrer la convergence de la série de terme général u_n et calculer sa somme.

Méthode 2.1.

Pour déterminer la nature d'une série de terme général u_n et calculer sa somme, on peut :

- 1. Reconnaître une combinaison linéaire de séries usuelles :
 - (a) si le terme général u_n comporte du q^n , on reconnaît une série géométrique ou une de ses dérivées.
 - (b) si le terme général u_n comporte du $\frac{1}{n!}$, on reconnaît une série exponentielle, à un potentiel changement d'indice près.
 - (c) si le terme général est en $\frac{1}{n}$ ou $\frac{1}{n^2}$, on reconnaît une série usuelle mais on ne pourra pas a priori calculer sa somme.
- 2. Faire apparaître une somme télescopique et expliciter sa somme partielle d'ordre n avant de passer à la limite $n \to +\infty$.

10

3 Convergence des séries à termes positifs.

3.1 Critère de comparaison des séries à termes positifs

Définition 3.1.1. La **série** de terme général u_n est dite à termes **positifs** si pour tout $n \in \mathbb{N}$, $u_n \geq 0$.

 ${\bf Th\'{e}or\`{e}me~3.1.1~(Crit\`{e}re~de~comparaison~des~s\'{e}ries~\grave{a}~termes~positifs)}.$

Soient (u_n) et (v_n) deux suites telles qu'il existe un certain rang $n_0 \in \mathbb{N}$ tel que

$$\forall n \ge n_0, \ 0 \le u_n \le v_n.$$

- 1. Si $\sum u_n$ diverge alors $\sum v_n$ diverge.
- 2. Si $\sum v_n$ converge alors $\sum u_n$ converge.

Exemple 3.1.1.

1. Nature de la série de terme général $u_n = \frac{2 + \sin(n)}{3^n}$.

2. Nature de la série de terme général $u_n = \frac{1 + e^{-n}}{n}$.

3.2 Critère des équivalents des séries à termes positifs

Théorème 3.2.1 (Critère des équivalents des séries à termes positifs). Si deux suites positives (u_n) et (v_n) sont équivalentes, alors les séries de termes généraux u_n et v_n sont de même nature.

Exemple 3.2.1. 1. Étudier la nature de la série $\sum_{n\geqslant 1} \tan\left(\frac{1}{n^2}\right)$.

2. Étudier la nature de la série de terme général $v_n = \ln\left(\cos\left(\frac{1}{n}\right)\right)$ avec $n \ge 1$.

4 Convergence absolue.

Définition 4.0.1. La **série** de terme général u_n est dite **absolument convergente** si la série de terme général $|u_n|$ converge.

Théorème 4.0.1. La convergence absolue entraîne la convergence.

 $D\'{e}monstration.$

Remarque 4.0.1. Attention, la réciproque est fausse, il existe des séries convergentes sans être absolument convergentes.

Méthode 4.1.

Pour démontrer qu'une série de terme général u_n qui change de signe converge, on peut essayer de démontrer que la série est absolument convergente.

Exemple 4.0.1. Déterminer la nature de la série de terme général $u_n = \frac{\sin(n)}{n^2}$.