Fiche de révision 4 Nombres complexes, trigonométrie

1 Compétences et notions à maîtriser

- ▷ C1 : Utiliser les écritures algébrique et exponentielle d'un nombre complexe
- ⊳ C2 : Déterminer le module et l'argument d'un nombre complexe, utiliser les propriétés associées
- ⊳ C3 : Utiliser les formules d'Euler, la formule de Moivre, la caractérisation des nombres réels et des imaginaires purs à l'aide de la conjugaison
- ⊳ C4 : Utiliser la technique de l'angle moitié
- ⊳ C5 : Utiliser l'inégalité triangulaire
- ⊳ C6 : Linéariser une fonction
- \triangleright C7 : Résoudre des (in)équations trigonométriques, réduction de $a\cos(x) + b\sin(x)$ en $R\cos(x+\varphi)$

2 Rappels de cours

2.1 Formes algébriques et exponentielles

Le nombre complexe $z \in \mathbb{C}$ s'écrit sous forme algébrique : $\mathbf{z} = \mathbf{a} + \mathbf{i} \mathbf{b}$ avec $(a, b) \in \mathbb{R}^2$. On définit

- la **partie réelle** de z par Re(z) = a.
- la partie imaginaire de z par Im(z) = b.
- le **conjugué** de z par $\bar{z} = a ib$.
- le **module** de z par $|z| = \sqrt{a^2 + b^2}$.

Deux nombres complexes sont égaux si et seulement si ils ont même partie réelle et même partie imaginaire :

$$a+ib=a'+ib'\iff \left\{ \begin{array}{ll} a&=a'\\ b&=b' \end{array} \right.$$

Si $|z| \neq 0$, il existe **un unique réel** $\theta \in]-\pi,\pi]$ tel que

$$z = |z|(\cos(\theta) + i\sin(\theta))$$

 θ est l'argument principal de z.

Un argument de z est un nombre congru à θ modulo 2π , c'est à dire :

$$\theta = \arg(z) \iff z = |z|(\cos(\theta) + i\sin(\theta)).$$

On note z sous forme exponentielle : $\mathbf{z} = \mathbf{r} \ \mathbf{e}^{\mathbf{i}\theta}$ avec r = |z| et θ un argument de z.

Deux nombres complexes sont égaux si et seulement

$$z = z' \iff \left\{ \begin{array}{rl} |z| &= |z'| \\ \arg(z) &= \arg(z') + 2k\pi, \ k \in \mathbb{Z} \end{array} \right.$$

- Pour passer d'une écriture algébrique à une écriture exponentielle, on procède en deux étapes :
 - 1. On calcule le module de z = a + ib:

$$|z| = \sqrt{a^2 + b^2}.$$

2. On calcule

$$\cos(\theta) = \frac{a}{|z|} \text{ et } \sin(\theta) = \frac{b}{|z|}$$

puis on identifie θ grâce aux valeurs remarquables du cercle trigonométrique.

• Pour passer d'une écriture exponentielle à une écriture algébrique, on développe l'expression :

$$z = |z|e^{i\theta} = |z|(\cos(\theta) + i\sin(\theta)) = \underbrace{|z|\cos(\theta)}_a + i\underbrace{|z|\sin(\theta)}_b.$$

Proposition 2.1.1 On a les résultats suivants pour tous z et z' de $\mathbb C$:

1.
$$z + \bar{z} = 2 \text{ Re}(z)$$

2.
$$z - \bar{z} = 2i \text{ Im}(z)$$

3.
$$z\bar{z} = |z|^2$$

4.
$$\overline{z+z'} = \overline{z} + \overline{z'}$$

5.
$$\overline{zz'} = \overline{z} \ \overline{z'}$$

6. Si
$$z \neq 0$$
, $\frac{\overline{1}}{z} = \frac{1}{\overline{z}}$

7.
$$|zz'| = |z| |z'|$$

8. Si
$$z \neq 0$$
, $\left| \frac{1}{z} \right| = \frac{1}{|z|}$

9.
$$|\bar{z}| = |z|$$

10.
$$|\text{Re}(z)| \le |z|$$

11.
$$|\text{Im}(z)| \le |z|$$

12. Inégalité triangulaire :
$$|z+z'| \leq |z| + |z'|$$

2.2 Résolution de $z^2 = a$ avec $a \in \mathbb{C}$

Soit $a \in \mathbb{C}$, on veut résoudre l'équation $z^2 = a$.

- 1. On écrit a sous forme exponentielle : $a=|a|e^{i\alpha}$ avec $|a|\geq 0$ et $\alpha\in [-\pi,\pi]$.
- 2. On écrit z sous forme exponentielle : $z = re^{i\theta}$ avec $r \ge 0$ et $\theta \in [-\pi, \pi]$.
- 3. On obtient:

$$z^2 = a \iff r^2 e^{2i\theta} = |a| e^{i\alpha} \iff \left\{ \begin{array}{l} r^2 = |a| \\ 2\theta = \alpha + 2k\pi, \ k \in \mathbb{Z} \end{array} \right. \iff \left\{ \begin{array}{l} r = \sqrt{|a|} \ \mathrm{car} \ r \geq 0 \\ \theta = \frac{\alpha}{2} + k\pi, \ k \in \mathbb{Z} \end{array} \right.$$

4. Les deux solutions sont $z_1 = \sqrt{|a|}e^{i\alpha/2}$ et $z_2 = \sqrt{|a|}e^{i(\alpha/2+\pi)} = -z_1$.

2.3 Formules d'Euler, linéarisation et technique de l'angle moitié

Proposition 2.3.1 (Formules d'Euler) Pour tout réel θ :

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} \ \text{ et } \ \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Linéarisation

On utilise la linéarisation pour calculer des primitives.

Linéariser une expression trigonométrique, c'est l'exprimer comme une somme de termes de la forme $a\sin(k\theta)$ et $b\cos(k\theta)$. Pour ce faire, on utilise les **formules d'Euler**.

- 1. On remplace les cos et sin par leur expression issue des formules d'Euler.
- 2. On développe et on simplifie au maximum.
- 3. On rassemble les termes en $e^{ik\theta}$ et en $e^{-ik\theta}$.
- 4. On utilise les formules d'Euler pour faire apparaître des $\cos(k\theta)$ et des $\sin(k\theta)$.

Exemple 2.3.2

$$\begin{split} f(x) &= \cos^2(x)\sin(2x) \\ &= \left(\frac{e^{ix} + e^{-ix}}{2}\right)^2 \times \left(\frac{e^{2ix} - e^{-2ix}}{2i}\right) \\ &= \frac{1}{8i} \left(e^{2ix} + e^{-2ix} + 2\right) \left(e^{2ix} - e^{-2ix}\right) \\ &= \frac{1}{8i} \left(e^{4ix} - 1 + 1 - e^{-4ix} + 2e^{2ix} - 2e^{-2ix}\right) \\ &= \frac{1}{4} \left(\frac{e^{4ix} - e^{-4ix}}{2i} + 2 \frac{e^{2ix} - e^{-2ix}}{2i}\right) \\ &= \frac{1}{4} \sin(4x) + \frac{1}{2} \sin(2x) \end{split}$$

Technique de l'angle moitié

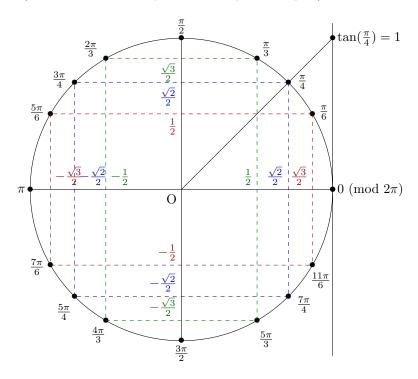
Pour simplifier une somme d'exponentielles complexes $e^{i\theta} + e^{i\theta'}$, on peut factoriser l'expression par l'angle moitié $e^{i\frac{(\theta+\theta')}{2}}$.

Exemple 2.3.3

$$1 + e^{i\theta} = e^{i\frac{0+\theta}{2}} \left(e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}} \right)$$
$$= e^{i\frac{\theta}{2}} \times 2\cos\left(\frac{\theta}{2}\right)$$

2.4 Cercle trigonométrique et fonctions trigonométriques

Tout point M du cercle trigonométrique (c'est-à-dire du cercle de centre O(0,0) et de rayon 1) peut être repéré par un unique couple de coordonnées $(\cos(\theta), \sin(\theta))$, où cos et sin désignent respectivement le cosinus et le sinus de l'angle θ (défini de manière unique à un multiple de 2π près).



$\text{Angle }\theta$	0	$\frac{\pi}{6}$	$rac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos(heta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin(heta)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$ an(heta) = rac{\sin(heta)}{\cos(heta)}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Non défini

Une simple lecture du cercle trigonométrique permet de retrouver facilement les relations suivantes valables pour tout nombre réel θ , sauf mention contraire.

Formule fondamentale:	$\cos^2(\theta) + \sin^2(\theta) = 1$	
Périodicité :	$\cos(\theta + 2\pi) = \cos(\theta)$	$\sin(\theta + 2\pi) = \sin(\theta)$
	$\tan(\theta + \pi) = \tan(\theta)$	$(pour \theta \neq \frac{\pi}{2} \mod \pi)$
Relation entre cosinus et sinus :	$\cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta)$ $\cos\left(\frac{\pi}{2} + \theta\right) = -\sin(\theta)$	$\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta)$
	$\cos\left(\frac{\pi}{2} + \theta\right) = -\sin(\theta)$	$\sin\left(\frac{\pi}{2} + \theta\right) = \cos(\theta)$
Cosinus:	$\cos(\pi - \theta) = -\cos(\theta)$	$\cos(\pi + \theta) = -\cos(\theta)$
	$\cos(-\theta) = \cos(\theta)$	
Sinus:	$\sin(\pi - \theta) = \sin(\theta)$	$\sin(\pi + \theta) = -\sin(\theta)$
	$\sin(-\theta) = -\sin(\theta)$	
Tangente:	$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$	$(pour \theta \neq \frac{\pi}{2} \mod \pi)$
	$1 + \tan(\theta)^2 = \frac{1}{\cos(\theta)^2}$	$(pour \theta \neq \frac{\pi}{2} \mod \pi)$
	$\tan(-\theta) = -\tan(\theta)$	$(pour \theta \neq \frac{\pi}{2} \mod \pi)$
	$\tan\left(\frac{\pi}{2} - \theta\right) = \frac{1}{\tan(\theta)}$	$(pour \ \theta \neq 0 \mod \frac{\pi}{2})$

2.5 Formules trigonométriques

Formules d'addition du cosinus et du sinus

Pour tous nombres réels a et b,

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b) \qquad \cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b) \qquad \sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

Formules de duplication du cosinus et du sinus

Pour tout nombre réel θ ,

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$

$$= 1 - 2\sin^2(\theta)$$

$$= 2\cos^2(\theta) - 1$$

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$

2.6 Fonctions trigonométriques réciproques

On rappelle les notations suivantes.

- Si $c \in [-1, 1]$, alors $\arccos(c)$ est l'unique nombre réel $\theta \in [0, \pi]$ tel que $\cos(\theta) = c$.
- Si $s \in [-1,1]$, alors $\arcsin(s)$ est l'unique nombre réel $\theta \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ tel que $\sin(\theta) = s$.
- Si $t \in \mathbb{R}$, alors $\arctan(t)$ est l'unique nombre réel $\theta \in \left] \frac{\pi}{2}, \frac{\pi}{2} \right[$ tel que $\tan(\theta) = t$.

Proposition 2.6.1 (Équations trigonométriques) Soit $\alpha \in \mathbb{R}$.

• Égalité de deux cosinus :

$$\forall x \in \mathbb{R}, \quad \cos(x) = \cos(\alpha) \iff (x = \alpha \mod 2\pi) \text{ ou } (x = -\alpha \mod 2\pi)$$

• Égalité de deux sinus :

$$\forall x \in \mathbb{R}, \quad \sin(x) = \sin(\alpha) \iff (x = \alpha \mod 2\pi) \text{ ou } (x = \pi - \alpha \mod 2\pi)$$

• Égalité de deux tangentes : si $\alpha \neq \frac{\pi}{2} \mod \pi$, alors :

$$\forall x \in \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right), \quad \tan(x) = \tan(\alpha) \iff x = \alpha \mod \pi$$

2.7 Transformation de $a\cos(\theta) + b\sin(\theta)$ en $r\cos(\theta + \varphi)$

Pour obtenir cette réduction, on procède comme suit :

- 1. On commence par factoriser $a\cos(x) + b\cos(x)$ par $\sqrt{a^2 + b^2}$.
- 2. Cela a pour effet de faire apparaître les nombres $\frac{a}{\sqrt{a^2+b^2}}$ et $\frac{b}{\sqrt{a^2+b^2}}$ qui correspondent souvent à des valeurs remarquables de cosinus et de sinus.
- 3. On utilise les formules de sommes des cosinus et sinus pour conclure.

Exemple 2.7.1 On veut résoudre dans \mathbb{R} l'équation $\sqrt{3}\cos(x) + \sin(x) = \sqrt{3}$.

Pour tout nombre réel x, on a :

$$\sqrt{3}\cos(x) + \sin(x) = 2\left(\frac{\sqrt{3}}{2}\cos(x) + \frac{1}{2}\sin(x)\right) = 2\left(\cos\left(\frac{\pi}{6}\right)\cos(x) + \sin\left(\frac{\pi}{6}\right)\sin(x)\right) = 2\cos\left(\frac{\pi}{6} - x\right)$$

et donc:

$$\sqrt{3}\cos(x) + \sin(x) = \sqrt{3} \iff \cos\left(\frac{\pi}{6} - x\right) = \cos\left(\frac{\pi}{6}\right)$$

$$\iff \left(\frac{\pi}{6} - x = \frac{\pi}{6} \mod 2\pi\right) \text{ ou } \left(\frac{\pi}{6} - x = -\frac{\pi}{6} \mod 2\pi\right)$$

$$\iff (x = 0 \mod 2\pi) \text{ ou } \left(x = \frac{\pi}{3} \mod 2\pi\right)$$

5

L'ensemble des solutions est donc $2\pi\mathbb{Z} \cup \left\{ \frac{\pi}{3} + 2k\pi \mid k \in \mathbb{Z} \right\}$.

Exercices 3

Exercice 1 (C1-C2-C3-C4) \square Mettre sous forme exponentielle les nombres complexes z suivants. On discutera suivant les valeurs des nombres réels α et β dans les questions 10. et 12.

1.
$$z = 7$$

6.
$$z = -4i$$

$$2 z = -3$$

$$7 z = 1 - e^{i}$$

$$3 z = 3$$

8.
$$z = e^{i\frac{\pi}{6}} + e^{i\frac{\pi}{3}}$$

2.
$$z = -3$$

3. $z = 3i$
4. $z = -1 + i\sqrt{3}$
7. $z = 1 - e^{i\frac{\pi}{4}}$
8. $z = e^{i\frac{\pi}{6}} + e^{i\frac{\pi}{4}}$
9. $z = e^{i\alpha} + 1$

$$9 \quad z = e^{i\alpha} + \frac{1}{2}$$

5.
$$z = 2 - 2i$$

10.
$$z = e^{i\alpha} - e^{i\beta}$$

11.
$$z = \sqrt{2 + \sqrt{2}} + i\sqrt{2 - \sqrt{2}}$$
 en élevant préalablement le nombre complexe au carré

12.
$$z = \frac{e^{\mathrm{i} \alpha} - 1}{\mathrm{i} e^{\mathrm{i} \beta} + 1}$$
 où ici $(\alpha, \beta) \in]0, 2\pi[\times]0, \frac{\pi}{2}[$ en justifiant d'abord que ce nombre complexe est bien défini

Exercice 2 (C2) \Box 1. Pour tout entier naturel n, déterminer le module et un argument du nombre complexe $z = (1 - i\sqrt{3})^n$

2. Déterminer les valeurs de n pour lesquelles z est un nombre réel.

Exercice 3 (C3-C7) \square Résoudre dans \mathbb{C} les équations suivantes (d'inconnue z):

1.
$$z^2 = 1 - \sqrt{3}i$$

2.
$$z^2 = 1 + i$$

Exercice 4 (C3) 1. Soit z un nombre complexe de module 1. Exprimer \overline{z} en fonction de z.

2. Soient a, b et c trois nombres complexes de module 1 tels que $ac \neq -1$. Montrer que le nombre complexe $z = \frac{(c-b)(1+ab)}{b(1+ac)}$ est un imaginaire pur.

Exercice 5 (C1-C2-C3-C7) \square On note j le nombre complexe $-\frac{1}{2} + i \frac{\sqrt{3}}{2}$.

- 1. Déterminer la forme exponentielle de j.
- 2. Calculer j^3 et $j^2 + j + 1$.
- 3. Vérifier que pour tout nombre complexe z, on a l'égalité :

$$(z+1)(z+j)(z+j^2) = (1+z)(1+jz)(1+j^2z)$$

4. Montrer que la matrice $M = \begin{pmatrix} j & j^2 \\ j & -1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{C})$ est inversible et déterminer son inverse.

Exercice 6 (C1-C3) Soit $\theta \in \mathbb{R}$. On veut montrer que la série $\sum_{n\geq 0} \left(\frac{1}{2}\right)^n \cos(n\theta)$ est convergente et calculer sa somme. Pour tout entier naturel n, on pose $S_n = \sum_{k=0}^n \left(\frac{1}{2}\right)^k \cos(k\theta)$.

- 1. Justifier que pour tout $n \in \mathbb{N}$, on a $S_n = \text{Re}(T_n)$ où $T_n = \sum_{i=0}^n \left(\frac{e^{i\theta}}{2}\right)^k$.
- 2. (a) Démontrer que :

$$\frac{1}{2 - e^{i\theta}} = \frac{2 - e^{-i\theta}}{5 - 4\cos(\theta)}$$

(b) Pour tout $n \in \mathbb{N}$, en déduire la valeur de T_n puis établir que :

$$S_n = \frac{1}{5 - 4\cos(\theta)} \left(4 - 2\cos(\theta) - \frac{\cos((n+1)\theta)}{2^{n-1}} + \frac{\cos(n\theta)}{2^n} \right)$$

6

3. Conclure quant à la convergence de la série et à la valeur de sa somme.

Exercice 7 (C3-C7) \Box 1. Soit $(a,b) \in \mathbb{C}^2$. Montrer que:

$$|a+b|^2 = |a|^2 + |b|^2 + 2\operatorname{Re}(a\overline{b})$$

2. Soit $a \in \mathbb{C}$ tel que |a| < 1. Démontrer l'équivalence :

$$\forall z \in \mathbb{C} \setminus \left\{ \frac{1}{\overline{a}} \right\}, \qquad \left| \frac{z - a}{1 - \overline{a}z} \right| < 1 \iff |z| < 1$$

Exercice 8 (C3-C8)

1. Résoudre dans \mathbb{R} l'équation :

$$16x^5 - 20x^3 + 5x = 0$$

- 2. Résoudre dans \mathbb{R} l'équation $\sin(5x) = 0$.
- 3. Soit $x \in \mathbb{R}$.
 - (a) En utilisant la formule du binôme de Newton, montrer que :

$$\operatorname{Im}(e^{i 5x}) = 5\cos(x)^4 \sin(x) - 10\cos(x)^2 \sin(x)^3 + \sin(x)^5$$

- (b) Exprimer $\sin(5x)$ comme combinaison linéaire de puissances de $\sin(x)$.
- 4. En déduire la valeur de $\sin\left(\frac{\pi}{5}\right)$.

Exercice 9 (C7) \square Résoudre dans \mathbb{R} les équations et inéquations suivantes :

1.
$$\sin(x) = -\frac{\sqrt{2}}{2}$$
 2. $\cos(x) = \frac{\sqrt{3}}{2}$

$$2. \cos(x) = \frac{\sqrt{3}}{2}$$

$$3. \cos\left(x + \frac{\pi}{3}\right) = \frac{1}{2}$$

4.
$$-\cos(3t) + \sqrt{3}\sin(3t) = 1$$
 5. $\cos(x) \ge \frac{1}{2}$

$$5. \cos(x) \geqslant \frac{1}{2}$$

$$6. \sin(x) \geqslant \frac{\sqrt{3}}{2}$$

$$7.\,\sin(2t) \leqslant \frac{\sqrt{2}}{2}$$

$$7. \sin(2t) \leqslant \frac{\sqrt{2}}{2}$$

$$8. \cos(2\theta) + \sin(2\theta) > \sqrt{\frac{3}{2}}$$

$$9. \tan(x) \leqslant 1$$

$$10. \tan\left(x + \frac{\pi}{4}\right) \geqslant -1$$

$$11. \cos(x) + \sin(x) = \frac{\sqrt{6}}{2}$$

$$12. \cos(x)^2 - \frac{\sin(2x)}{2} = 0$$

10.
$$\tan\left(x + \frac{\pi}{4}\right) \geqslant -$$

11.
$$\cos(x) + \sin(x) = \frac{\sqrt{6}}{2}$$

12.
$$\cos(x)^2 - \frac{\sin(2x)}{2} = 0$$

Exercice 10 (C6) Les trois questions sont indépendantes.

1. Linéariser les expressions suivantes :

(a)
$$\sin(t)^4$$

(b)
$$\cos(2t)\sin(3t)$$

(c)
$$\cos(2t)\cos(t)^2$$

(d) $\cos(t)^5$

- 2. Déterminer une primitive de $x \mapsto \cos(x)^6$.
- 3. Calculer l'intégrale $I = \int_0^{\pi} \sin(t) \cos(3t) dt$.