TD 4 Correction - Polynômes

Compétences à acquérir :

⊳ C1 : Déterminer les racines d'un polynôme

▷ C2 : Déterminer la multiplicité des racines d'un polynôme

 \triangleright C3 : Factoriser un polynôme dans $\mathbb{C}[X]$

⊳ C4 : Déterminer le degré d'un polynôme et les propriétés liées

Exercice 1 (C1-C3) \Box 1. Écrire un script en langage python qui demande à l'utilisateur trois nombres réels a, b et c (avec a non nul) et qui renvoie les racines de l'équation du second degré $ax^2 + bx + c = 0$.

Le nombre complexe i s'écrit 1j sous python. Il est disponible dans le module cmath. On utilise le module cmath. Le nombre complexe i s'écrit 1j.

- 2. Factoriser dans \mathbb{C} les polynômes suivants :
 - (a) $P = X^2 + X 2$ On a P = (X - 1)(X + 2).
 - (b) $Q = X^3 + 3X^2 20$

On remarque que 2 est racine de Q. On peut donc factoriser le polynôme Q par X-2. La factorisation est : $Q = (X-2)(X^2+5X+10)$. Le polynôme $X^2+5X+10$ admet deux racines complexes qui sont $\alpha = \frac{-5-\mathrm{i}\sqrt{15}}{2}$ et $\overline{\alpha}$. La factorisation dans $\mathbb{C}[X]$ est donc $Q = (X-2)(X-\alpha)(X-\overline{\alpha})$.

(c) $R = X^3 + X^2 + X + 1$ On remarque que -1 est une racine évidente. On obtient la factorisation $R = (X+1)(X^2+1)$. On détermine les racines de X^2+1 et on obtient finalement R = (X+1)(X-i)(X+i).

(d) $S = X^3 - 1$ On remarque que 1 est racine évidente. On a la factorisation $S = (X - 1)(X^2 + X + 1)$. En posant $\alpha = \frac{-1 + i\sqrt{3}}{2}$, on a la factorisation dans $\mathbb{C}[X]$ suivante : $S = (X - 1)(X - \alpha)(X - \overline{\alpha})$. (e) $T = X^4 + X^2 + 1$

Déterminons les racines de T. Soit $z \in \mathbb{C}$. En posant $Z = z^2$, on a :

$$T(z) = 0 \iff Z^2 + Z + 1 \iff Z = \frac{-1 + i\sqrt{3}}{2} = e^{i\frac{2\pi}{3}} \text{ ou } Z = \frac{-1 - i\sqrt{3}}{2} = e^{i\frac{2\pi}{3}}$$

$$\iff z^2 = e^{i\frac{2\pi}{3}} \text{ ou } z^2 = e^{-i\frac{2\pi}{3}}$$

En utilisant la formule de Moivre, on a :

$$z^{2} = e^{i\frac{2\pi}{3}} \iff z^{2} = \left(e^{i\frac{\pi}{3}}\right)^{2} \iff \left(z - e^{i\frac{\pi}{3}}\right)\left(z + e^{i\frac{\pi}{3}}\right) = 0$$
$$\iff z = e^{i\frac{\pi}{3}} \text{ ou } z = -e^{i\frac{\pi}{3}}$$

De la même façon :

$$z^2 = e^{-i\frac{2\pi}{3}} \iff z = e^{-i\frac{\pi}{3}} \text{ ou } z = -e^{-i\frac{\pi}{3}}$$

Les racines de T sont donc $e^{i\frac{\pi}{3}}$, $-e^{i\frac{\pi}{3}}$, $e^{-i\frac{\pi}{3}}$ et $-e^{-i\frac{\pi}{3}}$. Comme le coefficient dominant de T vaut 1, on a donc la factorisation dans $\mathbb{C}[X]$ suivante :

$$T = \left(X - e^{i\frac{\pi}{3}}\right) \left(X - e^{-i\frac{\pi}{3}}\right) \left(X + e^{i\frac{\pi}{3}}\right) \left(X + e^{-i\frac{\pi}{3}}\right)$$

(f) $U=X^5-32$

Déterminons les racines de U. Le nombre complexe nul n'est pas racine de U. Soit $z \in \mathbb{C}^*$. Il existe $(r, \theta) \in \mathbb{R}_+^* \times \mathbb{R}$ tel que $z = r e^{i\theta}$. D'après la formule de Moivre et l'identification des formes exponentielles, on a :

$$\mathrm{U}(z) = 0 \iff r^5 \,\mathrm{e}^{\mathrm{i}\,5\theta} = 32 \,\mathrm{e}^{\mathrm{i}\,0} \iff \left\{ \begin{array}{c} r^5 = 32 \\ 5\theta = 0 \mod 2\pi \end{array} \right. \iff \left\{ \begin{array}{c} r = 2 \\ \theta = 0 \mod \frac{2\pi}{5} \end{array} \right.$$

par stricte croissance de la fonction $t \mapsto t^{1/5}$ sur \mathbb{R}_+^* . L'ensemble des racines de U dans \mathbb{C} est donc :

$$\left\{2, 2e^{i\frac{2\pi}{5}}, 2e^{i\frac{4\pi}{5}}, 2e^{i\frac{6\pi}{5}}, 2e^{i\frac{8\pi}{5}}\right\}$$

La factorisation de U dans $\mathbb{C}[X]$ est donc :

$$U = (X - 2) \left(X - e^{i\frac{2\pi}{5}} \right) \left(X - e^{i\frac{4\pi}{5}} \right) \left(X - e^{i\frac{6\pi}{5}} \right) \left(X - e^{i\frac{8\pi}{5}} \right)$$

(g) $V = X^4 + 2X^3 + 7X^2 + 8X + 12$

Indication : pour le polynôme V, on pourra utiliser le fait qu'il admet une racine imaginaire pure.

Soit $\alpha \in \mathbb{R}^*$. Alors:

$$V(i \alpha) = 0 \iff (\alpha^4 - 7\alpha^2 + 12) + i(-2\alpha^3 + 8\alpha) = 0$$

Par unicité de l'écriture algébrique d'un polynôme, on a donc (puisque $\alpha=0$) :

$$V(\mathrm{i}\,\alpha) = 0 \iff \left\{ \begin{array}{l} \alpha^4 - 7\alpha^2 + 12 = 0 \\ -2\alpha^2 + 8 = 0 \end{array} \right. \iff \alpha = 2 \text{ ou } \alpha = -2$$

puisque la deuxième équation fournissent ces valeurs et que celles-ci satisfont la première équation. Donc V admet pour racines $\pm 2i$. On peut ainsi factoriser V par $(X-2i)(X+2i)=X^2+4$. On obtient (de tête ou par identification):

$$V = (X^2 + 4)(X^2 + 2X + 3)$$

Les racines de $X^2 + 2X + 3$ sont $-1 \pm i \sqrt{2}$ donc la factorisation dans $\mathbb{C}[X]$ est :

$$V = (X - 2i)(X + 2i) (X + 1 - i\sqrt{2}) (X + 1 + i\sqrt{2})$$

COMMENTAIRE

Si on ne sait pas factoriser de tête le polynôme Q, on peut chercher $(a, b, c) \in \mathbb{R}^3$ tel que $Q = (X - 2)(aX^2 + bX + c)$ en procédant par identification.

Exercice 2 (C1) Soient x_1, x_2, x_3 les racines de $X^3 - 2X^2 + X + 3$. Calculer $x_1 + x_2 + x_3$. On note x_1, x_2, x_3 les racines de $P = X^3 - 2X^2 + X + 3$. Par définition, on a alors :

$$P = (X - x_1)(X - x_2)(X - x_3)$$

$$= (X^2 - (x_1 + x_2)X + x_1x_2)(X - x_3)$$

$$= X^3 - (x_1 + x_2 + x_3)X^2 + (x_1x_2 + x_1x_3 + x_2x_3)X - x_1x_2x_3$$

Par identification, on obtient donc:

$$x_1 + x_2 + x_3 = 2.$$

Exercice 3 (C4) Soit $P \in \mathbb{R}_n[X]$ tel que P(0) = 0 et vérifiant, pour tout $x \in \mathbb{R}$, $P(x) = P(\sin(x))$. Montrer que P est le polynôme nul. Pour tout $k \in \mathbb{N}$, notons $x_k = k\pi$, alors

$$P(x_k) = P(\sin(x_k)) = P(\sin(k\pi)) = P(0) = 0$$

donc x_k est une racine de P.

Le polynôme P possède une infinité de racines, c'est donc le polynôme nul.

Exercice 4 (C2) Soit $P \in \mathbb{R}[X]$ et $a \in \mathbb{R}$. On pose $Q = \frac{1}{2}(X - a)(P' + P'(a)) - P + P(a)$. Montrer que a est une racine d'ordre au moins 3 de Q. Montrons que a est une racine de Q:

$$Q(a) = \frac{1}{2}(a-a)(P'(a) + P'(a)) - P(a) + P(a) = 0.$$

Montrons que a est une racine d'ordre au moins 2 de Q. Pour ça, on va montrer que a est une racine de Q':

$$Q' = \frac{1}{2}(P' + P'(a)) + \frac{1}{2}(X - a)P'' - P'$$

car P(a) et P'(a) sont des constantes. Ainsi, on a :

$$Q'(a) = \frac{1}{2}(P'(a) + P'(a)) + \frac{1}{2}(a - a)P''(a) - P'(a) = P'(a) - P'(a) = 0.$$

Montrons que a est une racine d'ordre au moins 3 de Q. Pour ça, on va montrer que a est une racine de Q'':

$$Q'' = \frac{1}{2}P'' + \frac{1}{2}(X - a)P''' + \frac{1}{2}P'' - P'' = \frac{1}{2}(X - a)P^{(3)}$$

donc

$$Q''(a) = \frac{1}{2}(a-a)P^{(3)}(a) = 0.$$

Ainsi, on a Q(a) = 0, Q'(a) = 0 et Q''(a) = 0 donc a est une racine d'ordre au moins 3 de Q.

Exercice 5 (C1-C3) \square On considère le polynôme $P = X^4 - 4X^3 + 11X^2 - 14X + 10$.

1. Montrer que $z_1 = 1 + i$ est racine de P.

On calcule:

$$-z_1^2 = (1+i)^2 = 2i$$

$$-z_1^3 = (1+i)^2 \times (1+i) = 2i - 2$$

$$-z_1^4 = ((1+i)^2)^2 = -4.$$

On a alors

$$P(z_1) = -4 - 4(2i - 2) + 22i - 14(1+i) + 10 = 0$$

donc z_1 est une racine de P

2. En déduire toutes les racines complexes, puis toutes les racines réelles de P. Le polynôme P est à coefficients réels et admet pour racine z_1 , donc $\overline{z_1}$ est aussi racine de P. Ainsi, P s'écrit sous forme factorisée :

$$P = (X - z_1)(X - \overline{z_1})Q(X)$$

où Q est un polynôme de degré 2. Plus précisément, on cherche $(b,c)\in\mathbb{R}^2$ tel que :

$$P = (X^{2} - 2X + 2)(X^{2} + bX + c)$$

$$\iff X^{4} - 4X^{3} + 11X^{2} - 14X + 10 = X^{4} + (b - 2)X^{3} + (c - 2b + 2)X^{2} + (2b - 2c)X + 2c$$

$$\iff \begin{cases} b - 2 &= -4 \\ c - 2b + 2 &= 11 \\ 2b - 2c &= -14 \\ 2c &= 10 \end{cases}$$

$$\iff \begin{cases} b &= -2 \\ c &= 5 \end{cases}$$

donc
$$P = (X - z_1)(X - \overline{z_1})(X^2 - 2X + 5)$$

Le polynôme Q a pour discriminant $\Delta = -16$ et admet pour racines 1 + 2i et 1 - 2i. Ainsi, le polynôme P a quatre racines complexes : 1 + i, 1 - i, 1 + 2i, 1 - 2i et aucune racine réelle.

Exercice 6 (C2-C4) \Box Soit $(a,b) \in \mathbb{C}^2$. On pose $P = aX^{n+1} + bX^n + 1$.

1. Démontrer qu'il existe des valeurs de a et b pour lesquelles 1 est une racine au moins double de P.

Soit $(a,b) \in \mathbb{C}^2$. Alors:

1 est une racine au moins double de
$$P \iff$$

$$\begin{cases}
P(1) = 0 \\
P'(1) = 0
\end{cases}$$

$$\iff$$

$$\begin{cases}
a + b = -1 \\
(n+1)a + nb = 0
\end{cases}$$

$$\iff$$

$$\begin{cases}
b = -1 - n \\
a = n
\end{cases}$$

2. Pour ces valeurs de a et b, montrer alors que $P = (X - 1)^2 \sum_{k=0}^{n-1} (k+1)X^k$.

En utilisant la linéarité de la somme, on a :

$$(X-1)^{2} \sum_{k=0}^{n-1} (k+1)X^{k} = \sum_{k=0}^{n-1} (k+1)X^{k+2} - 2\sum_{k=0}^{n-1} (k+1)X^{k+1} + \sum_{k=0}^{n-1} (k+1)X^{k}$$
$$= \sum_{\ell=2}^{n+1} (\ell-1)X^{\ell} - 2\sum_{k=1}^{n} \ell X^{\ell} + \sum_{k=0}^{n-1} (k+1)X^{k}$$

en effectuant les changements d'indices $\ell=k+2$ et $\ell=k+1$ dans les première et deuxième sommes respectivement. D'après la relation de Chasles et par linéarité de la somme, il vient :

$$(X-1)^{2} \sum_{k=0}^{n-1} (k+1)X^{k} = \underbrace{\sum_{k=2}^{n-1} (k-1-2k+k+1)X^{k}}_{=0_{\mathbb{R}[X]}} + (n-1)X^{n} + nX^{n+1}$$

$$-2X - 2nX^{n} + 1 + 2X$$

$$= nX^{n+1} + (-1-n)X^{n} + 1$$

Autrement dit, $P = (X - 1)^2 \sum_{k=0}^{n-1} (k+1)X^k$.

Exercice 7 (C1-C2-C3-C4) 🗊 1. Soit P un polynôme à coefficients réels noté

$$P = \sum_{k=0}^{n} a_k X^k \text{ (où } n \in \mathbb{N}^*).$$

Montrer que si ω est une racine complexe de P, alors $\overline{\omega}$ est aussi une racine de P. Soit ω une racine complexe de P. Alors $P(\omega) = 0$, c'est-à-dire $\sum_{k=0}^{n} a_k \omega^k = 0$. On a donc

aussi $\sum_{k=0}^{n} a_k \omega^k = \overline{0} = 0$. La conjugaison étant linéaire et multiplicative, on a :

$$\overline{\sum_{k=0}^{n} a_k \omega^k} = \sum_{k=0}^{n} \overline{a_k \omega^k} = \sum_{k=0}^{n} \overline{a_k} \times \overline{\omega}^k$$

et comme P est à coefficients réels, on a $\overline{a_k} = a_k$ pour tout $k \in [0, n]$. Finalement, $\sum_{k=0}^n a_k \overline{\omega}^k$, c'est-à-dire $P(\overline{\omega}) = 0$. Autrement dit, $[\overline{\omega}]$ est une racine de P.

5

2. On définit le polynôme $P = (X+1)^7 - X^7 - 1$.

(a) Déterminer le degré de P et son coefficient dominant. D'après la formule du binôme de Newton, on a :

$$P = \sum_{k=0}^{7} {7 \choose k} X^k - X^7 - 1 = 6X^6 + \sum_{k=1}^{5} {7 \choose k} X^k$$

On en déduit que P est de degré 6 et son coefficient dominant est égal à 6

(b) En trouver deux racines évidentes.

On remarque que -1 et 0 sont racines de P.

(c) Soit j= $e^{i\frac{2\pi}{3}}$. Montrer que j est racine multiple de P. En déduire une autre racine multiple ainsi que la multiplicité de ces deux racines de P.

On a vu dans l'exercice 4. que $j+1=-j^2$ et $j^3=1$. Donc $j^7=j$ et $(j+1)^7=-j^{14}=-i^2$. Par conséquent :

$$P(j) = -j^2 - j - 1 = 0$$

De plus, ${\bf P}'=7(X+1)^6-7X^6$ et ${\bf j}^{12}={\bf j}^6=1$ donc ${\bf P}'({\bf j})=0.$ On en déduit que ${\bf j}$ est une racine au moins double de P. Il s'agit donc d'une racine multiple de P. On a $P'' = 42(X+1)^5 - 42X^5$. Or $j^5 = j^2$ et $j^{10} = j$ donc :

$$P''(j) = -42j - 42j^2 = -42 \neq 0$$

donc j est une racine double exactement (donc d'ordre de multiplicité 2) de P. D'après la question 1. (puisque P et à coefficients réels), $\bar{j} = j^2$ est aussi une racine double de P.

(d) En déduire la factorisation de P dans $\mathbb{C}[X]$.

On sait que P est de degré 6 et de coefficient dominant égal à 6. De plus :

- \star -1 est racine de P;
- \star 0 est racine de P;
- ★ j est racine double de P;
- \star j² est racine double de P

Or la somme des ordres de multiplicité est égal au degré donc -1 et 0 sont des racines simples de P. Nous obtenons donc la factorisation de P dans $\mathbb{C}[X]$ suivante :

$$P = X(X + 1)(X - j)^{2}(X - j^{2})^{2}$$

Exercice 8 (C1-C3-C4) \square Soit $n \in \mathbb{N} \setminus \{0,1\}$. On pose $P = \sum_{k=0}^{n-1} X^k$ et, pour tout $k \in \mathbb{N} \setminus \{0,1\}$. [1, n-1], on pose $\omega_k = e^{i\frac{2k\pi}{n}}$.

1.(a) Montrer que les nombres $\omega_1, \ldots, \omega_{n-1}$ sont des racines deux à deux distinctes de P puis en déduire une factorisation de P dans $\mathbb{C}[X]$.

Soit $k \in [1, n-1]$. Alors $P(\omega_k)$ est la somme des termes d'une suite géométrique de raison $\omega_k \neq 1$ car $\frac{2k\pi}{n} \neq 0 \mod 2\pi$ puisque $\frac{2k\pi}{n} \in]0, 2\pi[$. D'après la formule de Moivre, on a:

$$P(\omega_k) = \frac{1 - \omega_k^n}{1 - \omega_k} = \frac{1 - e^{i 2k\pi}}{1 - \omega_k} = 0$$

puisque $e^{i 2k\pi} = 1$. Donc ω_k est une racine de P.

Soit $(k,\ell) \in [1, n-1]^2$ tel que $k \neq \ell$. Supposons que $\omega_k = \omega_\ell$. Alors $\frac{2k\pi}{n} = \frac{2\ell\pi}{n}$

mod 2π et donc $k = \ell \mod n$, c'est-à-dire qu'il existe $p \in \mathbb{Z}$ tel que $k - \ell = pn$. Or on sait que $k - \ell \in]-n, n[$ donc nécessairement p = 0 et $k = \ell$ ce qui est absurde. Les racines obtenues précédemment sont donc deux à deux distinctes.

Le polynôme P est de degré 1, unitaire (c'est-à-dire de coefficient dominant égal à 1) et P admet n-1 racines distinctes deux à deux $\omega_1, \ldots, \omega_{n-1}$. On a donc la factorisation de P suivante dans $\mathbb{C}[X]$:

$$P = \prod_{k=1}^{n-1} (X - \omega_k)$$

(b) Proposer un programme informatique qui permet de vérifier que $\omega_1, \ldots, \omega_{n-1}$ sont racines de P.

On utilise le module cmath pour l'utilisation des nombres complexes.

```
from math import *
from cmath import *
def racines(n) :
    L = []
    for k in range(1,n) :
        s = 0
    for j in range(0,n) :
        s = s + exp(1j*2*k*j*pi/n)
    L.append(s)
return L
```

2.(a) Soit $\theta \in]0, 2\pi[$. Déterminer la forme exponentielle de $1 - e^{i\theta}$. Soit $\theta \in]0, 2\pi[$. En utilisant la technique de l'angle moitié (et la formule d'Euler pour le sinus), on obtient :

$$1 - e^{i\theta} = e^{i\frac{\theta}{2}} \left(e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}} \right) = -2i \sin\left(\frac{\theta}{2}\right) e^{i\frac{\theta}{2}} = 2\sin\left(\frac{\theta}{2}\right) e^{i\frac{\theta-\pi}{2}}$$

Or $\frac{\theta}{2} \in]0, \pi[$ donc $\sin\left(\frac{\theta}{2}\right) > 0$. La forme exponentielle cherchée est donc :

$$1 - e^{i\theta} = 2\sin\left(\frac{\theta}{2}\right)e^{i\frac{\theta - \pi}{2}}$$

(b) Déduire de ce qui précède la valeur du produit $\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right)$.

D'après la question 1.(a), on a :

$$P(1) = \prod_{k=1}^{n-1} (1 - \omega_k) = \prod_{k=1}^{n-1} \left(1 - e^{i\frac{2k\pi}{n}} \right)$$

et donc, en utilisant la question 2.(a):

$$P(1) = \prod_{k=1}^{n-1} \left(2\sin\left(\frac{k\pi}{n}\right) e^{i\left(\frac{k\pi}{n} - \frac{\pi}{2}\right)} \right) = 2^{n-1} \left(\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right)\right) \left(\prod_{k=1}^{n-1} e^{i\left(\frac{k\pi}{n} - \frac{\pi}{2}\right)}\right)$$

Or :

$$\prod_{k=1}^{n-1} \mathrm{e}^{\mathrm{i} \left(\frac{k\pi}{n} - \frac{\pi}{2} \right)} = \exp \left(\frac{\mathrm{i} \, \pi}{n} \sum_{k=1}^{n-1} k - \frac{\mathrm{i} \, \pi}{2} \sum_{k=1}^{n-1} 1 \right) = \exp \left(\frac{\mathrm{i} \, \pi}{n} \times \frac{(n-1)n}{2} - \frac{\mathrm{i} \, \pi}{2} (n-1) \right) = 1$$

Par ailleurs,
$$P(1) = n$$
 et donc $\left[\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{n}{2^{n-1}}\right]$

(c) Écrire une fonction python qui prend en entrée un entier n supérieur ou égal à 2 et qui renvoie la valeur du produit précédent.

Le calcul d'un produit se fait de la même manière qu'un calcul de somme.

Exercice 9 (C1-C2-C4, oral G2E) $\ \ \ \ \ \ \ \ \$ Soit $(P_n)_{n\in\mathbb{N}}$ la suite de polynômes de $\mathbb{C}[X]$ définie par $P_0=2,\ P_1=X$ et par $P_{n+2}=X\,P_{n+1}-P_n$ pour tout $n\in\mathbb{N}$.

1. Écrire une fonction polynome qui prend en entrée un entier n, un nombre réel x, et qui renvoie la valeur de $P_n(x)$.

On peut utiliser une fonction récursive.

```
def polynome(x,n):
    if (n == 0):
        return 2
    elif (n == 1):
        return x
    else:
        return x*polynome(x,n-1)-polynome(x,n-2)
```

2. Calculer P_2 , P_3 et P_4 . Pour tout $n \in \mathbb{N}$, déterminer le monôme de plus haut degré du polynôme P_n .

On a
$$P_2 = X P_1 - P_0 = X^2 - 2$$
, puis $P_3 = X P_2 - P_1 = X^3 - 2X^2 - X$ et :

$$P_4 = X P_3 - P_2 = X^4 - 2X^3 - X^2 - (X^2 - 2) = X^4 - 2X^3 - 2X^2 + 2$$

Le monôme de plus haut degré de P_0 est $2 = 2X^0$. On utilise ensuite une récurrence à deux pas. Pour tout $n \in \mathbb{N}^*$, on considère la proposition \mathcal{P}_n : « le monôme de plus haut degré de P_n est X^n ».

- Initialisation : les propositions \mathcal{P}_1 et \mathcal{P}_2 sont vraies puisque leur monômes de plus haut degré sont respectivement X et X^2 d'après les calculs précédents.
- **Hérédité**: soit $n \in \mathbb{N}^*$ tel que les propositions \mathcal{P}_n et \mathcal{P}_{n+1} soient vraies. Montrons qu'elles entrainent la proposition \mathcal{P}_{n+2} . Par hypothèse de récurrence, on a $\deg(P_n) = n$ et $\deg(P_{n+1}) = n+1$. Donc $\deg(X P_{n+1}) = n+2$ alors que $\deg(-P_n) = n \neq \deg(X P_{n+1})$. D'après les propriétés sur le degré, on a donc :

$$\deg(P_{n+2}) = \max(\deg(XP_{n+1}), \deg(-P_n)) = \max(n+2, n) = n+2$$

Ainsi, P_{n+2} est de degré n+2 et son monôme de plus haut degré est un monôme de $X P_{n+1}$. Comme le monôme de plus haut degré de P_{n+1} est X^{n+1} (hypothèse de récurrence), celui de P_{n+2} est $X \times X^{n+1} = X^{n+2}$. La proposition \mathcal{P}_{n+2} est donc vraie.

• Conclusion : pour tout $n \in \mathbb{N}^*$, la proposition \mathcal{P}_n est vraie par principe de récurrence à deux pas.

Finalement:

pour tout $n\in\mathbb{N}^*,$ le monôme de plus haut degré de \mathbf{P}_n est X^n

3. Montrer que:

$$\forall z \in \mathbb{C}^*, \ \forall n \in \mathbb{N}, \qquad P_n\left(z + \frac{1}{z}\right) = z^n + \frac{1}{z^n}$$

Soit $z \in \mathbb{C}^*$ (fixé). On utilise une récurrence à deux pas pour établir la propriété annoncée.

Pour tout $n \in \mathbb{N}$, on considère la proposition $\mathcal{P}_n : \ll P_n\left(z + \frac{1}{z}\right) = z^n + \frac{1}{z^n} \gg$.

• Initialisation: on a $z^0 + \frac{1}{z^0} = 2 = P_0 \left(z + \frac{1}{z}\right)$ (puisque P_0 est le polynôme constant étal à 2. Donc la proposition \mathcal{P}_0 est vraie. De plus, $P_1 = X$ donc:

$$P_1\left(z + \frac{1}{z}\right) = z + \frac{1}{z} = z^1 + \frac{1}{z^1}$$

La proposition \mathcal{P}_1 est donc vraie.

• **Hérédité**: soit $n \in \mathbb{N}$ tel que les propositions \mathcal{P}_n et \mathcal{P}_{n+1} soient vraies. Montrons qu'elles entrainent la proposition \mathcal{P}_{n+2} . En utilisant la relation de récurrence et l'hypothèse de récurrence, on a :

$$P_{n+2}\left(z + \frac{1}{z}\right) = \left(z + \frac{1}{z}\right) P_{n+1}\left(z + \frac{1}{z}\right) - P_n\left(z + \frac{1}{z}\right)$$

$$= \left(z + \frac{1}{z}\right) \left(z^{n+1} + \frac{1}{z^{n+1}}\right) - \left(z^n + \frac{1}{z^n}\right)$$

$$= z^{n+2} + \frac{1}{z^n} + z^n + \frac{1}{z^{n+2}} - z^n - \frac{1}{z^n}$$

$$= z^{n+2} + \frac{1}{z^{n+2}}$$

• Conclusion : pour tout $n \in \mathbb{N}$, la proposition \mathcal{P}_n est vraie par principe de récurrence à deux pas.

Finalement:

$$\forall n \in \mathbb{N}, \ \forall z \in \mathbb{C}^*, \qquad P_n\left(z + \frac{1}{z}\right) = z^n + \frac{1}{z^n}$$

4. Soit $n \in \mathbb{N}^*$. Montrer que pour tout $k \in [0, n-1]$, le nombre $\alpha_k = 2\cos\left(\frac{\pi}{2n} + k\frac{\pi}{n}\right)$ est racine de P_n . Ces racines sont-elles deux à deux distinctes? Que peut-on en conclure? Soient $n \in \mathbb{N}^*$ et $k \in [0, n-1]$. D'après la formule d'Euler pour le cosinus, on a $\alpha_k = e^{i\left(\frac{\pi}{2n} + k\frac{\pi}{n}\right)} + e^{-i\left(\frac{\pi}{2n} + k\frac{\pi}{n}\right)}$. En utilisant la question 3. avec le nombre complexe $z = e^{i\left(\frac{\pi}{2n} + k\frac{\pi}{n}\right)} \neq 0$ et en appliquant ensuite la formule de Moivre, on obtient :

$$P_n(\alpha_k) = e^{i\left(\frac{\pi}{2} + k\pi\right)} + e^{-i\left(\frac{\pi}{2} + k\pi\right)}$$

On applique à nouveau la formule d'Euler pour le cosinus :

$$P_n(\alpha_k) = 2\cos\left(\frac{\pi}{2} + k\pi\right) = -2\sin(k\pi) = 0$$

Autrement dit, α_k est une racine de P_n .

Il reste à vérifier que ces racines sont deux à deux distinctes. Soit $(k,\ell) \in [0, n-1]$.

Supposons que $\alpha_k = \alpha_\ell$ et montrons que $k = \ell$ (par contraposition, on aura que si $k \neq \ell$, alors $\alpha_k \neq \alpha_\ell$). On remarque que comme $k \in [0, n-1]$, on a :

$$0 \leqslant \frac{\pi}{2n} \leqslant \frac{\pi}{2n} + k\frac{\pi}{n} \leqslant \frac{\pi}{2n} + \frac{(n-1)\pi}{n}$$

c'est-à-dire, en posant $\theta_k = \frac{\pi}{2n} + k\frac{\pi}{n}$:

$$0 \leqslant \theta_k \leqslant \frac{(2n-1)\pi}{2n} \leqslant \pi$$
 car $2n-1 \leqslant 2n$

Pour la même raison (et avec la même notation), on a également $\theta_{\ell} \in [0, \pi]$. Or la fonction cosinus est strictement décroissante sur l'intervalle $[0, \pi]$ (elle y est donc injective). L'égalité $\cos(\theta_k) = \cos(\theta_\ell)$ entraîne donc que $\theta_k = \theta_\ell$ puis $k = \ell$. Finalement :

les racines
$$\alpha_0, \ldots, \alpha_{n-1}$$
 sont deux à deux distinctes

Soit $n \in \mathbb{N}^*$. On sait que le polynôme P_n est unitaire (c'est-à-dire de coefficient dominant égal à 1) et de degré n. Par ailleurs, les nombres $\alpha_0, \ldots, \alpha_{n-1}$ sont n racines distinctes deux à deux de ce polynôme. Or P_n est de degré n donc il admet au plus n racines distinctes. Par conséquent, $\alpha_0, \ldots, \alpha_{n-1}$ sont les racines de P_n . On peut donc factoriser P_n de la façon suivante :

$$P_n = \prod_{k=0}^{n-1} (X - \alpha_k)$$

Exercice 10 (C4) 🗊 On considère l'équation différentielle du second degré :

$$\forall t \in \mathbb{R}, \ ty''(t) - 2y'(t) + 4y(t) = 4t^4 + 12t - 6.$$

Déterminer un polynôme P solution de cette équation.

On commence par déterminer le degré n d'un tel polynôme P. On a $n \geq 4$ car $\deg(XP'' - 2P' + 4P) = 4$.

On a alors deg(4P) = n, deg(-2P') = n - 1 et deg(XP'') = n - 1 donc

$$\deg(XP'' - 2P' + 4P) = \max(\deg(4P), \deg(-2P'), \deg(XP'')) = n$$

car le terme d'ordre n de 4P ne peut pas être compensé par les termes de XP''-2P', qui sont de degré maximal n-1.

Or
$$XP'' - 2P' + 4P = 4X^4 + 12X - 6$$
 donc $n = 4$.

On a donc $P = \sum_{k=0}^{4} a_k X^k$. Si on note Q = XP'' - 2P' + 4P, on obtient après calculs :

$$Q = (4a_0 - 2a_1) + (4a_1 - 2a_2)X + (4a_2)X^2 + (4a_3 + 4a_4)X^3 + 4a_4X^4$$

d'où le système suivant :

$$\begin{cases}
4a_0 - 2a_1 &= -6 \\
4a_1 - 2a_2 &= 12 \\
4a_2 &= 0 \\
4a_3 + 4a_4 &= 0 \\
4a_4 &= 4
\end{cases} \iff \begin{cases}
a_0 &= 0 \\
a_1 &= 3 \\
a_2 &= 0 \\
a_3 &= -1 \\
a_4 &= 1
\end{cases}$$

$$donc P = X^4 - X^3 + 3X$$