Chapitre 1 Séries numériques

1 Série numérique

1.1 Qu'est-ce qu'une série numérique?

Définition 1.1.1. Soit (u_n) une suite réelle. La série de terme général u_n est la suite des sommes partielles (S_n) définie par

$$S_n = \sum_{k=0}^n u_k$$

Exemple 1.1.1.

Déterminer les sommes partielles des séries dont les termes généraux sont indiqués ci-dessous :

1.
$$\forall n \ge 0, \ u_n = 1$$

2.
$$\forall n \geq 1$$
, $u_n = \ln\left(1 + \frac{1}{n}\right)$

Soit $m \geqslant 1$, on poe $S_m = \int_{k=n}^{m} \ln\left(n + \frac{n}{k}\right) = \int_{k=n}^{m} \ln\left(\frac{k + n}{k}\right)$

$$= \int_{k=n}^{m} \ln\left(k + n\right) - \int_{k=n}^{m} \ln\left(k\right)$$

$$= \int_{k=n}^{m} \ln\left(k\right) - \int_{k=n}^{m} \ln\left(k\right)$$

$$= \ln\left(n + n\right) - \ln(n) = \ln(n + n)$$

3.
$$\forall k \ge 0, \ u_k = q^k \text{ pour } q \in]-1,1[$$

4.
$$\forall k \geq 0, \ u_k = k$$

Remarque 1.1.1. Pour la plupart des séries, il n'est pas possible de calculer explicitement leurs sommes partielles. C'est par exemple le cas de la série $\sum_{n\geq 1}\frac{1}{n}$.

Définition 1.1.2 (Nature de la série).

Si la suite (S_n) converge vers ℓ , on dit que la série $\sum u_k$ converge et on écrit

$$\sum_{k=0}^{+\infty} u_k = \ell.$$

On peut alors définir le reste d'ordre n de la série par

$$R_n = \sum_{k=0}^{+\infty} u_k - S_n = \sum_{k=n+1}^{+\infty} u_k$$

et on a $\lim_{n\to+\infty} R_n = 0$.

Remarque 1.1.2. La convergence de la série ne dépend pas des premiers termes de la suite (u_n) , mais la somme de la série, oui.

Exemple 1.1.2.

Déterminer la nature des séries suivantes :

1. $\sum_{n\geq 0} 1$ Pour $m\geqslant 0$, $S_n=m+1$ dry Rim $S_n=+\infty$

donc la série de terme général 1 discups.

$$2. \sum_{n \ge 1} \ln \left(1 + \frac{1}{n} \right)$$

Pour m > 0, on a Sm = In (m+1) donc line Sn = +00.

Ainsi la séve de terme général la (1,1) diverge.

3.
$$\sum_{k\geq 0} q^k \text{ pour } q \in]-1,1[$$

Pour m ? 0, Sm = 1-9 et -129 et -129 et donc lim Sm = 1-9

Ainai, la série de terme général q d'anverge et $\frac{1}{L}q^h = \frac{1}{1-q}$

4.
$$\sum_{k\geq 0} k$$
 Pau $m \geqslant 0$, on a $S_m = \frac{m(m+1)}{2}$ dence $\lim_{k \to \infty} S_m = 1$ so.

Ainsi la série de terme général le diseige.

1.2 La divergence grossière

Théorème 1.2.1. Si la série $\sum u_n$ converge, alors on a $\lim_{n\to+\infty} u_n=0$.

 $D\'{e}monstration.$

On note pour m 20, Sm : I Me · La série de terme général un converge donc ne existe

LEIR tg line Sm = 1.

Soit m > 1, on calcula Sm - Sm. = _ Lue - _ Lue = um .

On parse à la limite mosson: lun une lele 0.

La réciproque est fausse.

On verra plus tard que la série de terme général $\frac{1}{n}$ est divergente.

Corollaire 1.2.2. Divergence grossière

Si $(u_n)_{n\in\mathbb{N}}$ ne converge pas vers 0, la série $\sum u_n$ diverge.

Exemple 1.2.1. Déterminer la nature de la série de terme général $u_n = \frac{n(3n+1)\sqrt{n-1}}{(n-\pi)(n+e)}$.

On remarque que un ~ m x 3 m x 5m donc am ~ 3 5m.

Ainsi lim un = lim 3 Jm = +00.

Un en déduit que la série à terme général un est grossèrement direigente.

1.3 Opérations sur les séries

Proposition 1.3.1.

Si deux séries de termes généraux u_n et v_n convergent, avec $\sum u_n = \ell$ et $\sum v_n = \ell'$, alors pour tout $(\lambda, \mu) \in \mathbb{R}^2$, la série de terme général $\lambda u_n + \mu v_n$ converge, de somme $\lambda \ell + \mu \ell'$.

2 Les séries usuelles

2.1 La série harmonique

Théorème 2.1.1. Série harmonique La série de terme général $\frac{1}{n}$ diverge.

Démonstration. Pour tout entier naturel n non nul, on pose $S_n = \sum_{k=1}^n \frac{1}{k}$.

1. Montrer que :

$$\forall k \in \mathbb{N}^*, \qquad \int_k^{k+1} \frac{1}{t} \, \mathrm{d}t \le \frac{1}{k}$$

Soit h EN", la fonction to 1 est décroinante su [h, h, s) dere :

$$\forall t \in [k, k + 1], \quad \frac{\lambda}{t} \leq \frac{\lambda}{k}$$
.

On intègre l'inégalité et par croisonne de l'intégrale, on obtient: $\int_{0}^{k_{1}} \frac{1}{k} dk \leq \int_{0}^{k_{1}} \frac{1}{k} dk \leq \int_{0}^{k_{1}} \frac{1}{k} dk \leq \frac{1}{k}$

2. En déduire que :

$$\forall n \in \mathbb{N}^*, \quad \ln(n+1) \leqslant S_n$$

Soit m EN", on additionne les inégalités de le question 1 pour le [1, m]:

$$\frac{1}{k} \int_{k}^{k} \frac{1}{t} dt \leq \frac{m}{k} \int_{k}^{\infty} \frac{1}{t} dt$$

3. Conclure quant à la nature de la série $\sum_{n\geqslant 1} \frac{1}{n}$.

On remarque que lim la (m+1) = +00 , or Vm > 1, la (m+1) ! Sm

dere par them de comparaison, lim Sm = +00.

Airoi la série hammenique est discognite

2.2 La série $\sum_{n\geq 1} \frac{1}{n^2}$

Théorème 2.2.1. Série des $1/n^2$ La série de terme général $\frac{1}{n^2}$ converge.

Remarque 2.2.1. (résultats hors programme)

- La somme de cette série vaut $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
- De manière générale, les séries de terme général $\frac{1}{n^{\alpha}}$ sont appelées les séries de Riemann et elles convergent si et seulement si $\alpha > 1$.

Démonstration. Pour tout entier naturel n non nul, on pose $S_n = \sum_{k=1}^n \frac{1}{k^2}$.

1. Pour tout $n \in \mathbb{N} \setminus \{0,1\}$, calculer la somme $\sum_{k=2}^{n} \frac{1}{k(k-1)}$.

1. Pour tout
$$n \in \mathbb{N} \setminus \{0, 1\}$$
, calculated as $b \in \mathbb{N} \setminus \{0, 1\}$, calculated as $b \in \mathbb{N} \setminus \{0, 1\}$, determinants $a, b \in \mathbb{N}^2$ by $a + b = \frac{\Lambda}{4 \cdot (k - 1)} = \frac{\Lambda}{4 \cdot (k - 1)} = \frac{\Lambda}{4 \cdot (k - 1)}$

$$(a+b) + -a = \frac{\Lambda}{4 \cdot (k - 1)} = \frac{\Lambda}{4 \cdot (k - 1)}$$

$$(a+b) + -a = \frac{\Lambda}{4 \cdot (k - 1)} = \frac{\Lambda}{4 \cdot (k - 1)}$$

$$a = \frac{\Lambda}{4 \cdot (k - 1)} = \frac{\Lambda}{4 \cdot (k - 1)}$$

$$a = \frac{\Lambda}{4 \cdot (k - 1)} = \frac{\Lambda}{4 \cdot (k - 1)}$$

$$a = \frac{\Lambda}{4 \cdot (k - 1)} = \frac{\Lambda}{4 \cdot (k - 1)}$$

$$a = \frac{\Lambda}{4 \cdot (k - 1)} = \frac{\Lambda}{4 \cdot (k - 1)}$$

$$a = \frac{\Lambda}{4 \cdot (k - 1)} = \frac{\Lambda}{4 \cdot (k - 1)}$$

$$a = \frac{\Lambda}{4 \cdot (k - 1)} = \frac{\Lambda}{4 \cdot (k - 1)}$$

The point
$$\sum_{k=2}^{\infty} \frac{1}{k(k-1)}$$
.

The point $\sum_{k=2}^{\infty} \frac{1}{k(k-1)}$ and $\sum_{k=2}^{\infty} \frac{1}{k(k-1)}$.

$$\sum_{k=2}^{\infty} \frac{1}{k} + \sum_{k=2}^{\infty} \frac{1}{k} + \sum_{k=2}^{\infty} \frac{1}{k-1}$$

$$\sum_{k=2}^{\infty} \frac{1}{k} + \sum_{k=2}^{\infty} \frac{1}{k}$$

2. Montrer que :

$$\forall k \in \mathbb{N} \setminus \{0,1\}, \qquad \frac{1}{k^2} \leqslant \frac{1}{k(k-1)}$$
 Soit $k \geq 2$, $m = k^2 \geq k^2 \cdot h$ can $k \geq 0$
$$\Leftrightarrow \frac{1}{k^2} \leq \frac{1}{k(k-1)} \text{ can Qe further inverse and decrinante our Jo, + ∞ (.$$

3. En déduire que :

$$\forall n \in \mathbb{N}^*, \quad S_n \leqslant 2$$
 Soit $m \in \mathbb{N}^*$, on additionne the insgalités de la quadrier 2 pour le $\in \mathbb{G}_{2,m}\mathbb{J}$:
$$\prod_{k=2}^{m} \frac{1}{h} \leq \prod_{k=2}^{m} \frac{1}{h(l_{k} \cdot 1)} \iff S_m \leq 1 - \prod_{m=2}^{m} 1 \leq 1 + \prod_{m=2}^{m} 1 \leq 1$$

4. Conclure quant à la convergence de la série $\sum_{n\geq 1} \frac{1}{n^2}$.

De plus, par question 3, (80) at majorée par 2. Par thom de consegence monetone, on en déduit que (Sn) est consegente sero une limite finie l.

2.3 Séries géométriques

Théorème 2.3.1. Série géométrique

La série de terme général q^n converge si et seulement si |q| < 1 et dans ce cas

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$$

Démonstration.

Deno ce ce ce poer book mEN, Sm = I gh = I t = met.

On a lime Sm = seo done la I de ty g m est distangente.

The condition of the lime Sm = +00.

On a lime Sm = seo done la I de ty g m est distangente.

The condition of the lime Sm = +00.

Aimni, la I de ty g m distange.

Set men, Sm = I gh = 1-gh.

Set get, la suite (gmen) mon done le limite, done (Sm) mon mon plus.

Si -1 (gls, on a lime gmen = 0 done

Aimni, la I de ty g n distange.

Aimni, la I de ty g n distange.

Exemple 2.3.1. La série de terme général $u_n = \frac{2}{3^n}$ est-elle convergente?

On remarque que $\forall m \ge 0$, un = $2 \times \left(\frac{1}{3}\right)^m$, donc la sécre de terre général sen conserge comme série géométrique de roison $q = \frac{1}{3}$, $-1 \le q \le 1$.

Théorème 2.3.2.

1. Série géométrique dérivée première : La série de terme général nq^{n-1} converge si et seulement si |q| < 1 et on a dans de la serie de terme général nq^{n-1} converge

$$\sum_{n=1}^{+\infty} nq^{n-1} = \frac{1}{(1-q)^2}.$$

2. Série géométrique dérivée seconde : La série de terme général $n(n-1)q^{n-2}$ converge si et seulement si |q| < 1 et en a soulement si |q| < 1 et e

$$\sum_{n=2}^{+\infty} n(n-1)q^{n-2} = \frac{2}{(1-q)^3}$$

Démonstration.

On ansidire quamme la sociable d'une fonction, q @ J-1,1 (.

Par Rindarité de la dérivée :

$$\sum_{n=\infty}^{\infty} k_n q^{n-1} = -\frac{1}{(\lambda-q)^2} = \frac{\lambda}{(\lambda-q)^2}$$

On Levier une deuxième fois:

$$\frac{2}{L} k(k.1) q^{m-2} = -\frac{2}{(1-q)^3} = \frac{2}{(1-q)^3}$$

Exemple 2.3.2. Montrer la convergence de la série de terme général $u_n = \frac{n^2+1}{2^n}$ et calculer sa somme.

Sait
$$m \ge 0$$
, on poe $S_m = \frac{n}{L} L_k$.

$$J_m = S_m = \frac{n}{L} \frac{A_k^L + \Lambda}{L^{2m}} = \frac{n}{L} \frac{A_k^L - A_k + A_k + \Lambda}{L^{2m}}$$

$$= \frac{n}{L} \frac{A_k (h_k - \Lambda)}{L^{2m}} \left(\frac{\Lambda}{2}\right)^{A_k} + \frac{n}{L} \frac{A_k}{L^{2m}} \left(\frac{\Lambda}{2}\right)^{A_k} + \frac{n}{L} \left(\frac{\Lambda}{2}\right)^{A_k}$$

$$= \left(\frac{\Lambda}{2}\right)^{L} \frac{1}{L} \frac{A_k (h_k - \Lambda)}{L^{2m}} \left(\frac{\Lambda}{2}\right)^{A_k - 2} + \left(\frac{\Lambda}{2}\right) \frac{1}{L} \frac{1}{L} \left(\frac{\Lambda}{2}\right)^{A_k - 2} + \frac{n}{L} \left(\frac{\Lambda}{2}\right)^{A_k - 2}$$

$$= \left(\frac{\Lambda}{2}\right)^{L} \frac{1}{L} \frac{A_k (h_k - \Lambda)}{L^{2m}} \left(\frac{\Lambda}{2}\right)^{A_k - 2} + \left(\frac{\Lambda}{2}\right) \frac{1}{L} \frac{1}{L} \left(\frac{\Lambda}{2}\right)^{A_k - 2} + \frac{n}{L} \left(\frac{\Lambda}{2}\right)^{A_k - 2}$$

On reconnaît des sommes postables de seines géométrique, géométrique d'inte première et jéométrique désirée seconde de roiser q= 1, -16 q 11, denc convergentes.

Ainsi, (6m) mg. converge, donc la série de les um converge et:

$$\frac{1}{2} \text{ the : lim. } Sm = \left(\frac{1}{2}\right)^2 \frac{2}{\sqrt{\left(1-\frac{2}{2}\right)^3}} + \frac{1}{2} \times \frac{1}{\left(1-\frac{2}{2}\right)^2} + \frac{1}{$$

2.4 Série exponentielle

Théorème 2.4.1. Série exponentielle

Pour tout $x \in \mathbb{R}$, la série de terme général $\frac{x^n}{n!}$ converge et

$$\sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x.$$

Exemple 2.4.1. La série de terme général $u_n = \frac{n+1}{n!}$ est-elle convergente? Si oui, que vaut sa somme?

$$S_{m} = \frac{1}{k} \cdot \frac{k+1}{k!} = \frac{1}{k!} \cdot \frac{k}{k!} + \frac{1}{k!} \cdot \frac{1}{k!} \quad \text{or par } k \ge 1, \quad \frac{k}{k!} = \frac{1}{(k-1)!}$$

$$= \frac{\sum_{j=0}^{m-1} \frac{1}{j!} + \sum_{k=0}^{m} \frac{1}{k!} \text{ asset } j=k-1}{\sum_{j=0}^{m-1} \frac{1}{j!} + \sum_{k=0}^{m-1} \frac{1}{k!}}$$

On reconneît des monnes partielles de séries exponentielles de paramètre x:1, due convergentes.

2.5 Séries télescopiques

Proposition 2.5.1. Série télescopiques

Pour déterminer la nature d'une série dont le terme général est du type

$$u_n = a_{n+1} - a_n$$

on explicite la somme partielle d'ordre n en utilisant le télescopage des sommes.

Exemple 2.5.1. On pose $u_n = \frac{1}{n(n+1)}$ pour $n \ge 1$.

1. Déterminer $(a,b) \in \mathbb{R}^2$ tel que $u_n = \frac{a}{n} + \frac{b}{n+1}$.

On a
$$Am : \frac{a}{m} + \frac{b}{mn}$$
 (3) $\frac{1}{m(mn)} = \frac{a(mn)}{m(mn)} + \frac{b}{m(mn)} = \frac{a(mn)}{m(mn)}$

Color $\frac{a \cdot b}{a \cdot n} = \frac{a(mn)}{a \cdot n} + \frac{a}{m(mn)} = \frac{a(mn)}{m(mn)}$

done $\frac{a \cdot b}{a \cdot n} = \frac{a(mn)}{a \cdot n} + \frac{a}{m(mn)} = \frac{a(mn)}{m(mn)}$

2. Montrer la convergence de la série de terme général u_n et calculer sa somme.

Méthode 2.1.

Pour déterminer la nature d'une série de terme général u_n et calculer sa somme, on peut :

- 1. Reconnaître une combinaison linéaire de séries usuelles :
 - (a) si le terme général u_n comporte du q^n , on reconnaît une série géométrique ou une de ses dérivées.
 - (b) si le terme général u_n comporte du $\frac{1}{n!}$, on reconnaît une série exponentielle, à un potentiel changement d'indice près.
 - (c) si le terme général est en $\frac{1}{n}$ ou $\frac{1}{n^2}$, on reconnaît une série usuelle mais on ne pourra pas a priori calculer sa somme.
- 2. Faire apparaître une somme télescopique et expliciter sa somme partielle d'ordre n avant de passer à la limite $n \to +\infty$.

- 3 Convergence des séries à termes positifs.
- 3.1 Critère de comparaison des séries à termes positifs

Définition 3.1.1. La **série** de terme général u_n est dite à termes positifs si pour tout $n \in \mathbb{N}$, $u_n \geq 0$.

Théorème 3.1.1 (Critère de comparaison des séries à termes positifs). Soient (u_n) et (v_n) deux suites telles qu'il existe un certain rang $n_0 \in \mathbb{N}$ tel que

$$\forall n > n_0, \ 0 < u_n < v_n.$$

- 1. Si $\sum u_n$ diverge alors $\sum v_n$ diverge.
- 2. Si $\sum v_n$ converge alors $\sum u_n$ converge.

Exemple 3.1.1.

1. Nature de la série de terme général $u_n = \frac{2 + \sin(n)}{3^n}$.

Pow tat m∈N, . 1 ≤ sim (m) ≤ 1 (=) 1 ≤ 2 + sim (m) ≤ 3 (=) \frac{1}{3^m} ≤ 4 = ≤ 3 x (\frac{1}{5})^n.

La I de ty 3 x (3) conseye comme série géométrique de roisen q = 3, . 12921.

De plan, $\forall m \ge 0$, $0 \le \mu m \le 3 \times {3 \choose 5}^m$, done per vitère de compansion des séries à termes points, le Id by un conseye.

2. Nature de la série de terme général $u_n = \frac{1 + e^{-n}}{n}$.

Pau tol m EIN", e-" > 6 1+e-" > 1 > 0

La série de ty 1 est la serie hormonique qui disege.

Do plus, VmEnt", 0 < 1 Eur. donc par citère de comparaison des séries à termes

posito, la I de ly un diverge

3.2 Critère des équivalents des séries à termes positifs

Théorème 3.2.1 (Critère des équivalents des séries à termes positifs).

Si deux suites positives (u_n) et (v_n) sont équivalentes, les séries de termes généraux u_n et v_n sont de même nature.

Exemple 3.2.1. 1. Étudier la nature de la série $\sum_{n>1} \tan\left(\frac{1}{n^2}\right)$.

Om remorque que ton
$$\left(\frac{1}{n^2}\right) \sim \frac{1}{n^2}$$
 con lim $\frac{1}{n^2} = 0$.

2. Étudier la nature de la série de terme général $v_n = \ln\left(\cos\left(\frac{1}{n}\right)\right)$ avec $n \ge 1$.

On remarque que lien 1 :0 donc pour m ? 1:

$$J_{n} := \operatorname{ln}\left(\operatorname{co}\left(\frac{1}{n}\right)\right) := \operatorname{ln}\left(1 + \left(\operatorname{co}\left(\frac{1}{n}\right) - 1\right)\right)$$

$$\underset{n \to \infty}{\sim} \operatorname{ceo}\left(\frac{1}{n}\right) - 1$$

$$\underset{n \to \infty}{\sim} -\frac{1}{n^{2}}$$

Pomo pour touto 21, who = . In . On a o Los (1) 41 (= sh 40 (= wh > 0.

Le I de ty te curege. Ainai, par critère des équivalents des séries à termes posités

4 Convergence absolue.

Définition 4.0.1. La **série** de terme général u_n est dite **absolument convergente** si la série de terme général $|u_n|$ converge.

Théorème 4.0.1. La convergence absolue entraîne la convergence.

Démonstration.

Remarque 4.0.1. Attention, la réciproque est fausse, il existe des séries convergentes sans être absolument convergentes.

Méthode 4.1.

Pour démontrer qu'une série de terme général u_n qui change de signe converge, on peut essayer de démontrer que la série est absolument convergente.

Exemple 4.0.1. Déterminer la nature de la série de terme général $u_n = \frac{\sin(n)}{n^2}$.

La I de la fint sot consergente, des per critère de comparaiser des névies à termes que ités,

La série de ty un est absolument convergente, donc convergente.