Devoir maison 1

Exercice 1.

Soient n un entier naturel et a un nombre réel strictement positif. On se propose d'étudier les solutions réelles de l'équation :

$$\frac{1}{x} + \frac{1}{x+1} + \frac{1}{x+2} + \dots + \frac{1}{x+n} = a$$
 (E_n)

c'est-à-dire :

$$\sum_{k=0}^{n} \frac{1}{x+k} = a \tag{E}_n$$

À cet effet, on introduit la fonction f_n définie sur $\mathcal{D} = \mathbb{R} \setminus \{-n, \dots, -1, 0\}$ par :

$$\forall x \in \mathcal{D}, \qquad f_n(x) = \sum_{k=0}^n \frac{1}{x+k}$$

On pourra remarquer que l'ensemble \mathcal{D} peut s'écrire :

$$\mathcal{D} =]-\infty, -n[\cup \left(\bigcup_{\ell=1}^{n}] - \ell, -\ell + 1[\right) \cup]0, +\infty[$$

- 1. Résoudre les équations (E_0) et (E_1) .
- 2. Dénombrement des solutions de l'équation (E_n)
 - (a) Préciser la monotonie (stricte) de f_n sur le domaine \mathcal{D} .
 - (b) Montrer que l'équation (E_n) admet une unique solution dans l'intervalle $]0, +\infty[$. Dans toute la suite du sujet, on note x_n cette solution.
 - (c) Combien l'équation (E_n) admet-elle de solutions dans \mathbb{R} ? Justifier.
- 3. Étude rapide de la suite $(x_n)_{n\in\mathbb{N}}$
 - (a) Soit $n \in \mathbb{N}$. Étudier le signe de la fonction $f_{n+1} f_n$ sur $]0, +\infty[$.
 - (b) En déduire le sens de variation de la suite $(x_n)_{n\in\mathbb{N}}$.
- 4. Équivalent de x_n quand n tend vers $+\infty$
 - (a) Énoncer le théorème des accroissements finis.
 - (b) Montrer que:

$$\forall x \in]1, +\infty[, \qquad \frac{1}{x} \leqslant \ln(x) - \ln(x-1) \leqslant \frac{1}{x-1}$$

(c) Soit $n \in \mathbb{N}^*$. En déduire que pour tout nombre réel strictement positif x, on a :

$$f_n(x) - \frac{1}{x} \leqslant \ln\left(1 + \frac{n}{x}\right) \leqslant f_n(x) - \frac{1}{x+n}$$

puis:

$$a - \frac{1}{x_n} \leqslant \ln\left(1 + \frac{n}{x_n}\right) \leqslant a - \frac{1}{x_n + n}$$

- (d) Soit $n \in \mathbb{N}^*$. Montrer que $x_n \geqslant \frac{n}{e^a 1}$.
- (e) En déduire la limite de la suite $(x_n)_{n\in\mathbb{N}}$ et établir que $\lim_{n\to+\infty} \ln\left(1+\frac{n}{x_n}\right) = a$.
- (f) En exploitant cette dernière limite, montrer finalement que :

$$x_n \underset{n \to +\infty}{\sim} \frac{n}{e^a - 1}$$