TD 4 - Polynômes

Compétences à acquérir :

- ⊳ C1 : Déterminer les racines d'un polynôme
- ⊳ C2 : Déterminer la multiplicité des racines d'un polynôme
- \triangleright C3 : Factoriser un polynôme dans $\mathbb{C}[X]$
- ▷ C4 : Déterminer le degré d'un polynôme et les propriétés liées

Exercice 1 (C1-C3) \Box 1. Écrire un script en langage python qui demande à l'utilisateur trois nombres réels a, b et c (avec a non nul) et qui renvoie les racines de l'équation du second degré $ax^2 + bx + c = 0$.

Le nombre complexe i s'écrit 1j sous python. Il est disponible dans le module cmath.

2. Factoriser dans $\mathbb C$ les polynômes suivants :

(a)
$$P = X^2 + X - 2$$

(b)
$$Q = X^3 + 3X^2 - 20$$

(c)
$$R = X^3 + X^2 + X + 1$$

(d)
$$S = X^3 - 1$$

(e)
$$T = X^4 + X^2 + 1$$

(f)
$$U = X^5 - 32$$

(g)
$$V = X^4 + 2X^3 + 7X^2 + 8X + 12$$

Indication : pour le polynôme V, on pourra utiliser le fait qu'il admet une racine imaginaire pure.

Exercice 2 (C1) Soient x_1, x_2, x_3 les racines de $X^3 - 2X^2 + X + 3$. Calculer $x_1 + x_2 + x_3$.

Exercice 3 (C4) Soit $P \in \mathbb{R}_n[X]$ tel que P(0) = 0 et vérifiant, pour tout $x \in \mathbb{R}$, $P(x) = P(\sin(x))$. Montrer que P est le polynôme nul.

Exercice 4 (C2) $\ \ \,$ Soit $P \in \mathbb{R}[X]$ et $a \in \mathbb{R}$. On pose $Q = \frac{1}{2}(X-a)(P'+P'(a))-P+P(a)$. Montrer que a est une racine d'ordre au moins 3 de Q.

- 1. Montrer que $z_1 = 1 + i$ est racine de P.
- 2. En déduire toutes les racines complexes, puis toutes les racines réelles de P.

Exercice 6 (C2-C4) $\ \ \,$ Soit $(a,b) \in \mathbb{C}^2$. On pose $P = aX^{n+1} + bX^n + 1$.

- 1. Démontrer qu'il existe des valeurs de a et b pour lesquelles 1 est une racine au moins double de P.
- 2. Pour ces valeurs de a et b, montrer alors que $P = (X 1)^2 \sum_{k=0}^{n-1} (k+1)X^k$.

Exercice 7 (C1-C2-C3-C4)

1. Soit P un polynôme à coefficients réels noté

$$P = \sum_{k=0}^{n} a_k X^k \text{ (où } n \in \mathbb{N}^*).$$

Montrer que si ω est une racine complexe de P, alors $\overline{\omega}$ est aussi une racine de P.

- 2. On définit le polynôme $P = (X+1)^7 X^7 1$.
 - (a) Déterminer le degré de P et son coefficient dominant.
 - (b) En trouver deux racines évidentes.
 - (c) Soit $j=e^{i\frac{2\pi}{3}}$. Montrer que j est racine multiple de P. En déduire une autre racine multiple ainsi que la multiplicité de ces deux racines de P.
 - (d) En déduire la factorisation de P dans $\mathbb{C}[X]$.

Exercice 8 (C1-C3-C4) \square Soit $n \in \mathbb{N} \setminus \{0,1\}$. On pose $P = \sum_{k=0}^{n-1} X^k$ et, pour tout $k \in [1, n-1]$, on pose $\omega_k = e^{i\frac{2k\pi}{n}}$.

- 1.(a) Montrer que les nombres $\omega_1, \ldots, \omega_{n-1}$ sont des racines deux à deux distinctes de P puis en déduire une factorisation de P dans $\mathbb{C}[X]$.
 - (b) Proposer un programme informatique qui permet de vérifier que $\omega_1, \ldots, \omega_{n-1}$ sont racines de P.
- 2.(a) Soit $\theta \in]0, 2\pi[$. Déterminer la forme exponentielle de $1 e^{i\theta}$.
 - (b) Déduire de ce qui précède la valeur du produit $\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right)$.
 - (c) Écrire une fonction python qui prend en entrée un entier n supérieur ou égal à 2 et qui renvoie la valeur du produit précédent.

Exercice 9 (C1-C2-C4, oral G2E) $\ \ \ \ \ \ \ \ \$ Soit $(P_n)_{n\in\mathbb{N}}$ la suite de polynômes de $\mathbb{C}[X]$ définie par $P_0=2,\ P_1=X$ et par $P_{n+2}=X\,P_{n+1}-P_n$ pour tout $n\in\mathbb{N}$.

- 1. Écrire une fonction polynome qui prend en entrée un entier n, un nombre réel x, et qui renvoie la valeur de $P_n(x)$.
- 2. Calculer P_2 , P_3 et P_4 . Pour tout $n \in \mathbb{N}$, déterminer le monôme de plus haut degré du polynôme P_n .
- 3. Montrer que :

$$\forall z \in \mathbb{C}^*, \ \forall n \in \mathbb{N}, \qquad P_n\left(z + \frac{1}{z}\right) = z^n + \frac{1}{z^n}$$

4. Soit $n \in \mathbb{N}^*$. Montrer que pour tout $k \in [0, n-1]$, le nombre $\alpha_k = 2\cos\left(\frac{\pi}{2n} + k\frac{\pi}{n}\right)$ est racine de P_n . Ces racines sont-elles deux à deux distinctes? Que peut-on en conclure?

Exercice 10 (C4) 🗊 On considère l'équation différentielle du second degré :

$$\forall t \in \mathbb{R}, \ ty''(t) - 2y'(t) + 4y(t) = 4t^4 + 12t - 6.$$

2

Déterminer un polynôme ${\cal P}$ solution de cette équation.